Skip to main content
Top
Published in: European Journal of Medical Research 1/2023

Open Access 01-12-2023 | Heart Surgery | Review

Diagnosis, pathophysiology and preventive strategies for cardiac surgery-associated acute kidney injury: a narrative review

Authors: Ying Yu, Chenning Li, Shuainan Zhu, Lin Jin, Yan Hu, Xiaomin Ling, Changhong Miao, Kefang Guo

Published in: European Journal of Medical Research | Issue 1/2023

Login to get access

Abstract

Acute kidney injury (AKI) is a common and serious complication of cardiac surgery and is associated with increased mortality and morbidity, accompanied by a substantial economic burden. The pathogenesis of cardiac surgery-associated acute kidney injury (CSA-AKI) is multifactorial and complex, with a variety of pathophysiological theories. In addition to the existing diagnostic criteria, the exploration and validation of biomarkers is the focus of research in the field of CSA-AKI diagnosis. Prevention remains the key to the management of CSA-AKI, and common strategies include maintenance of renal perfusion, individualized blood pressure targets, balanced fluid management, goal-directed oxygen delivery, and avoidance of nephrotoxins. This article reviews the pathogenesis, definition and diagnosis, and pharmacological and nonpharmacological prevention strategies of AKI in cardiac surgical patients.
Literature
1.
go back to reference Vandenberghe W, Gevaert S, Kellum JA, Bagshaw SM, Peperstraete H, Herck I, et al. Acute kidney injury in cardiorenal syndrome type 1 patients: a systematic review and meta-analysis. Cardiorenal Med. 2016;6(2):116–28.CrossRef Vandenberghe W, Gevaert S, Kellum JA, Bagshaw SM, Peperstraete H, Herck I, et al. Acute kidney injury in cardiorenal syndrome type 1 patients: a systematic review and meta-analysis. Cardiorenal Med. 2016;6(2):116–28.CrossRef
2.
go back to reference Ortega-Loubon C, Fernandez-Molina M, Carrascal-Hinojal Y, Fulquet-Carreras E. Cardiac surgery-associated acute kidney injury. Ann Card Anaesth. 2016;19(4):687–98.CrossRef Ortega-Loubon C, Fernandez-Molina M, Carrascal-Hinojal Y, Fulquet-Carreras E. Cardiac surgery-associated acute kidney injury. Ann Card Anaesth. 2016;19(4):687–98.CrossRef
3.
go back to reference Srivastava V, D’Silva C, Tang A, Sogliani F, Ngaage DL. The impact of major perioperative renal insult on long-term renal function and survival after cardiac surgery. Interact Cardiovasc Thorac Surg. 2012;15(1):14–7.CrossRef Srivastava V, D’Silva C, Tang A, Sogliani F, Ngaage DL. The impact of major perioperative renal insult on long-term renal function and survival after cardiac surgery. Interact Cardiovasc Thorac Surg. 2012;15(1):14–7.CrossRef
4.
go back to reference Horne KL, Packington R, Monaghan J, Reilly T, Selby NM. Three-year outcomes after acute kidney injury: results of a prospective parallel group cohort study. BMJ Open. 2017;7(3): e15316.CrossRef Horne KL, Packington R, Monaghan J, Reilly T, Selby NM. Three-year outcomes after acute kidney injury: results of a prospective parallel group cohort study. BMJ Open. 2017;7(3): e15316.CrossRef
6.
go back to reference Ronco C, Haapio M, House AA, Anavekar N, Bellomo R. Cardiorenal syndrome. J Am Coll Cardiol. 2008;52(19):1527–39.CrossRef Ronco C, Haapio M, House AA, Anavekar N, Bellomo R. Cardiorenal syndrome. J Am Coll Cardiol. 2008;52(19):1527–39.CrossRef
7.
go back to reference Rangaswami J, Bhalla V, Blair J, Chang TI, Costa S, Lentine KL, et al. Cardiorenal syndrome: classification, pathophysiology, diagnosis, and treatment strategies: a scientific statement from the american heart association. Circulation. 2019;139(16):e840–78.CrossRef Rangaswami J, Bhalla V, Blair J, Chang TI, Costa S, Lentine KL, et al. Cardiorenal syndrome: classification, pathophysiology, diagnosis, and treatment strategies: a scientific statement from the american heart association. Circulation. 2019;139(16):e840–78.CrossRef
8.
go back to reference Khwaja A. KDIGO clinical practice guidelines for acute kidney injury. Nephron Clin Pract. 2012;120(4):c179–84.CrossRef Khwaja A. KDIGO clinical practice guidelines for acute kidney injury. Nephron Clin Pract. 2012;120(4):c179–84.CrossRef
9.
go back to reference Prowle JR, Forni LG, Bell M, Chew MS, Edwards M, Grams ME, et al. Postoperative acute kidney injury in adult non-cardiac surgery: joint consensus report of the acute disease quality initiative and perioperative quality initiative. Nat Rev Nephrol. 2021;17(9):605–18.CrossRef Prowle JR, Forni LG, Bell M, Chew MS, Edwards M, Grams ME, et al. Postoperative acute kidney injury in adult non-cardiac surgery: joint consensus report of the acute disease quality initiative and perioperative quality initiative. Nat Rev Nephrol. 2021;17(9):605–18.CrossRef
10.
go back to reference Bellomo R, Ronco C, Kellum JA, Mehta RL, Palevsky P. Acute renal failure—definition, outcome measures, animal models, fluid therapy and information technology needs: the second international consensus conference of the acute dialysis quality initiative (ADQI) group. Crit Care. 2004;8(4):R204–12.CrossRef Bellomo R, Ronco C, Kellum JA, Mehta RL, Palevsky P. Acute renal failure—definition, outcome measures, animal models, fluid therapy and information technology needs: the second international consensus conference of the acute dialysis quality initiative (ADQI) group. Crit Care. 2004;8(4):R204–12.CrossRef
11.
go back to reference Mehta RL, Kellum JA, Shah SV, Molitoris BA, Ronco C, Warnock DG, et al. Acute kidney injury network: report of an initiative to improve outcomes in acute kidney injury. Crit Care. 2007;11(2):R31.CrossRef Mehta RL, Kellum JA, Shah SV, Molitoris BA, Ronco C, Warnock DG, et al. Acute kidney injury network: report of an initiative to improve outcomes in acute kidney injury. Crit Care. 2007;11(2):R31.CrossRef
12.
go back to reference Peng K, McIlroy DR, Bollen BA, Billings FT, Zarbock A, Popescu WM, et al. Society of cardiovascular anesthesiologists clinical practice update for management of acute kidney injury associated with cardiac surgery. Anesth Analg. 2022;135(4):744–56.CrossRef Peng K, McIlroy DR, Bollen BA, Billings FT, Zarbock A, Popescu WM, et al. Society of cardiovascular anesthesiologists clinical practice update for management of acute kidney injury associated with cardiac surgery. Anesth Analg. 2022;135(4):744–56.CrossRef
13.
go back to reference Luo X, Jiang L, Du B, Wen Y, Wang M, Xi X. A comparison of different diagnostic criteria of acute kidney injury in critically ill patients. Crit Care. 2014;18(4):R144.CrossRef Luo X, Jiang L, Du B, Wen Y, Wang M, Xi X. A comparison of different diagnostic criteria of acute kidney injury in critically ill patients. Crit Care. 2014;18(4):R144.CrossRef
14.
go back to reference Yaqub S, Hashmi S, Kazmi MK, Aziz AA, Dawood T, Sharif H. A Comparison of AKIN, KDIGO, and RIFLE definitions to diagnose acute kidney injury and predict the outcomes after cardiac surgery in a South Asian cohort. Cardiorenal Med. 2022;12(1):29–38.CrossRef Yaqub S, Hashmi S, Kazmi MK, Aziz AA, Dawood T, Sharif H. A Comparison of AKIN, KDIGO, and RIFLE definitions to diagnose acute kidney injury and predict the outcomes after cardiac surgery in a South Asian cohort. Cardiorenal Med. 2022;12(1):29–38.CrossRef
15.
go back to reference Klein SJ, Brandtner AK, Lehner GF, Ulmer H, Bagshaw SM, Wiedermann CJ, et al. Biomarkers for prediction of renal replacement therapy in acute kidney injury: a systematic review and meta-analysis. Intensive Care Med. 2018;44(3):323–36.CrossRef Klein SJ, Brandtner AK, Lehner GF, Ulmer H, Bagshaw SM, Wiedermann CJ, et al. Biomarkers for prediction of renal replacement therapy in acute kidney injury: a systematic review and meta-analysis. Intensive Care Med. 2018;44(3):323–36.CrossRef
17.
go back to reference Albert C, Zapf A, Haase M, Rover C, Pickering JW, Albert A, et al. Neutrophil gelatinase-associated lipocalin measured on clinical laboratory platforms for the prediction of acute kidney injury and the associated need for dialysis therapy: a systematic review and meta-analysis. Am J Kidney Dis. 2020;76(6):826–41.CrossRef Albert C, Zapf A, Haase M, Rover C, Pickering JW, Albert A, et al. Neutrophil gelatinase-associated lipocalin measured on clinical laboratory platforms for the prediction of acute kidney injury and the associated need for dialysis therapy: a systematic review and meta-analysis. Am J Kidney Dis. 2020;76(6):826–41.CrossRef
18.
go back to reference Geng J, Qiu Y, Qin Z, Su B. The value of kidney injury molecule 1 in predicting acute kidney injury in adult patients: a systematic review and Bayesian meta-analysis. J Transl Med. 2021;19(1):105.CrossRef Geng J, Qiu Y, Qin Z, Su B. The value of kidney injury molecule 1 in predicting acute kidney injury in adult patients: a systematic review and Bayesian meta-analysis. J Transl Med. 2021;19(1):105.CrossRef
19.
go back to reference Schunk SJ, Floege J, Fliser D, Speer T. WNT-beta-catenin signalling—a versatile player in kidney injury and repair. Nat Rev Nephrol. 2021;17(3):172–84.CrossRef Schunk SJ, Floege J, Fliser D, Speer T. WNT-beta-catenin signalling—a versatile player in kidney injury and repair. Nat Rev Nephrol. 2021;17(3):172–84.CrossRef
20.
go back to reference Schunk SJ, Zarbock A, Meersch M, Kullmar M, Kellum JA, Schmit D, et al. Association between urinary dickkopf-3, acute kidney injury, and subsequent loss of kidney function in patients undergoing cardiac surgery: an observational cohort study. Lancet. 2019;394(10197):488–96.CrossRef Schunk SJ, Zarbock A, Meersch M, Kullmar M, Kellum JA, Schmit D, et al. Association between urinary dickkopf-3, acute kidney injury, and subsequent loss of kidney function in patients undergoing cardiac surgery: an observational cohort study. Lancet. 2019;394(10197):488–96.CrossRef
21.
go back to reference Kashani K, Al-Khafaji A, Ardiles T, Artigas A, Bagshaw SM, Bell M, et al. Discovery and validation of cell cycle arrest biomarkers in human acute kidney injury. Crit Care. 2013;17(1):R25.CrossRef Kashani K, Al-Khafaji A, Ardiles T, Artigas A, Bagshaw SM, Bell M, et al. Discovery and validation of cell cycle arrest biomarkers in human acute kidney injury. Crit Care. 2013;17(1):R25.CrossRef
22.
go back to reference Tai Q, Yi H, Wei X, Xie W, Zeng O, Zheng D, et al. The accuracy of urinary TIMP-2 and IGFBP7 for the diagnosis of cardiac surgery-associated acute kidney injury: a systematic review and meta-analysis. J Intensive Care Med. 2020;35(10):1013–25.CrossRef Tai Q, Yi H, Wei X, Xie W, Zeng O, Zheng D, et al. The accuracy of urinary TIMP-2 and IGFBP7 for the diagnosis of cardiac surgery-associated acute kidney injury: a systematic review and meta-analysis. J Intensive Care Med. 2020;35(10):1013–25.CrossRef
23.
24.
go back to reference Bernardi MH, Wagner L, Ryz S, Puchinger J, Nixdorf L, Edlinger-Stanger M, et al. Urinary neprilysin for early detection of acute kidney injury after cardiac surgery: a prospective observational study. Eur J Anaesthesiol. 2021;38(1):13–21.CrossRef Bernardi MH, Wagner L, Ryz S, Puchinger J, Nixdorf L, Edlinger-Stanger M, et al. Urinary neprilysin for early detection of acute kidney injury after cardiac surgery: a prospective observational study. Eur J Anaesthesiol. 2021;38(1):13–21.CrossRef
25.
go back to reference Zarbock A, Kullmar M, Ostermann M, Lucchese G, Baig K, Cennamo A, et al. Prevention of cardiac surgery-associated acute kidney injury by implementing the KDIGO guidelines in high-risk patients identified by biomarkers: the PrevAKI-multicenter randomized controlled trial. Anesth Analg. 2021;133(2):292–302.CrossRef Zarbock A, Kullmar M, Ostermann M, Lucchese G, Baig K, Cennamo A, et al. Prevention of cardiac surgery-associated acute kidney injury by implementing the KDIGO guidelines in high-risk patients identified by biomarkers: the PrevAKI-multicenter randomized controlled trial. Anesth Analg. 2021;133(2):292–302.CrossRef
26.
go back to reference Jacobsen E, Sawhney S, Brazzelli M, Aucott L, Scotland G, Aceves-Martins M, et al. Cost-effectiveness and value of information analysis of NephroCheck and NGAL tests compared to standard care for the diagnosis of acute kidney injury. BMC Nephrol. 2021;22(1):399.CrossRef Jacobsen E, Sawhney S, Brazzelli M, Aucott L, Scotland G, Aceves-Martins M, et al. Cost-effectiveness and value of information analysis of NephroCheck and NGAL tests compared to standard care for the diagnosis of acute kidney injury. BMC Nephrol. 2021;22(1):399.CrossRef
27.
go back to reference Brazzelli M, Aucott L, Aceves-Martins M, Robertson C, Jacobsen E, Imamura M, et al. Biomarkers for assessing acute kidney injury for people who are being considered for admission to critical care: a systematic review and cost-effectiveness analysis. Health Technol Assess. 2022;26(7):1–286.CrossRef Brazzelli M, Aucott L, Aceves-Martins M, Robertson C, Jacobsen E, Imamura M, et al. Biomarkers for assessing acute kidney injury for people who are being considered for admission to critical care: a systematic review and cost-effectiveness analysis. Health Technol Assess. 2022;26(7):1–286.CrossRef
28.
go back to reference Ostermann M, Zarbock A, Goldstein S, Kashani K, Macedo E, Murugan R, et al. Recommendations on acute kidney injury biomarkers from the acute disease quality initiative consensus conference: a consensus statement. JAMA Netw Open. 2020;3(10): e2019209.CrossRef Ostermann M, Zarbock A, Goldstein S, Kashani K, Macedo E, Murugan R, et al. Recommendations on acute kidney injury biomarkers from the acute disease quality initiative consensus conference: a consensus statement. JAMA Netw Open. 2020;3(10): e2019209.CrossRef
29.
go back to reference Pettey G, Motshabi CP. Novel modalities for the diagnosis of cardiac surgery associated acute kidney injury: a narrative review of the literature. Southern African J Anaesthesia Analgesia. 2020;26(2):65–72.CrossRef Pettey G, Motshabi CP. Novel modalities for the diagnosis of cardiac surgery associated acute kidney injury: a narrative review of the literature. Southern African J Anaesthesia Analgesia. 2020;26(2):65–72.CrossRef
30.
go back to reference Kajal K, Chauhan R, Negi SL, Gourav KP, Panda P, Mahajan S, et al. Intraoperative evaluation of renal resistive index with transesophageal echocardiography for the assessment of acute renal injury in patients undergoing coronary artery bypass grafting surgery: a prospective observational study. Ann Card Anaesth. 2022;25(2):158–63.CrossRef Kajal K, Chauhan R, Negi SL, Gourav KP, Panda P, Mahajan S, et al. Intraoperative evaluation of renal resistive index with transesophageal echocardiography for the assessment of acute renal injury in patients undergoing coronary artery bypass grafting surgery: a prospective observational study. Ann Card Anaesth. 2022;25(2):158–63.CrossRef
31.
go back to reference Samoni S, Villa G, De Rosa S, Husain-Syed F, Guglielmetti G, Tofani L, et al. Ultrasonographic intraparenchymal renal resistive index variation for assessing renal functional reserve in patients scheduled for cardiac surgery: a pilot study. Blood Purif. 2022;51(2):147–54.CrossRef Samoni S, Villa G, De Rosa S, Husain-Syed F, Guglielmetti G, Tofani L, et al. Ultrasonographic intraparenchymal renal resistive index variation for assessing renal functional reserve in patients scheduled for cardiac surgery: a pilot study. Blood Purif. 2022;51(2):147–54.CrossRef
32.
go back to reference Beaubien-Souligny W, Rola P, Haycock K, Bouchard J, Lamarche Y, Spiegel R, et al. Quantifying systemic congestion with Point-Of-Care ultrasound: development of the venous excess ultrasound grading system. Ultrasound J. 2020;12(1):16.CrossRef Beaubien-Souligny W, Rola P, Haycock K, Bouchard J, Lamarche Y, Spiegel R, et al. Quantifying systemic congestion with Point-Of-Care ultrasound: development of the venous excess ultrasound grading system. Ultrasound J. 2020;12(1):16.CrossRef
33.
go back to reference Beaubien-Souligny W, Benkreira A, Robillard P, Bouabdallaoui N, Chasse M, Desjardins G, et al. Alterations in portal vein flow and intrarenal venous flow are associated with acute kidney injury after cardiac surgery: a prospective observational cohort study. J Am Heart Assoc. 2018;7(19): e9961.CrossRef Beaubien-Souligny W, Benkreira A, Robillard P, Bouabdallaoui N, Chasse M, Desjardins G, et al. Alterations in portal vein flow and intrarenal venous flow are associated with acute kidney injury after cardiac surgery: a prospective observational cohort study. J Am Heart Assoc. 2018;7(19): e9961.CrossRef
34.
go back to reference Pettey G, Hermansen JL, Nel S, Moutlana HJ, Muteba M, Juhl-Olsen P, et al. Ultrasound hepatic vein ratios are associated with the development of acute kidney injury after cardiac surgery. J Cardiothorac Vasc Anesth. 2022;36(5):1326–35.CrossRef Pettey G, Hermansen JL, Nel S, Moutlana HJ, Muteba M, Juhl-Olsen P, et al. Ultrasound hepatic vein ratios are associated with the development of acute kidney injury after cardiac surgery. J Cardiothorac Vasc Anesth. 2022;36(5):1326–35.CrossRef
36.
go back to reference Hermansen JL, Pettey G, Sorensen HT, Nel S, Tsabedze N, Horlyck A, et al. Perioperative Doppler measurements of renal perfusion are associated with acute kidney injury in patients undergoing cardiac surgery. Sci Rep. 2021;11(1):19738.CrossRef Hermansen JL, Pettey G, Sorensen HT, Nel S, Tsabedze N, Horlyck A, et al. Perioperative Doppler measurements of renal perfusion are associated with acute kidney injury in patients undergoing cardiac surgery. Sci Rep. 2021;11(1):19738.CrossRef
37.
go back to reference Wang Y, Bellomo R. Cardiac surgery-associated acute kidney injury: risk factors, pathophysiology and treatment. Nat Rev Nephrol. 2017;13(11):697–711.CrossRef Wang Y, Bellomo R. Cardiac surgery-associated acute kidney injury: risk factors, pathophysiology and treatment. Nat Rev Nephrol. 2017;13(11):697–711.CrossRef
39.
go back to reference Leballo G, Chakane PM. Cardiac surgery-associated acute kidney injury: pathophysiology and diagnostic modalities and management. Cardiovasc J Afr. 2020;31(4):205–12.CrossRef Leballo G, Chakane PM. Cardiac surgery-associated acute kidney injury: pathophysiology and diagnostic modalities and management. Cardiovasc J Afr. 2020;31(4):205–12.CrossRef
40.
go back to reference Thakar CV, Arrigain S, Worley S, Yared JP, Paganini EP. A clinical score to predict acute renal failure after cardiac surgery. J Am Soc Nephrol. 2005;16(1):162–8.CrossRef Thakar CV, Arrigain S, Worley S, Yared JP, Paganini EP. A clinical score to predict acute renal failure after cardiac surgery. J Am Soc Nephrol. 2005;16(1):162–8.CrossRef
41.
go back to reference Mehta RH, Grab JD, O’Brien SM, Bridges CR, Gammie JS, Haan CK, et al. Bedside tool for predicting the risk of postoperative dialysis in patients undergoing cardiac surgery. Circulation. 2006;114(21):2208–16.CrossRef Mehta RH, Grab JD, O’Brien SM, Bridges CR, Gammie JS, Haan CK, et al. Bedside tool for predicting the risk of postoperative dialysis in patients undergoing cardiac surgery. Circulation. 2006;114(21):2208–16.CrossRef
42.
go back to reference Birnie K, Verheyden V, Pagano D, Bhabra M, Tilling K, Sterne JA, et al. Predictive models for kidney disease: improving global outcomes (KDIGO) defined acute kidney injury in UK cardiac surgery. Crit Care. 2014;18(6):606.CrossRef Birnie K, Verheyden V, Pagano D, Bhabra M, Tilling K, Sterne JA, et al. Predictive models for kidney disease: improving global outcomes (KDIGO) defined acute kidney injury in UK cardiac surgery. Crit Care. 2014;18(6):606.CrossRef
43.
go back to reference Coulson T, Bailey M, Pilcher D, Reid CM, Seevanayagam S, Williams-Spence J, et al. Predicting acute kidney injury after cardiac surgery using a simpler model. J Cardiothorac Vasc Anesth. 2021;35(3):866–73.CrossRef Coulson T, Bailey M, Pilcher D, Reid CM, Seevanayagam S, Williams-Spence J, et al. Predicting acute kidney injury after cardiac surgery using a simpler model. J Cardiothorac Vasc Anesth. 2021;35(3):866–73.CrossRef
44.
go back to reference Wang X, Guo N, Chen Y, Dai H. A new model to predict acute kidney injury after cardiac surgery in patients with renal insufficiency. Ren Fail. 2022;44(1):767–76.CrossRef Wang X, Guo N, Chen Y, Dai H. A new model to predict acute kidney injury after cardiac surgery in patients with renal insufficiency. Ren Fail. 2022;44(1):767–76.CrossRef
45.
go back to reference Zhang Y, Zhao H, Su Q, Wang C, Chen H, Shen L, et al. Novel Plasma biomarker-based model for predicting acute kidney injury after cardiac surgery: a case control study. Front Med. 2021;8: 799516.CrossRef Zhang Y, Zhao H, Su Q, Wang C, Chen H, Shen L, et al. Novel Plasma biomarker-based model for predicting acute kidney injury after cardiac surgery: a case control study. Front Med. 2021;8: 799516.CrossRef
46.
go back to reference Demirjian S, Bashour CA, Shaw A, Schold JD, Simon J, Anthony D, et al. Predictive accuracy of a perioperative laboratory test-based prediction model for moderate to severe acute kidney injury after cardiac surgery. JAMA. 2022;327(10):956–64.CrossRef Demirjian S, Bashour CA, Shaw A, Schold JD, Simon J, Anthony D, et al. Predictive accuracy of a perioperative laboratory test-based prediction model for moderate to severe acute kidney injury after cardiac surgery. JAMA. 2022;327(10):956–64.CrossRef
47.
go back to reference Chen Z, Chen L, Yao G, Yang W, Yang K, Xiong C. Novel blood cytokine-based model for predicting severe acute kidney injury and poor outcomes after cardiac surgery. J Am Heart Assoc. 2020;9(22): e18004.CrossRef Chen Z, Chen L, Yao G, Yang W, Yang K, Xiong C. Novel blood cytokine-based model for predicting severe acute kidney injury and poor outcomes after cardiac surgery. J Am Heart Assoc. 2020;9(22): e18004.CrossRef
48.
go back to reference Zhang H, Wang Z, Tang Y, Chen X, You D, Wu Y, et al. Prediction of acute kidney injury after cardiac surgery: model development using a Chinese electronic health record dataset. J Transl Med. 2022;20(1):166.CrossRef Zhang H, Wang Z, Tang Y, Chen X, You D, Wu Y, et al. Prediction of acute kidney injury after cardiac surgery: model development using a Chinese electronic health record dataset. J Transl Med. 2022;20(1):166.CrossRef
49.
go back to reference Fuhrman DY, Kellum JA. Epidemiology and pathophysiology of cardiac surgery-associated acute kidney injury. Curr Opin Anaesthesiol. 2017;30(1):60–5.CrossRef Fuhrman DY, Kellum JA. Epidemiology and pathophysiology of cardiac surgery-associated acute kidney injury. Curr Opin Anaesthesiol. 2017;30(1):60–5.CrossRef
50.
go back to reference Bellini MI, Charalampidis S, Herbert PE, Bonatsos V, Crane J, Muthusamy A, et al. Cold pulsatile machine perfusion versus static cold storage in kidney transplantation: a single centre experience. Biomed Res Int. 2019;2019:7435248.CrossRef Bellini MI, Charalampidis S, Herbert PE, Bonatsos V, Crane J, Muthusamy A, et al. Cold pulsatile machine perfusion versus static cold storage in kidney transplantation: a single centre experience. Biomed Res Int. 2019;2019:7435248.CrossRef
51.
go back to reference Sreeram GM, Grocott HP, White WD, Newman MF, Stafford-Smith M. Transcranial Doppler emboli count predicts rise in creatinine after coronary artery bypass graft surgery. J Cardiothorac Vasc Anesth. 2004;18(5):548–51.CrossRef Sreeram GM, Grocott HP, White WD, Newman MF, Stafford-Smith M. Transcranial Doppler emboli count predicts rise in creatinine after coronary artery bypass graft surgery. J Cardiothorac Vasc Anesth. 2004;18(5):548–51.CrossRef
52.
go back to reference Sgouralis I, Evans RG, Layton AT. Renal medullary and urinary oxygen tension during cardiopulmonary bypass in the rat. Math Med Biol. 2017;34(3):313–33. Sgouralis I, Evans RG, Layton AT. Renal medullary and urinary oxygen tension during cardiopulmonary bypass in the rat. Math Med Biol. 2017;34(3):313–33.
53.
go back to reference Vermeulen WI, de Wit NC, Sertorio JT, van Bijnen AA, Ganushchak YM, Heijmans JH, et al. Hemolysis during cardiac surgery is associated with increased intravascular nitric oxide consumption and perioperative kidney and intestinal tissue damage. Front Physiol. 2014;5:340. Vermeulen WI, de Wit NC, Sertorio JT, van Bijnen AA, Ganushchak YM, Heijmans JH, et al. Hemolysis during cardiac surgery is associated with increased intravascular nitric oxide consumption and perioperative kidney and intestinal tissue damage. Front Physiol. 2014;5:340.
54.
go back to reference Sutton TA, Fisher CJ, Molitoris BA. Microvascular endothelial injury and dysfunction during ischemic acute renal failure. Kidney Int. 2002;62(5):1539–49.CrossRef Sutton TA, Fisher CJ, Molitoris BA. Microvascular endothelial injury and dysfunction during ischemic acute renal failure. Kidney Int. 2002;62(5):1539–49.CrossRef
55.
go back to reference Ronco C, Bellomo R, Kellum JA. Acute kidney injury. Lancet. 2019;394(10212):1949–64.CrossRef Ronco C, Bellomo R, Kellum JA. Acute kidney injury. Lancet. 2019;394(10212):1949–64.CrossRef
56.
go back to reference Lopez MG, Shotwell MS, Morse J, Liang Y, Wanderer JP, Absi TS, et al. Intraoperative venous congestion and acute kidney injury in cardiac surgery: an observational cohort study. Br J Anaesth. 2021;126(3):599–607.CrossRef Lopez MG, Shotwell MS, Morse J, Liang Y, Wanderer JP, Absi TS, et al. Intraoperative venous congestion and acute kidney injury in cardiac surgery: an observational cohort study. Br J Anaesth. 2021;126(3):599–607.CrossRef
57.
go back to reference Che M, Wang X, Liu S, Xie B, Xue S, Yan Y, et al. A clinical score to predict severe acute kidney injury in chinese patients after cardiac surgery. Nephron. 2019;142(4):291–300.CrossRef Che M, Wang X, Liu S, Xie B, Xue S, Yan Y, et al. A clinical score to predict severe acute kidney injury in chinese patients after cardiac surgery. Nephron. 2019;142(4):291–300.CrossRef
58.
go back to reference Chen L, Hong L, Ma A, Chen Y, Xiao Y, Jiang F, et al. Intraoperative venous congestion rather than hypotension is associated with acute adverse kidney events after cardiac surgery: a retrospective cohort study. Br J Anaesth. 2022;128(5):785–95.CrossRef Chen L, Hong L, Ma A, Chen Y, Xiao Y, Jiang F, et al. Intraoperative venous congestion rather than hypotension is associated with acute adverse kidney events after cardiac surgery: a retrospective cohort study. Br J Anaesth. 2022;128(5):785–95.CrossRef
59.
go back to reference Ranucci M, Romitti F, Isgro G, Cotza M, Brozzi S, Boncilli A, et al. Oxygen delivery during cardiopulmonary bypass and acute renal failure after coronary operations. Ann Thorac Surg. 2005;80(6):2213–20.CrossRef Ranucci M, Romitti F, Isgro G, Cotza M, Brozzi S, Boncilli A, et al. Oxygen delivery during cardiopulmonary bypass and acute renal failure after coronary operations. Ann Thorac Surg. 2005;80(6):2213–20.CrossRef
60.
go back to reference Chew S, Hwang NC. Acute kidney injury after cardiac surgery: a narrative review of the literature. J Cardiothorac Vasc Anesth. 2019;33(4):1122–38.CrossRef Chew S, Hwang NC. Acute kidney injury after cardiac surgery: a narrative review of the literature. J Cardiothorac Vasc Anesth. 2019;33(4):1122–38.CrossRef
61.
go back to reference Karkouti K, Grocott HP, Hall R, Jessen ME, Kruger C, Lerner AB, et al. Interrelationship of preoperative anemia, intraoperative anemia, and red blood cell transfusion as potentially modifiable risk factors for acute kidney injury in cardiac surgery: a historical multicentre cohort study. Can J Anaesth. 2015;62(4):377–84.CrossRef Karkouti K, Grocott HP, Hall R, Jessen ME, Kruger C, Lerner AB, et al. Interrelationship of preoperative anemia, intraoperative anemia, and red blood cell transfusion as potentially modifiable risk factors for acute kidney injury in cardiac surgery: a historical multicentre cohort study. Can J Anaesth. 2015;62(4):377–84.CrossRef
62.
go back to reference Kramer RS, Herron CR, Groom RC, Brown JR. Acute kidney injury subsequent to cardiac surgery. J Extra Corpor Technol. 2015;47(1):16–28. Kramer RS, Herron CR, Groom RC, Brown JR. Acute kidney injury subsequent to cardiac surgery. J Extra Corpor Technol. 2015;47(1):16–28.
64.
go back to reference Baines CP. The mitochondrial permeability transition pore and ischemia−reperfusion injury. Basic Res Cardiol. 2009;104(2):181–8.CrossRef Baines CP. The mitochondrial permeability transition pore and ischemia−reperfusion injury. Basic Res Cardiol. 2009;104(2):181–8.CrossRef
66.
go back to reference Asimakopoulos G, Taylor KM. Effects of cardiopulmonary bypass on leukocyte and endothelial adhesion molecules. Ann Thorac Surg. 1998;66(6):2135–44.CrossRef Asimakopoulos G, Taylor KM. Effects of cardiopulmonary bypass on leukocyte and endothelial adhesion molecules. Ann Thorac Surg. 1998;66(6):2135–44.CrossRef
67.
go back to reference Westaby S. Complement and the damaging effects of cardiopulmonary bypass. Thorax. 1983;38(5):321–5.CrossRef Westaby S. Complement and the damaging effects of cardiopulmonary bypass. Thorax. 1983;38(5):321–5.CrossRef
68.
go back to reference Bruins P, Te VH, Yazdanbakhsh AP, Jansen PG, van Hardevelt FW, de Beaumont EM, et al. Activation of the complement system during and after cardiopulmonary bypass surgery: postsurgery activation involves C-reactive protein and is associated with postoperative arrhythmia. Circulation. 1997;96(10):3542–8.CrossRef Bruins P, Te VH, Yazdanbakhsh AP, Jansen PG, van Hardevelt FW, de Beaumont EM, et al. Activation of the complement system during and after cardiopulmonary bypass surgery: postsurgery activation involves C-reactive protein and is associated with postoperative arrhythmia. Circulation. 1997;96(10):3542–8.CrossRef
69.
go back to reference Wu MY, Yiang GT, Liao WT, Tsai AP, Cheng YL, Cheng PW, et al. Current mechanistic concepts in ischemia and reperfusion injury. Cell Physiol Biochem. 2018;46(4):1650–67.CrossRef Wu MY, Yiang GT, Liao WT, Tsai AP, Cheng YL, Cheng PW, et al. Current mechanistic concepts in ischemia and reperfusion injury. Cell Physiol Biochem. 2018;46(4):1650–67.CrossRef
70.
go back to reference Presta P, Bolignano D, Coppolino G, Serraino F, Mastroroberto P, Andreucci M, et al. Antecedent ACE-inhibition, inflammatory response, and cardiac surgery associated acute kidney injury. Rev Cardiovasc Med. 2021;22(1):207–13.CrossRef Presta P, Bolignano D, Coppolino G, Serraino F, Mastroroberto P, Andreucci M, et al. Antecedent ACE-inhibition, inflammatory response, and cardiac surgery associated acute kidney injury. Rev Cardiovasc Med. 2021;22(1):207–13.CrossRef
71.
go back to reference Bonventre JV, Yang L. Cellular pathophysiology of ischemic acute kidney injury. J Clin Invest. 2011;121(11):4210–21.CrossRef Bonventre JV, Yang L. Cellular pathophysiology of ischemic acute kidney injury. J Clin Invest. 2011;121(11):4210–21.CrossRef
72.
go back to reference Han SJ, Lee HT. Mechanisms and therapeutic targets of ischemic acute kidney injury. Kidney Res Clin Pract. 2019;38(4):427–40.CrossRef Han SJ, Lee HT. Mechanisms and therapeutic targets of ischemic acute kidney injury. Kidney Res Clin Pract. 2019;38(4):427–40.CrossRef
73.
go back to reference Le Dorze M, Legrand M, Payen D, Ince C. The role of the microcirculation in acute kidney injury. Curr Opin Crit Care. 2009;15(6):503–8.CrossRef Le Dorze M, Legrand M, Payen D, Ince C. The role of the microcirculation in acute kidney injury. Curr Opin Crit Care. 2009;15(6):503–8.CrossRef
74.
go back to reference Ali F, Sultana S. Repeated short-term stress synergizes the ROS signalling through up regulation of NFkB and iNOS expression induced due to combined exposure of trichloroethylene and UVB rays. Mol Cell Biochem. 2012;360(1–2):133–45.CrossRef Ali F, Sultana S. Repeated short-term stress synergizes the ROS signalling through up regulation of NFkB and iNOS expression induced due to combined exposure of trichloroethylene and UVB rays. Mol Cell Biochem. 2012;360(1–2):133–45.CrossRef
75.
go back to reference Moat NE, Evans TE, Quinlan GJ, Gutteridge JM. Chelatable iron and copper can be released from extracorporeally circulated blood during cardiopulmonary bypass. FEBS Lett. 1993;328(1–2):103–6.CrossRef Moat NE, Evans TE, Quinlan GJ, Gutteridge JM. Chelatable iron and copper can be released from extracorporeally circulated blood during cardiopulmonary bypass. FEBS Lett. 1993;328(1–2):103–6.CrossRef
76.
go back to reference Haase M, Bellomo R, Haase-Fielitz A. Novel biomarkers, oxidative stress, and the role of labile iron toxicity in cardiopulmonary bypass-associated acute kidney injury. J Am Coll Cardiol. 2010;55(19):2024–33.CrossRef Haase M, Bellomo R, Haase-Fielitz A. Novel biomarkers, oxidative stress, and the role of labile iron toxicity in cardiopulmonary bypass-associated acute kidney injury. J Am Coll Cardiol. 2010;55(19):2024–33.CrossRef
77.
go back to reference Hatami S, Hefler J, Freed DH. Inflammation and oxidative stress in the context of extracorporeal cardiac and pulmonary support. Front Immunol. 2022;13: 831930.CrossRef Hatami S, Hefler J, Freed DH. Inflammation and oxidative stress in the context of extracorporeal cardiac and pulmonary support. Front Immunol. 2022;13: 831930.CrossRef
78.
go back to reference Horl WH. Nonsteroidal anti-inflammatory drugs and the kidney. Pharmaceuticals. 2010;3(7):2291–321.CrossRef Horl WH. Nonsteroidal anti-inflammatory drugs and the kidney. Pharmaceuticals. 2010;3(7):2291–321.CrossRef
79.
go back to reference Heyman SN, Brezis M, Epstein FH, Spokes K, Silva P, Rosen S. Early renal medullary hypoxic injury from radiocontrast and indomethacin. Kidney Int. 1991;40(4):632–42.CrossRef Heyman SN, Brezis M, Epstein FH, Spokes K, Silva P, Rosen S. Early renal medullary hypoxic injury from radiocontrast and indomethacin. Kidney Int. 1991;40(4):632–42.CrossRef
80.
go back to reference O’Neal JB, Shaw AD, Billings FT. Acute kidney injury following cardiac surgery: current understanding and future directions. Crit Care. 2016;20(1):187.CrossRef O’Neal JB, Shaw AD, Billings FT. Acute kidney injury following cardiac surgery: current understanding and future directions. Crit Care. 2016;20(1):187.CrossRef
81.
go back to reference Bove T, Monaco F, Covello RD, Zangrillo A. Acute renal failure and cardiac surgery. HSR Proc Intensive Care Cardiovasc Anesth. 2009;1(3):13–21. Bove T, Monaco F, Covello RD, Zangrillo A. Acute renal failure and cardiac surgery. HSR Proc Intensive Care Cardiovasc Anesth. 2009;1(3):13–21.
82.
go back to reference Kellum JA, Lameire N. Diagnosis, evaluation, and management of acute kidney injury: a KDIGO summary (Part 1). Crit Care. 2013;17(1):204.CrossRef Kellum JA, Lameire N. Diagnosis, evaluation, and management of acute kidney injury: a KDIGO summary (Part 1). Crit Care. 2013;17(1):204.CrossRef
83.
go back to reference Nielsen DV, Hjortdal V, Larsson H, Johnsen SP, Jakobsen CJ. Perioperative aminoglycoside treatment is associated with a higher incidence of postoperative dialysis in adult cardiac surgery patients. J Thorac Cardiovasc Surg. 2011;142(3):656–61.CrossRef Nielsen DV, Hjortdal V, Larsson H, Johnsen SP, Jakobsen CJ. Perioperative aminoglycoside treatment is associated with a higher incidence of postoperative dialysis in adult cardiac surgery patients. J Thorac Cardiovasc Surg. 2011;142(3):656–61.CrossRef
84.
go back to reference Lombardi R, Ferreiro A, Servetto C. Renal function after cardiac surgery: adverse effect of furosemide. Ren Fail. 2003;25(5):775–86.CrossRef Lombardi R, Ferreiro A, Servetto C. Renal function after cardiac surgery: adverse effect of furosemide. Ren Fail. 2003;25(5):775–86.CrossRef
85.
go back to reference Han Y, Zhu G, Han L, Hou F, Huang W, Liu H, et al. Short-term rosuvastatin therapy for prevention of contrast-induced acute kidney injury in patients with diabetes and chronic kidney disease. J Am Coll Cardiol. 2014;63(1):62–70.CrossRef Han Y, Zhu G, Han L, Hou F, Huang W, Liu H, et al. Short-term rosuvastatin therapy for prevention of contrast-induced acute kidney injury in patients with diabetes and chronic kidney disease. J Am Coll Cardiol. 2014;63(1):62–70.CrossRef
86.
go back to reference Ranucci M, Aloisio T, Carboni G, Ballotta A, Pistuddi V, Menicanti L, et al. Acute kidney injury and hemodilution during cardiopulmonary bypass: a changing scenario. Ann Thorac Surg. 2015;100(1):95–100.CrossRef Ranucci M, Aloisio T, Carboni G, Ballotta A, Pistuddi V, Menicanti L, et al. Acute kidney injury and hemodilution during cardiopulmonary bypass: a changing scenario. Ann Thorac Surg. 2015;100(1):95–100.CrossRef
87.
go back to reference Ranucci M, Ballotta A, Kunkl A, De Benedetti D, Kandil H, Conti D, et al. Influence of the timing of cardiac catheterization and the amount of contrast media on acute renal failure after cardiac surgery. Am J Cardiol. 2008;101(8):1112–8.CrossRef Ranucci M, Ballotta A, Kunkl A, De Benedetti D, Kandil H, Conti D, et al. Influence of the timing of cardiac catheterization and the amount of contrast media on acute renal failure after cardiac surgery. Am J Cardiol. 2008;101(8):1112–8.CrossRef
88.
go back to reference Huggins N, Nugent A, Modem V, Rodriguez JS, Forbess J, Scott W, et al. Incidence of acute kidney injury following cardiac catheterization prior to cardiopulmonary bypass in children. Catheter Cardiovasc Interv. 2014;84(4):615–9.CrossRef Huggins N, Nugent A, Modem V, Rodriguez JS, Forbess J, Scott W, et al. Incidence of acute kidney injury following cardiac catheterization prior to cardiopulmonary bypass in children. Catheter Cardiovasc Interv. 2014;84(4):615–9.CrossRef
90.
go back to reference Lau A, Chung H, Komada T, Platnich JM, Sandall CF, Choudhury SR, et al. Renal immune surveillance and dipeptidase-1 contribute to contrast-induced acute kidney injury. J Clin Invest. 2018;128(7):2894–913.CrossRef Lau A, Chung H, Komada T, Platnich JM, Sandall CF, Choudhury SR, et al. Renal immune surveillance and dipeptidase-1 contribute to contrast-induced acute kidney injury. J Clin Invest. 2018;128(7):2894–913.CrossRef
91.
go back to reference Macdonald DB, Hurrell CD, Costa AF, McInnes M, O’Malley M, Barrett BJ, et al. Canadian association of radiologists guidance on contrast-associated acute kidney injury. Can J Kidney Health Dis. 2022;73(3):499–514. Macdonald DB, Hurrell CD, Costa AF, McInnes M, O’Malley M, Barrett BJ, et al. Canadian association of radiologists guidance on contrast-associated acute kidney injury. Can J Kidney Health Dis. 2022;73(3):499–514.
92.
go back to reference Mehran R, Dangas GD, Weisbord SD. Contrast-associated acute kidney injury. N Engl J Med. 2019;380(22):2146–55.CrossRef Mehran R, Dangas GD, Weisbord SD. Contrast-associated acute kidney injury. N Engl J Med. 2019;380(22):2146–55.CrossRef
93.
go back to reference Schrier RW, Abraham WT. Hormones and hemodynamics in heart failure. N Engl J Med. 1999;341(8):577–85.CrossRef Schrier RW, Abraham WT. Hormones and hemodynamics in heart failure. N Engl J Med. 1999;341(8):577–85.CrossRef
94.
go back to reference Levey AS, Stevens LA, Schmid CH, Zhang YL, Castro AR, Feldman HI, et al. A new equation to estimate glomerular filtration rate. Ann Intern Med. 2009;150(9):604–12.CrossRef Levey AS, Stevens LA, Schmid CH, Zhang YL, Castro AR, Feldman HI, et al. A new equation to estimate glomerular filtration rate. Ann Intern Med. 2009;150(9):604–12.CrossRef
95.
go back to reference Haase M, Haase-Fielitz A, Bagshaw SM, Ronco C, Bellomo R. Cardiopulmonary bypass-associated acute kidney injury: a pigment nephropathy? Contrib Nephrol. 2007;156:340–53.CrossRef Haase M, Haase-Fielitz A, Bagshaw SM, Ronco C, Bellomo R. Cardiopulmonary bypass-associated acute kidney injury: a pigment nephropathy? Contrib Nephrol. 2007;156:340–53.CrossRef
96.
go back to reference Liu D, Liu B, Liang Z, Yang Z, Ma F, Yang Y, et al. Acute kidney injury following cardiopulmonary bypass: a challenging picture. Oxid Med Cell Longev. 2021;2021:8873581. Liu D, Liu B, Liang Z, Yang Z, Ma F, Yang Y, et al. Acute kidney injury following cardiopulmonary bypass: a challenging picture. Oxid Med Cell Longev. 2021;2021:8873581.
97.
go back to reference Borawski B, Malyszko J. Iron, ferroptosis, and new insights for prevention in acute kidney injury. Adv Med Sci. 2020;65(2):361–70.CrossRef Borawski B, Malyszko J. Iron, ferroptosis, and new insights for prevention in acute kidney injury. Adv Med Sci. 2020;65(2):361–70.CrossRef
98.
go back to reference Scindia Y, Dey P, Thirunagari A, Liping H, Rosin DL, Floris M, et al. Hepcidin mitigates renal ischemia−reperfusion injury by modulating systemic iron homeostasis. J Am Soc Nephrol. 2015;26(11):2800–14.CrossRef Scindia Y, Dey P, Thirunagari A, Liping H, Rosin DL, Floris M, et al. Hepcidin mitigates renal ischemia−reperfusion injury by modulating systemic iron homeostasis. J Am Soc Nephrol. 2015;26(11):2800–14.CrossRef
99.
go back to reference Sharma S, Leaf DE. Iron chelation as a potential therapeutic strategy for AKI prevention. J Am Soc Nephrol. 2019;30(11):2060–71.CrossRef Sharma S, Leaf DE. Iron chelation as a potential therapeutic strategy for AKI prevention. J Am Soc Nephrol. 2019;30(11):2060–71.CrossRef
100.
go back to reference Ortega-Loubon C, Martinez-Paz P, Garcia-Moran E, Tamayo-Velasco A, Lopez-Hernandez FJ, Jorge-Monjas P, et al. Genetic susceptibility to acute kidney injury. J Clin Med. 2021;10(14):3039.CrossRef Ortega-Loubon C, Martinez-Paz P, Garcia-Moran E, Tamayo-Velasco A, Lopez-Hernandez FJ, Jorge-Monjas P, et al. Genetic susceptibility to acute kidney injury. J Clin Med. 2021;10(14):3039.CrossRef
101.
go back to reference Boehm J, Eichhorn S, Kornek M, Hauner K, Prinzing A, Grammer J, et al. Apolipoprotein E genotype, TNF-alpha 308G/A and risk for cardiac surgery associated-acute kidney injury in Caucasians. Ren Fail. 2014;36(2):237–43.CrossRef Boehm J, Eichhorn S, Kornek M, Hauner K, Prinzing A, Grammer J, et al. Apolipoprotein E genotype, TNF-alpha 308G/A and risk for cardiac surgery associated-acute kidney injury in Caucasians. Ren Fail. 2014;36(2):237–43.CrossRef
102.
go back to reference Kornek M, Deutsch MA, Eichhorn S, Lahm H, Wagenpfeil S, Krane M, et al. COMT-Val158Met-polymorphism is not a risk factor for acute kidney injury after cardiac surgery. Dis Markers. 2013;35(2):129–34.CrossRef Kornek M, Deutsch MA, Eichhorn S, Lahm H, Wagenpfeil S, Krane M, et al. COMT-Val158Met-polymorphism is not a risk factor for acute kidney injury after cardiac surgery. Dis Markers. 2013;35(2):129–34.CrossRef
103.
go back to reference Ostermann M, Kunst G, Baker E, Weerapolchai K, Lumlertgul N. Cardiac surgery associated AKI prevention strategies and medical treatment for CSA-AKI. J Clin Med. 2021;10(22):5285.CrossRef Ostermann M, Kunst G, Baker E, Weerapolchai K, Lumlertgul N. Cardiac surgery associated AKI prevention strategies and medical treatment for CSA-AKI. J Clin Med. 2021;10(22):5285.CrossRef
104.
go back to reference Pathak S, Olivieri G, Mohamed W, Abbasciano R, Roman M, Tomassini S, et al. Pharmacological interventions for the prevention of renal injury in surgical patients: a systematic literature review and meta-analysis. Br J Anaesth. 2021;126(1):131–8.CrossRef Pathak S, Olivieri G, Mohamed W, Abbasciano R, Roman M, Tomassini S, et al. Pharmacological interventions for the prevention of renal injury in surgical patients: a systematic literature review and meta-analysis. Br J Anaesth. 2021;126(1):131–8.CrossRef
105.
go back to reference Ostermann M, Cennamo A, Meersch M, Kunst G. A narrative review of the impact of surgery and anaesthesia on acute kidney injury. Anaesthesia. 2020;75(1):e121–33. Ostermann M, Cennamo A, Meersch M, Kunst G. A narrative review of the impact of surgery and anaesthesia on acute kidney injury. Anaesthesia. 2020;75(1):e121–33.
106.
go back to reference Gu J, Sun P, Zhao H, Watts HR, Sanders RD, Terrando N, et al. Dexmedetomidine provides renoprotection against ischemia−reperfusion injury in mice. Crit Care. 2011;15(3):R153.CrossRef Gu J, Sun P, Zhao H, Watts HR, Sanders RD, Terrando N, et al. Dexmedetomidine provides renoprotection against ischemia−reperfusion injury in mice. Crit Care. 2011;15(3):R153.CrossRef
107.
go back to reference Peng K, Li D, Applegate RN, Lubarsky DA, Ji FH, Liu H. Effect of dexmedetomidine on cardiac surgery-associated acute kidney injury: a meta-analysis with trial sequential analysis of randomized controlled trials. J Cardiothorac Vasc Anesth. 2020;34(3):603–13.CrossRef Peng K, Li D, Applegate RN, Lubarsky DA, Ji FH, Liu H. Effect of dexmedetomidine on cardiac surgery-associated acute kidney injury: a meta-analysis with trial sequential analysis of randomized controlled trials. J Cardiothorac Vasc Anesth. 2020;34(3):603–13.CrossRef
108.
go back to reference Turan A, Duncan A, Leung S, Karimi N, Fang J, Mao G, et al. Dexmedetomidine for reduction of atrial fibrillation and delirium after cardiac surgery (DECADE): a randomised placebo-controlled trial. Lancet. 2020;396(10245):177–85.CrossRef Turan A, Duncan A, Leung S, Karimi N, Fang J, Mao G, et al. Dexmedetomidine for reduction of atrial fibrillation and delirium after cardiac surgery (DECADE): a randomised placebo-controlled trial. Lancet. 2020;396(10245):177–85.CrossRef
109.
go back to reference Nigwekar SU, Navaneethan SD, Parikh CR, Hix JK. Atrial natriuretic peptide for preventing and treating acute kidney injury. Cochrane Database Syst Rev. 2009;4:D6028. Nigwekar SU, Navaneethan SD, Parikh CR, Hix JK. Atrial natriuretic peptide for preventing and treating acute kidney injury. Cochrane Database Syst Rev. 2009;4:D6028.
110.
go back to reference Yakut N, Yasa H, Bahriye LB, Ortac R, Tulukoglu E, Aksun M, et al. The influence of levosimendan and iloprost on renal ischemia−reperfusion: an experimental study. Interact Cardiovasc Thorac Surg. 2008;7(2):235–9.CrossRef Yakut N, Yasa H, Bahriye LB, Ortac R, Tulukoglu E, Aksun M, et al. The influence of levosimendan and iloprost on renal ischemia−reperfusion: an experimental study. Interact Cardiovasc Thorac Surg. 2008;7(2):235–9.CrossRef
111.
go back to reference Landoni G, Lomivorotov VV, Alvaro G, Lobreglio R, Pisano A, Guarracino F, et al. Levosimendan for hemodynamic support after cardiac surgery. N Engl J Med. 2017;376(21):2021–31.CrossRef Landoni G, Lomivorotov VV, Alvaro G, Lobreglio R, Pisano A, Guarracino F, et al. Levosimendan for hemodynamic support after cardiac surgery. N Engl J Med. 2017;376(21):2021–31.CrossRef
112.
go back to reference Mehta RH, Leimberger JD, van Diepen S, Meza J, Wang A, Jankowich R, et al. Levosimendan in patients with left ventricular dysfunction undergoing cardiac surgery. N Engl J Med. 2017;376(21):2032–42.CrossRef Mehta RH, Leimberger JD, van Diepen S, Meza J, Wang A, Jankowich R, et al. Levosimendan in patients with left ventricular dysfunction undergoing cardiac surgery. N Engl J Med. 2017;376(21):2032–42.CrossRef
113.
go back to reference Fliser D, Laville M, Covic A, Fouque D, Vanholder R, Juillard L, et al. A European renal best practice (ERBP) position statement on the kidney disease improving global outcomes (KDIGO) clinical practice guidelines on acute kidney injury: part 1: definitions, conservative management and contrast-induced nephropathy. Nephrol Dial Transplant. 2012;27(12):4263–72.CrossRef Fliser D, Laville M, Covic A, Fouque D, Vanholder R, Juillard L, et al. A European renal best practice (ERBP) position statement on the kidney disease improving global outcomes (KDIGO) clinical practice guidelines on acute kidney injury: part 1: definitions, conservative management and contrast-induced nephropathy. Nephrol Dial Transplant. 2012;27(12):4263–72.CrossRef
114.
go back to reference Coca SG, Garg AX, Swaminathan M, Garwood S, Hong K, Thiessen-Philbrook H, et al. Preoperative angiotensin-converting enzyme inhibitors and angiotensin receptor blocker use and acute kidney injury in patients undergoing cardiac surgery. Nephrol Dial Transplant. 2013;28(11):2787–99.CrossRef Coca SG, Garg AX, Swaminathan M, Garwood S, Hong K, Thiessen-Philbrook H, et al. Preoperative angiotensin-converting enzyme inhibitors and angiotensin receptor blocker use and acute kidney injury in patients undergoing cardiac surgery. Nephrol Dial Transplant. 2013;28(11):2787–99.CrossRef
115.
go back to reference Nadim MK, Forni LG, Bihorac A, Hobson C, Koyner JL, Shaw A, et al. Cardiac and vascular surgery-associated acute kidney injury: the 20th international consensus conference of the adqi (acute disease quality initiative) group. J Am Heart Assoc. 2018;7(11):111.CrossRef Nadim MK, Forni LG, Bihorac A, Hobson C, Koyner JL, Shaw A, et al. Cardiac and vascular surgery-associated acute kidney injury: the 20th international consensus conference of the adqi (acute disease quality initiative) group. J Am Heart Assoc. 2018;7(11):111.CrossRef
116.
go back to reference Engelman DT, Ben AW, Williams JB, Perrault LP, Reddy VS, Arora RC, et al. Guidelines for perioperative care in cardiac surgery: enhanced recovery after surgery society recommendations. JAMA Surg. 2019;154(8):755–66.CrossRef Engelman DT, Ben AW, Williams JB, Perrault LP, Reddy VS, Arora RC, et al. Guidelines for perioperative care in cardiac surgery: enhanced recovery after surgery society recommendations. JAMA Surg. 2019;154(8):755–66.CrossRef
117.
go back to reference Mertes PM, Kindo M, Amour J, Baufreton C, Camilleri L, Caus T, et al. Guidelines on enhanced recovery after cardiac surgery under cardiopulmonary bypass or off-pump. Anaesth Crit Care Pain Med. 2022;41(3): 101059.CrossRef Mertes PM, Kindo M, Amour J, Baufreton C, Camilleri L, Caus T, et al. Guidelines on enhanced recovery after cardiac surgery under cardiopulmonary bypass or off-pump. Anaesth Crit Care Pain Med. 2022;41(3): 101059.CrossRef
118.
go back to reference Nardi P, Pisano C, Altieri C, Buioni D, Pedicelli C, Saulle S, et al. The benefit of a preoperative respiratory protocol and musculoskeletal exercise in patients undergoing cardiac surgery. Kardiochir Torakochirurgia Pol. 2020;17(2):94–100. Nardi P, Pisano C, Altieri C, Buioni D, Pedicelli C, Saulle S, et al. The benefit of a preoperative respiratory protocol and musculoskeletal exercise in patients undergoing cardiac surgery. Kardiochir Torakochirurgia Pol. 2020;17(2):94–100.
119.
go back to reference Fenton C, Tan AR, Abaraogu UO, McCaslin JE. Prehabilitation exercise therapy before elective abdominal aortic aneurysm repair. Cochrane Database Syst Rev. 2021;7(7):D13662. Fenton C, Tan AR, Abaraogu UO, McCaslin JE. Prehabilitation exercise therapy before elective abdominal aortic aneurysm repair. Cochrane Database Syst Rev. 2021;7(7):D13662.
120.
go back to reference Haase-Fielitz A, Haase M, Bellomo R, Calzavacca P, Spura A, Baraki H, et al. Perioperative hemodynamic instability and fluid overload are associated with increasing acute kidney injury severity and worse outcome after cardiac surgery. Blood Purif. 2017;43(4):298–308.CrossRef Haase-Fielitz A, Haase M, Bellomo R, Calzavacca P, Spura A, Baraki H, et al. Perioperative hemodynamic instability and fluid overload are associated with increasing acute kidney injury severity and worse outcome after cardiac surgery. Blood Purif. 2017;43(4):298–308.CrossRef
121.
go back to reference Juncos LA, Wieruszewski PM, Kashani K. Pathophysiology of acute kidney injury in critical illness: a narrative review. Compr Physiol. 2022;12(4):3767–80.CrossRef Juncos LA, Wieruszewski PM, Kashani K. Pathophysiology of acute kidney injury in critical illness: a narrative review. Compr Physiol. 2022;12(4):3767–80.CrossRef
122.
go back to reference Ngu J, Jabagi H, Chung AM, Boodhwani M, Ruel M, Bourke M, et al. Defining an intraoperative hypotension threshold in association with de novo renal replacement therapy after cardiac surgery. Anesthesiology. 2020;132(6):1447–57.CrossRef Ngu J, Jabagi H, Chung AM, Boodhwani M, Ruel M, Bourke M, et al. Defining an intraoperative hypotension threshold in association with de novo renal replacement therapy after cardiac surgery. Anesthesiology. 2020;132(6):1447–57.CrossRef
123.
go back to reference Kofford B, Drago C, Nejat AH, Elshewy M. A novel approach for converting a mandibular complete denture to a fixed interim, screw-retained implant prostheses: a case report. J Prosthodont. 2021;30(1):13–8.CrossRef Kofford B, Drago C, Nejat AH, Elshewy M. A novel approach for converting a mandibular complete denture to a fixed interim, screw-retained implant prostheses: a case report. J Prosthodont. 2021;30(1):13–8.CrossRef
124.
go back to reference Vedel AG, Holmgaard F, Rasmussen LS, Langkilde A, Paulson OB, Lange T, et al. High-target versus low-target blood pressure management during cardiopulmonary bypass to prevent cerebral injury in cardiac surgery patients: a randomized controlled trial. Circulation. 2018;137(17):1770–80.CrossRef Vedel AG, Holmgaard F, Rasmussen LS, Langkilde A, Paulson OB, Lange T, et al. High-target versus low-target blood pressure management during cardiopulmonary bypass to prevent cerebral injury in cardiac surgery patients: a randomized controlled trial. Circulation. 2018;137(17):1770–80.CrossRef
125.
go back to reference Kunst G, Milojevic M, Boer C, De Somer F, Gudbjartsson T, van den Goor J, et al. 2019 EACTS/EACTA/EBCP guidelines on cardiopulmonary bypass in adult cardiac surgery. Br J Anaesth. 2019;123(6):713–57.CrossRef Kunst G, Milojevic M, Boer C, De Somer F, Gudbjartsson T, van den Goor J, et al. 2019 EACTS/EACTA/EBCP guidelines on cardiopulmonary bypass in adult cardiac surgery. Br J Anaesth. 2019;123(6):713–57.CrossRef
126.
go back to reference Hajjar LA, Vincent JL, Barbosa GGF, Rhodes A, Landoni G, Osawa EA, et al. Vasopressin versus norepinephrine in patients with vasoplegic shock after cardiac surgery: the VANCS randomized controlled trial. Anesthesiology. 2017;126(1):85–93.CrossRef Hajjar LA, Vincent JL, Barbosa GGF, Rhodes A, Landoni G, Osawa EA, et al. Vasopressin versus norepinephrine in patients with vasoplegic shock after cardiac surgery: the VANCS randomized controlled trial. Anesthesiology. 2017;126(1):85–93.CrossRef
127.
go back to reference Shen Y, Zhang W, Cheng X, Ying M. Association between postoperative fluid balance and acute kidney injury in patients after cardiac surgery: a retrospective cohort study. J Crit Care. 2018;44:273–7.CrossRef Shen Y, Zhang W, Cheng X, Ying M. Association between postoperative fluid balance and acute kidney injury in patients after cardiac surgery: a retrospective cohort study. J Crit Care. 2018;44:273–7.CrossRef
129.
go back to reference Glassford NJ, French CJ, Bailey M, Martensson J, Eastwood GM, Bellomo R. Changes in intravenous fluid use patterns in Australia and New Zealand: evidence of research translating into practice. Crit Care Resusc. 2016;18(2):78–88. Glassford NJ, French CJ, Bailey M, Martensson J, Eastwood GM, Bellomo R. Changes in intravenous fluid use patterns in Australia and New Zealand: evidence of research translating into practice. Crit Care Resusc. 2016;18(2):78–88.
130.
go back to reference Bhaskaran K, Arumugam G, Vinay KP. A prospective, randomized, comparison study on effect of perioperative use of chloride liberal intravenous fluids versus chloride restricted intravenous fluids on postoperative acute kidney injury in patients undergoing off-pump coronary artery bypass grafting surgeries. Ann Card Anaesth. 2018;21(4):413–8.CrossRef Bhaskaran K, Arumugam G, Vinay KP. A prospective, randomized, comparison study on effect of perioperative use of chloride liberal intravenous fluids versus chloride restricted intravenous fluids on postoperative acute kidney injury in patients undergoing off-pump coronary artery bypass grafting surgeries. Ann Card Anaesth. 2018;21(4):413–8.CrossRef
131.
go back to reference Pesonen E, Vlasov H, Suojaranta R, Hiippala S, Schramko A, Wilkman E, et al. Effect of 4% albumin solution vs ringer acetate on major adverse events in patients undergoing cardiac surgery with cardiopulmonary bypass: a randomized clinical trial. JAMA. 2022;328(3):251–8.CrossRef Pesonen E, Vlasov H, Suojaranta R, Hiippala S, Schramko A, Wilkman E, et al. Effect of 4% albumin solution vs ringer acetate on major adverse events in patients undergoing cardiac surgery with cardiopulmonary bypass: a randomized clinical trial. JAMA. 2022;328(3):251–8.CrossRef
132.
go back to reference Magruder JT, Crawford TC, Harness HL, Grimm JC, Suarez-Pierre A, Wierschke C, et al. A pilot goal-directed perfusion initiative is associated with less acute kidney injury after cardiac surgery. J Thorac Cardiovasc Surg. 2017;153(1):118–25.CrossRef Magruder JT, Crawford TC, Harness HL, Grimm JC, Suarez-Pierre A, Wierschke C, et al. A pilot goal-directed perfusion initiative is associated with less acute kidney injury after cardiac surgery. J Thorac Cardiovasc Surg. 2017;153(1):118–25.CrossRef
133.
go back to reference Magruder JT, Dungan SP, Grimm JC, Harness HL, Wierschke C, Castillejo S, et al. Nadir oxygen delivery on bypass and hypotension increase acute kidney injury risk after cardiac operations. Ann Thorac Surg. 2015;100(5):1697–703.CrossRef Magruder JT, Dungan SP, Grimm JC, Harness HL, Wierschke C, Castillejo S, et al. Nadir oxygen delivery on bypass and hypotension increase acute kidney injury risk after cardiac operations. Ann Thorac Surg. 2015;100(5):1697–703.CrossRef
134.
go back to reference Ranucci M, Johnson I, Willcox T, Baker RA, Boer C, Baumann A, et al. Goal-directed perfusion to reduce acute kidney injury: a randomized trial. J Thorac Cardiovasc Surg. 2018;156(5):1918–27.CrossRef Ranucci M, Johnson I, Willcox T, Baker RA, Boer C, Baumann A, et al. Goal-directed perfusion to reduce acute kidney injury: a randomized trial. J Thorac Cardiovasc Surg. 2018;156(5):1918–27.CrossRef
135.
go back to reference Oprea AD, Del RJ, Cooter M, Green CL, Karhausen JA, Nailer P, et al. Pre- and postoperative anemia, acute kidney injury, and mortality after coronary artery bypass grafting surgery: a retrospective observational study. Can J Anaesth. 2018;65(1):46–59.CrossRef Oprea AD, Del RJ, Cooter M, Green CL, Karhausen JA, Nailer P, et al. Pre- and postoperative anemia, acute kidney injury, and mortality after coronary artery bypass grafting surgery: a retrospective observational study. Can J Anaesth. 2018;65(1):46–59.CrossRef
136.
go back to reference Hajjar LA, Vincent JL, Galas FR, Nakamura RE, Silva CM, Santos MH, et al. Transfusion requirements after cardiac surgery: the TRACS randomized controlled trial. JAMA. 2010;304(14):1559–67.CrossRef Hajjar LA, Vincent JL, Galas FR, Nakamura RE, Silva CM, Santos MH, et al. Transfusion requirements after cardiac surgery: the TRACS randomized controlled trial. JAMA. 2010;304(14):1559–67.CrossRef
137.
go back to reference Mazer CD, Whitlock RP, Fergusson DA, Hall J, Belley-Cote E, Connolly K, et al. Restrictive or liberal red-cell transfusion for cardiac surgery. N Engl J Med. 2017;377(22):2133–44.CrossRef Mazer CD, Whitlock RP, Fergusson DA, Hall J, Belley-Cote E, Connolly K, et al. Restrictive or liberal red-cell transfusion for cardiac surgery. N Engl J Med. 2017;377(22):2133–44.CrossRef
138.
go back to reference Garg AX, Badner N, Bagshaw SM, Cuerden MS, Fergusson DA, Gregory AJ, et al. Safety of a restrictive versus liberal approach to red blood cell transfusion on the outcome of aki in patients undergoing cardiac surgery: a randomized clinical trial. J Am Soc Nephrol. 2019;30(7):1294–304.CrossRef Garg AX, Badner N, Bagshaw SM, Cuerden MS, Fergusson DA, Gregory AJ, et al. Safety of a restrictive versus liberal approach to red blood cell transfusion on the outcome of aki in patients undergoing cardiac surgery: a randomized clinical trial. J Am Soc Nephrol. 2019;30(7):1294–304.CrossRef
139.
go back to reference Chen QH, Wang HL, Liu L, Shao J, Yu J, Zheng RQ. Effects of restrictive red blood cell transfusion on the prognoses of adult patients undergoing cardiac surgery: a meta-analysis of randomized controlled trials. Crit Care. 2018;22(1):142.CrossRef Chen QH, Wang HL, Liu L, Shao J, Yu J, Zheng RQ. Effects of restrictive red blood cell transfusion on the prognoses of adult patients undergoing cardiac surgery: a meta-analysis of randomized controlled trials. Crit Care. 2018;22(1):142.CrossRef
140.
go back to reference Ferraris VA, Brown JR, Despotis GJ, Hammon JW, Reece TB, Saha SP, et al. 2011 update to the society of thoracic surgeons and the society of cardiovascular anesthesiologists blood conservation clinical practice guidelines. Ann Thorac Surg. 2011;91(3):944–82.CrossRef Ferraris VA, Brown JR, Despotis GJ, Hammon JW, Reece TB, Saha SP, et al. 2011 update to the society of thoracic surgeons and the society of cardiovascular anesthesiologists blood conservation clinical practice guidelines. Ann Thorac Surg. 2011;91(3):944–82.CrossRef
141.
go back to reference Pagano D, Milojevic M, Meesters MI, Benedetto U, Bolliger D, von Heymann C, et al. 2017 EACTS/EACTA Guidelines on patient blood management for adult cardiac surgery. Eur J Cardiothorac Surg. 2018;53(1):79–111.CrossRef Pagano D, Milojevic M, Meesters MI, Benedetto U, Bolliger D, von Heymann C, et al. 2017 EACTS/EACTA Guidelines on patient blood management for adult cardiac surgery. Eur J Cardiothorac Surg. 2018;53(1):79–111.CrossRef
142.
go back to reference Steiner ME, Ness PM, Assmann SF, Triulzi DJ, Sloan SR, Delaney M, et al. Effects of red-cell storage duration on patients undergoing cardiac surgery. N Engl J Med. 2015;372(15):1419–29.CrossRef Steiner ME, Ness PM, Assmann SF, Triulzi DJ, Sloan SR, Delaney M, et al. Effects of red-cell storage duration on patients undergoing cardiac surgery. N Engl J Med. 2015;372(15):1419–29.CrossRef
143.
go back to reference Gassanov N, Nia AM, Caglayan E, Er F. Remote ischemic preconditioning and renoprotection: from myth to a novel therapeutic option? J Am Soc Nephrol. 2014;25(2):216–24.CrossRef Gassanov N, Nia AM, Caglayan E, Er F. Remote ischemic preconditioning and renoprotection: from myth to a novel therapeutic option? J Am Soc Nephrol. 2014;25(2):216–24.CrossRef
144.
go back to reference Wang J, Gu C, Gao M, Yu W, Yu Y. Preoperative statin therapy and renal outcomes after cardiac surgery: a meta-analysis and meta-regression of 59,771 patients. Can J Cardiol. 2015;31(8):1051–60.CrossRef Wang J, Gu C, Gao M, Yu W, Yu Y. Preoperative statin therapy and renal outcomes after cardiac surgery: a meta-analysis and meta-regression of 59,771 patients. Can J Cardiol. 2015;31(8):1051–60.CrossRef
145.
go back to reference Zarbock A, Schmidt C, Van Aken H, Wempe C, Martens S, Zahn PK, et al. Effect of remote ischemic preconditioning on kidney injury among high-risk patients undergoing cardiac surgery: a randomized clinical trial. JAMA. 2015;313(21):2133–41.CrossRef Zarbock A, Schmidt C, Van Aken H, Wempe C, Martens S, Zahn PK, et al. Effect of remote ischemic preconditioning on kidney injury among high-risk patients undergoing cardiac surgery: a randomized clinical trial. JAMA. 2015;313(21):2133–41.CrossRef
146.
go back to reference Hausenloy DJ, Candilio L, Evans R, Ariti C, Jenkins DP, Kolvekar S, et al. Remote ischemic preconditioning and outcomes of cardiac surgery. N Engl J Med. 2015;373(15):1408–17.CrossRef Hausenloy DJ, Candilio L, Evans R, Ariti C, Jenkins DP, Kolvekar S, et al. Remote ischemic preconditioning and outcomes of cardiac surgery. N Engl J Med. 2015;373(15):1408–17.CrossRef
147.
go back to reference Meybohm P, Bein B, Brosteanu O, Cremer J, Gruenewald M, Stoppe C, et al. A multicenter trial of remote ischemic preconditioning for heart surgery. N Engl J Med. 2015;373(15):1397–407.CrossRef Meybohm P, Bein B, Brosteanu O, Cremer J, Gruenewald M, Stoppe C, et al. A multicenter trial of remote ischemic preconditioning for heart surgery. N Engl J Med. 2015;373(15):1397–407.CrossRef
148.
go back to reference Behmenburg F, van Caster P, Bunte S, Brandenburger T, Heinen A, Hollmann MW, et al. Impact of anesthetic regimen on remote ischemic preconditioning in the rat heart in vivo. Anesth Analg. 2018;126(4):1377–80.CrossRef Behmenburg F, van Caster P, Bunte S, Brandenburger T, Heinen A, Hollmann MW, et al. Impact of anesthetic regimen on remote ischemic preconditioning in the rat heart in vivo. Anesth Analg. 2018;126(4):1377–80.CrossRef
149.
go back to reference Ney J, Hoffmann K, Meybohm P, Goetzenich A, Kraemer S, Benstom C, et al. Remote ischemic preconditioning does not affect the release of humoral factors in propofol-anesthetized cardiac surgery patients: a secondary analysis of the RIPHeart study. Int J Mol Sci. 2018;19(4):112.CrossRef Ney J, Hoffmann K, Meybohm P, Goetzenich A, Kraemer S, Benstom C, et al. Remote ischemic preconditioning does not affect the release of humoral factors in propofol-anesthetized cardiac surgery patients: a secondary analysis of the RIPHeart study. Int J Mol Sci. 2018;19(4):112.CrossRef
150.
go back to reference Xie J, Zhang X, Xu J, Zhang Z, Klingensmith NJ, Liu S, et al. Effect of remote ischemic preconditioning on outcomes in adult cardiac surgery: a systematic review and meta-analysis of randomized controlled studies. Anesth Analg. 2018;127(1):30–8.CrossRef Xie J, Zhang X, Xu J, Zhang Z, Klingensmith NJ, Liu S, et al. Effect of remote ischemic preconditioning on outcomes in adult cardiac surgery: a systematic review and meta-analysis of randomized controlled studies. Anesth Analg. 2018;127(1):30–8.CrossRef
151.
go back to reference Deferrari G, Bonanni A, Bruschi M, Alicino C, Signori A. Remote ischaemic preconditioning for renal and cardiac protection in adult patients undergoing cardiac surgery with cardiopulmonary bypass: systematic review and meta-analysis of randomized controlled trials. Nephrol Dial Transplant. 2018;33(5):813–24.CrossRef Deferrari G, Bonanni A, Bruschi M, Alicino C, Signori A. Remote ischaemic preconditioning for renal and cardiac protection in adult patients undergoing cardiac surgery with cardiopulmonary bypass: systematic review and meta-analysis of randomized controlled trials. Nephrol Dial Transplant. 2018;33(5):813–24.CrossRef
152.
go back to reference Meersch M, Schmidt C, Hoffmeier A, Van Aken H, Wempe C, Gerss J, et al. Prevention of cardiac surgery-associated AKI by implementing the KDIGO guidelines in high risk patients identified by biomarkers: the PrevAKI randomized controlled trial. Intensive Care Med. 2017;43(11):1551–61.CrossRef Meersch M, Schmidt C, Hoffmeier A, Van Aken H, Wempe C, Gerss J, et al. Prevention of cardiac surgery-associated AKI by implementing the KDIGO guidelines in high risk patients identified by biomarkers: the PrevAKI randomized controlled trial. Intensive Care Med. 2017;43(11):1551–61.CrossRef
153.
go back to reference Kullmar M, Weiss R, Ostermann M, Campos S, Grau NN, Thomson G, et al. A Multinational observational study exploring adherence with the kidney disease: improving global outcomes recommendations for prevention of acute kidney injury after cardiac surgery. Anesth Analg. 2020;130(4):910–6.CrossRef Kullmar M, Weiss R, Ostermann M, Campos S, Grau NN, Thomson G, et al. A Multinational observational study exploring adherence with the kidney disease: improving global outcomes recommendations for prevention of acute kidney injury after cardiac surgery. Anesth Analg. 2020;130(4):910–6.CrossRef
Metadata
Title
Diagnosis, pathophysiology and preventive strategies for cardiac surgery-associated acute kidney injury: a narrative review
Authors
Ying Yu
Chenning Li
Shuainan Zhu
Lin Jin
Yan Hu
Xiaomin Ling
Changhong Miao
Kefang Guo
Publication date
01-12-2023
Publisher
BioMed Central
Published in
European Journal of Medical Research / Issue 1/2023
Electronic ISSN: 2047-783X
DOI
https://doi.org/10.1186/s40001-023-00990-2

Other articles of this Issue 1/2023

European Journal of Medical Research 1/2023 Go to the issue