Skip to main content
Top
Published in: BMC Medical Informatics and Decision Making 1/2023

Open Access 01-12-2023 | Heart Failure | Research

Risk prediction of heart failure in patients with ischemic heart disease using network analytics and stacking ensemble learning

Authors: Dejia Zhou, Hang Qiu, Liya Wang, Minghui Shen

Published in: BMC Medical Informatics and Decision Making | Issue 1/2023

Login to get access

Abstract

Background

Heart failure (HF) is a major complication following ischemic heart disease (IHD) and it adversely affects the outcome. Early prediction of HF risk in patients with IHD is beneficial for timely intervention and for reducing disease burden.

Methods

Two cohorts, cases for patients first diagnosed with IHD and then with HF (N = 11,862) and control IHD patients without HF (N = 25,652), were established from the hospital discharge records in Sichuan, China during 2015-2019. Directed personal disease network (PDN) was constructed for each patient, and then these PDNs were merged to generate the baseline disease network (BDN) for the two cohorts, respectively, which identifies the health trajectories of patients and the complex progression patterns. The differences between the BDNs of the two cohort was represented as disease-specific network (DSN). Three novel network features were exacted from PDN and DSN to represent the similarity of disease patterns and specificity trends from IHD to HF. A stacking-based ensemble model DXLR was proposed to predict HF risk in IHD patients using the novel network features and basic demographic features (i.e., age and sex). The Shapley Addictive exPlanations method was applied to analyze the feature importance of the DXLR model.

Results

Compared with the six traditional machine learning models, our DXLR model exhibited the highest AUC (0.934 ± 0.004), accuracy (0.857 ± 0.007), precision (0.723 ± 0.014), recall (0.892 ± 0.012) and F1 score (0.798 ± 0.010). The feature importance showed that the novel network features ranked as the top three features, playing a notable role in predicting HF risk of IHD patient. The feature comparison experiment also indicated that our novel network features were superior to those proposed by the state-of-the-art study in improving the performance of the prediction model, with an increase in AUC by 19.9%, in accuracy by 18.7%, in precision by 30.7%, in recall by 37.4%, and in F1 score by 33.7%.

Conclusions

Our proposed approach that combines network analytics and ensemble learning effectively predicts HF risk in patients with IHD. This highlights the potential value of network-based machine learning in disease risk prediction field using administrative data.
Literature
1.
go back to reference Klein L, Gheorghiade M. Coronary artery disease and prevention of heart failure. Med Clin North Am. 2004;88:1209–35.PubMedCrossRef Klein L, Gheorghiade M. Coronary artery disease and prevention of heart failure. Med Clin North Am. 2004;88:1209–35.PubMedCrossRef
2.
go back to reference Vedin O, Lam CSP, Koh AS, Benson L, Teng THK, Tay WT, et al. Significance of ischemic heart disease in patients with heart failure and preserved, Midrange, and reduced ejection fraction. Circulation: Heart Failure. 2017;10:e003875.PubMed Vedin O, Lam CSP, Koh AS, Benson L, Teng THK, Tay WT, et al. Significance of ischemic heart disease in patients with heart failure and preserved, Midrange, and reduced ejection fraction. Circulation: Heart Failure. 2017;10:e003875.PubMed
4.
go back to reference Badar AA, Perez-Moreno AC, Jhund PS, Wong CM, Hawkins NM, Cleland JGF, et al. Relationship between angina pectoris and outcomes in patients with heart failure and reduced ejection fraction: an analysis of the controlled rosuvastatin multinational trial in Heart failure (CORONA). Eur Heart J. 2014;35:3426–33.PubMedCrossRef Badar AA, Perez-Moreno AC, Jhund PS, Wong CM, Hawkins NM, Cleland JGF, et al. Relationship between angina pectoris and outcomes in patients with heart failure and reduced ejection fraction: an analysis of the controlled rosuvastatin multinational trial in Heart failure (CORONA). Eur Heart J. 2014;35:3426–33.PubMedCrossRef
5.
go back to reference Tromp J, Ouwerkerk W, Cleland JGF, Angermann CE, Dahlstrom U, Tiew-Hwa Teng K, et al. Global differences in Burden and Treatment of Ischemic Heart Disease in Acute Heart failure. JACC: Heart Failure. 2021;9:349–59.PubMed Tromp J, Ouwerkerk W, Cleland JGF, Angermann CE, Dahlstrom U, Tiew-Hwa Teng K, et al. Global differences in Burden and Treatment of Ischemic Heart Disease in Acute Heart failure. JACC: Heart Failure. 2021;9:349–59.PubMed
6.
go back to reference Abdissa SG. Predictors of incident heart failure in a cohort of patients with ischemic heart disease. Pan Afr Med J. 2020;35:1–12.CrossRef Abdissa SG. Predictors of incident heart failure in a cohort of patients with ischemic heart disease. Pan Afr Med J. 2020;35:1–12.CrossRef
7.
go back to reference Zhou D, Wang L, Ding S, Shen M, Qiu H. Phenotypic Disease Network Analysis to identify comorbidity patterns in hospitalized patients with ischemic heart Disease using large-scale Administrative Data. 2022;:17. Zhou D, Wang L, Ding S, Shen M, Qiu H. Phenotypic Disease Network Analysis to identify comorbidity patterns in hospitalized patients with ischemic heart Disease using large-scale Administrative Data. 2022;:17.
8.
go back to reference Levy D, Kenchaiah S, Larson MG, Benjamin EJ, Kupka MJ, Ho KKL, et al. Long-term trends in the incidence of and survival with heart failure. N Engl J Med. 2002;347:1397–402.PubMedCrossRef Levy D, Kenchaiah S, Larson MG, Benjamin EJ, Kupka MJ, Ho KKL, et al. Long-term trends in the incidence of and survival with heart failure. N Engl J Med. 2002;347:1397–402.PubMedCrossRef
9.
go back to reference Virani SS, Alonso A, Benjamin EJ, Bittencourt MS, Callaway CW, Carson AP, et al. Heart Disease and Stroke Statistics-2020 update: a Report from the American Heart Association. Circulation. 2020;141:e139–596.PubMedCrossRef Virani SS, Alonso A, Benjamin EJ, Bittencourt MS, Callaway CW, Carson AP, et al. Heart Disease and Stroke Statistics-2020 update: a Report from the American Heart Association. Circulation. 2020;141:e139–596.PubMedCrossRef
10.
go back to reference Tripoliti EE, Papadopoulos TG, Karanasiou GS, Naka KK, Fotiadis DI. Heart failure: diagnosis, severity estimation and prediction of adverse events through machine learning techniques. Comput Struct Biotechnol J. 2016;15:26–47.PubMedPubMedCentralCrossRef Tripoliti EE, Papadopoulos TG, Karanasiou GS, Naka KK, Fotiadis DI. Heart failure: diagnosis, severity estimation and prediction of adverse events through machine learning techniques. Comput Struct Biotechnol J. 2016;15:26–47.PubMedPubMedCentralCrossRef
11.
go back to reference Lorenzoni G, Sabato SS, Lanera C, Bottigliengo D, Minto C, Ocagli H, et al. Comparison of machine learning techniques for prediction of hospitalization in heart failure patients. J Clin Med. 2019;8:1298.PubMedPubMedCentralCrossRef Lorenzoni G, Sabato SS, Lanera C, Bottigliengo D, Minto C, Ocagli H, et al. Comparison of machine learning techniques for prediction of hospitalization in heart failure patients. J Clin Med. 2019;8:1298.PubMedPubMedCentralCrossRef
12.
go back to reference Krittanawong C, Virk HUH, Bangalore S, Wang Z, Johnson KW, Pinotti R, et al. Machine learning prediction in cardiovascular diseases: a meta-analysis. Sci Rep. 2020;10:16057.PubMedPubMedCentralCrossRef Krittanawong C, Virk HUH, Bangalore S, Wang Z, Johnson KW, Pinotti R, et al. Machine learning prediction in cardiovascular diseases: a meta-analysis. Sci Rep. 2020;10:16057.PubMedPubMedCentralCrossRef
13.
go back to reference Alizadehsani R, Roshanzamir M, Abdar M, Beykikhoshk A, Khosravi A, Nahavandi S, et al. Hybrid genetic-discretized algorithm to handle data uncertainty in diagnosing stenosis of coronary arteries. Expert Syst. 2022;39:e12573.CrossRef Alizadehsani R, Roshanzamir M, Abdar M, Beykikhoshk A, Khosravi A, Nahavandi S, et al. Hybrid genetic-discretized algorithm to handle data uncertainty in diagnosing stenosis of coronary arteries. Expert Syst. 2022;39:e12573.CrossRef
14.
go back to reference Khozeimeh F, Sharifrazi D, Izadi NH, Joloudari JH, Shoeibi A, Alizadehsani R, et al. RF-CNN-F: random forest with convolutional neural network features for coronary artery disease diagnosis based on cardiac magnetic resonance. Sci Rep. 2022;12:11178.PubMedPubMedCentralCrossRef Khozeimeh F, Sharifrazi D, Izadi NH, Joloudari JH, Shoeibi A, Alizadehsani R, et al. RF-CNN-F: random forest with convolutional neural network features for coronary artery disease diagnosis based on cardiac magnetic resonance. Sci Rep. 2022;12:11178.PubMedPubMedCentralCrossRef
15.
go back to reference Zhang Z, Qiu H, Li W, Chen Y. A stacking-based model for predicting 30-day all-cause hospital readmissions of patients with acute myocardial infarction. BMC Med Inform Decis Mak. 2020;20:335.PubMedPubMedCentralCrossRef Zhang Z, Qiu H, Li W, Chen Y. A stacking-based model for predicting 30-day all-cause hospital readmissions of patients with acute myocardial infarction. BMC Med Inform Decis Mak. 2020;20:335.PubMedPubMedCentralCrossRef
16.
go back to reference Duan C, Deng H, Xiao S, Xie J, Li H, Zhao X, et al. Accelerate gas diffusion-weighted MRI for lung morphometry with deep learning. Eur Radiol. 2022;32:702–13.PubMedCrossRef Duan C, Deng H, Xiao S, Xie J, Li H, Zhao X, et al. Accelerate gas diffusion-weighted MRI for lung morphometry with deep learning. Eur Radiol. 2022;32:702–13.PubMedCrossRef
17.
go back to reference Jin K, Huang X, Zhou J, Li Y, Yan Y, Sun Y, et al. FIVES: a Fundus Image dataset for Artificial Intelligence based Vessel Segmentation. Sci Data. 2022;9:475.PubMedPubMedCentralCrossRef Jin K, Huang X, Zhou J, Li Y, Yan Y, Sun Y, et al. FIVES: a Fundus Image dataset for Artificial Intelligence based Vessel Segmentation. Sci Data. 2022;9:475.PubMedPubMedCentralCrossRef
18.
go back to reference Javeed A, Khan SU, Ali L, Ali S, Imrana Y, Rahman A. Machine learning-based Automated Diagnostic Systems developed for heart failure prediction using different types of data modalities: a systematic review and future directions. Comput Math Methods Med. 2022;2022:9288452.PubMedPubMedCentralCrossRef Javeed A, Khan SU, Ali L, Ali S, Imrana Y, Rahman A. Machine learning-based Automated Diagnostic Systems developed for heart failure prediction using different types of data modalities: a systematic review and future directions. Comput Math Methods Med. 2022;2022:9288452.PubMedPubMedCentralCrossRef
19.
go back to reference Ambale-Venkatesh B, Yang X, Wu CO, Liu K, Hundley WG, McClelland R, et al. Cardiovascular Event Prediction by Machine Learning: the multi-ethnic study of atherosclerosis. Circ Res. 2017;121:1092–101.PubMedPubMedCentralCrossRef Ambale-Venkatesh B, Yang X, Wu CO, Liu K, Hundley WG, McClelland R, et al. Cardiovascular Event Prediction by Machine Learning: the multi-ethnic study of atherosclerosis. Circ Res. 2017;121:1092–101.PubMedPubMedCentralCrossRef
20.
go back to reference Yang G, Ren Y, Pan Q, Ning G, Gong S, Cai G et al. A heart failure diagnosis model based on support vector machine. In: 2010 3rd International Conference on Biomedical Engineering and Informatics. 2010. p. 1105–8. Yang G, Ren Y, Pan Q, Ning G, Gong S, Cai G et al. A heart failure diagnosis model based on support vector machine. In: 2010 3rd International Conference on Biomedical Engineering and Informatics. 2010. p. 1105–8.
21.
go back to reference Ali MM, Paul BK, Ahmed K, Bui FM, Quinn JMW, Moni MA. Heart disease prediction using supervised machine learning algorithms: performance analysis and comparison. Comput Biol Med. 2021;136:104672.PubMedCrossRef Ali MM, Paul BK, Ahmed K, Bui FM, Quinn JMW, Moni MA. Heart disease prediction using supervised machine learning algorithms: performance analysis and comparison. Comput Biol Med. 2021;136:104672.PubMedCrossRef
22.
go back to reference Al’Aref SJ, Anchouche K, Singh G, Slomka PJ, Kolli KK, Kumar A, et al. Clinical applications of machine learning in cardiovascular disease and its relevance to cardiac imaging. Eur Heart J. 2019;40:1975–86.PubMedCrossRef Al’Aref SJ, Anchouche K, Singh G, Slomka PJ, Kolli KK, Kumar A, et al. Clinical applications of machine learning in cardiovascular disease and its relevance to cardiac imaging. Eur Heart J. 2019;40:1975–86.PubMedCrossRef
24.
go back to reference Alotaibi FS. Implementation of machine learning model to Predict Heart failure disease. Int J Adv Comput Sci Appl (IJACSA). 2019;10. Alotaibi FS. Implementation of machine learning model to Predict Heart failure disease. Int J Adv Comput Sci Appl (IJACSA). 2019;10.
25.
go back to reference Menshawi A, Hassan MM, Allheeib N, Fortino G. A Hybrid Generic Framework for Heart Problem diagnosis based on a machine learning paradigm. Sens (Basel). 2023;23:1392.CrossRef Menshawi A, Hassan MM, Allheeib N, Fortino G. A Hybrid Generic Framework for Heart Problem diagnosis based on a machine learning paradigm. Sens (Basel). 2023;23:1392.CrossRef
26.
go back to reference Rammal HF. Z. A. Heart Failure Prediction Models using Big Data Techniques. ijacsa. 2018;9. Rammal HF. Z. A. Heart Failure Prediction Models using Big Data Techniques. ijacsa. 2018;9.
27.
go back to reference Akbilgic O, Butler L, Karabayir I, Chang PP, Kitzman DW, Alonso A, et al. ECG-AI: electrocardiographic artificial intelligence model for prediction of heart failure. Eur Heart J Digit Health. 2021;2:626–34.PubMedPubMedCentralCrossRef Akbilgic O, Butler L, Karabayir I, Chang PP, Kitzman DW, Alonso A, et al. ECG-AI: electrocardiographic artificial intelligence model for prediction of heart failure. Eur Heart J Digit Health. 2021;2:626–34.PubMedPubMedCentralCrossRef
28.
go back to reference Chen Y, Qin X, Zhang L, Yi B. A Novel Method of Heart failure prediction based on DPCNNXGBOOST Model. cmc. 2020;65:495–510.CrossRef Chen Y, Qin X, Zhang L, Yi B. A Novel Method of Heart failure prediction based on DPCNNXGBOOST Model. cmc. 2020;65:495–510.CrossRef
29.
go back to reference Qiu H, Wang L, Zeng X, Pan J. Comorbidity patterns in depression: a disease network analysis using regional hospital discharge records. J Affect Disord. 2022;296:418–27.PubMedCrossRef Qiu H, Wang L, Zeng X, Pan J. Comorbidity patterns in depression: a disease network analysis using regional hospital discharge records. J Affect Disord. 2022;296:418–27.PubMedCrossRef
30.
go back to reference Wang L, Qiu H, Luo L, Zhou L. Age- and sex-specific differences in multimorbidity patterns and temporal Trends on assessing Hospital Discharge Records in Southwest China: Network-Based study. J Med Internet Res. 2022;24:e27146.PubMedPubMedCentralCrossRef Wang L, Qiu H, Luo L, Zhou L. Age- and sex-specific differences in multimorbidity patterns and temporal Trends on assessing Hospital Discharge Records in Southwest China: Network-Based study. J Med Internet Res. 2022;24:e27146.PubMedPubMedCentralCrossRef
31.
go back to reference Divo MJ, Casanova C, Marin JM, Pinto-Plata VM, de-Torres JP, Zulueta JJ, et al. COPD comorbidities network. Eur Respir J. 2015;46:640–50.PubMedCrossRef Divo MJ, Casanova C, Marin JM, Pinto-Plata VM, de-Torres JP, Zulueta JJ, et al. COPD comorbidities network. Eur Respir J. 2015;46:640–50.PubMedCrossRef
32.
go back to reference Khan A, Uddin S, Srinivasan U. Comorbidity network for chronic disease: a novel approach to understand type 2 diabetes progression. Int J Med Informatics. 2018;115:1–9.CrossRef Khan A, Uddin S, Srinivasan U. Comorbidity network for chronic disease: a novel approach to understand type 2 diabetes progression. Int J Med Informatics. 2018;115:1–9.CrossRef
33.
go back to reference Derevitskii I, Funkner A, Metsker O, Kovalchuk S. Graph-Based Predictive Modelling of Chronic Disease Development: Type 2 DM Case Study. pHealth 2019. 2019;:150–5. Derevitskii I, Funkner A, Metsker O, Kovalchuk S. Graph-Based Predictive Modelling of Chronic Disease Development: Type 2 DM Case Study. pHealth 2019. 2019;:150–5.
34.
go back to reference Ko K, Lee CW, Nam S, Ahn SV, Ho J, Ban CY et al. Epidemiological characterization of a Directed and Weighted Disease Network using data from a cohort of one million patients: Network Analysis. JOURNAL OF MEDICAL INTERNET RESEARCH.:12. Ko K, Lee CW, Nam S, Ahn SV, Ho J, Ban CY et al. Epidemiological characterization of a Directed and Weighted Disease Network using data from a cohort of one million patients: Network Analysis. JOURNAL OF MEDICAL INTERNET RESEARCH.:12.
35.
go back to reference Cruz-Ávila HA, Vallejo M, Martínez-García M, Hernández-Lemus E. Comorbidity Networks in Cardiovascular Diseases. Front Physiol. 2020;11. Cruz-Ávila HA, Vallejo M, Martínez-García M, Hernández-Lemus E. Comorbidity Networks in Cardiovascular Diseases. Front Physiol. 2020;11.
36.
go back to reference Ong M-S, Mullen MP, Austin ED, Szolovits P, Natter MD, Geva A, et al. Learning a comorbidity-driven taxonomy of Pediatric Pulmonary Hypertension. Circ Res. 2017;121:341–53.PubMedPubMedCentralCrossRef Ong M-S, Mullen MP, Austin ED, Szolovits P, Natter MD, Geva A, et al. Learning a comorbidity-driven taxonomy of Pediatric Pulmonary Hypertension. Circ Res. 2017;121:341–53.PubMedPubMedCentralCrossRef
37.
go back to reference Hossain ME, Uddin S, Khan A. Network analytics and machine learning for predictive risk modelling of cardiovascular disease in patients with type 2 diabetes. Expert Syst Appl. 2021;164:113918.CrossRef Hossain ME, Uddin S, Khan A. Network analytics and machine learning for predictive risk modelling of cardiovascular disease in patients with type 2 diabetes. Expert Syst Appl. 2021;164:113918.CrossRef
38.
go back to reference Hu Z, Qiu H, Wang L, Shen M. Network analytics and machine learning for predicting length of stay in elderly patients with chronic diseases at point of admission. BMC Med Inform Decis Mak. 2022;22:62.PubMedPubMedCentralCrossRef Hu Z, Qiu H, Wang L, Shen M. Network analytics and machine learning for predicting length of stay in elderly patients with chronic diseases at point of admission. BMC Med Inform Decis Mak. 2022;22:62.PubMedPubMedCentralCrossRef
39.
go back to reference Wang K, Tian J, Zheng C, Yang H, Ren J, Liu Y, et al. Interpretable prediction of 3-year all-cause mortality in patients with heart failure caused by coronary heart disease based on machine learning and SHAP. Comput Biol Med. 2021;137:104813.PubMedCrossRef Wang K, Tian J, Zheng C, Yang H, Ren J, Liu Y, et al. Interpretable prediction of 3-year all-cause mortality in patients with heart failure caused by coronary heart disease based on machine learning and SHAP. Comput Biol Med. 2021;137:104813.PubMedCrossRef
40.
go back to reference Yang P, Qiu H, Wang L, Zhou L. Early prediction of high-cost inpatients with ischemic heart disease using network analytics and machine learning. Expert Syst Appl. 2022;210:118541.CrossRef Yang P, Qiu H, Wang L, Zhou L. Early prediction of high-cost inpatients with ischemic heart disease using network analytics and machine learning. Expert Syst Appl. 2022;210:118541.CrossRef
41.
go back to reference Khan A, Uddin S, Srinivasan U. Chronic disease prediction using administrative data and graph theory: the case of type 2 diabetes. Expert Syst Appl. 2019;136:230–41.CrossRef Khan A, Uddin S, Srinivasan U. Chronic disease prediction using administrative data and graph theory: the case of type 2 diabetes. Expert Syst Appl. 2019;136:230–41.CrossRef
42.
go back to reference Uddin S. Comorbidity and multimorbidity prediction of major chronic diseases using machine learning and network analytics. Expert Syst Appl. 2022;:10. Uddin S. Comorbidity and multimorbidity prediction of major chronic diseases using machine learning and network analytics. Expert Syst Appl. 2022;:10.
43.
go back to reference Lundberg S, Lee S-I. A Unified Approach to Interpreting Model Predictions. 2017. Lundberg S, Lee S-I. A Unified Approach to Interpreting Model Predictions. 2017.
44.
go back to reference Hossain ME, Uddin S, Khan A, Moni MA. A Framework to understand the progression of Cardiovascular Disease for type 2 diabetes Mellitus Patients using a Network Approach. IJERPH. 2020;17:596.PubMedPubMedCentralCrossRef Hossain ME, Uddin S, Khan A, Moni MA. A Framework to understand the progression of Cardiovascular Disease for type 2 diabetes Mellitus Patients using a Network Approach. IJERPH. 2020;17:596.PubMedPubMedCentralCrossRef
46.
go back to reference Taha K, Ross HJ, Peikari M, Mueller B, Fan C-PS, Crowdy E, et al. An ensemble-based approach to the development of clinical prediction models for future-onset heart failure and coronary artery disease using machine learning. J Am Coll Cardiol. 2020;75 11Supplement1:2046–6.CrossRef Taha K, Ross HJ, Peikari M, Mueller B, Fan C-PS, Crowdy E, et al. An ensemble-based approach to the development of clinical prediction models for future-onset heart failure and coronary artery disease using machine learning. J Am Coll Cardiol. 2020;75 11Supplement1:2046–6.CrossRef
47.
go back to reference Logistic regression and artificial. Neural network classification models: a methodology review. J Biomed Inform. 2002;35:352–9.CrossRef Logistic regression and artificial. Neural network classification models: a methodology review. J Biomed Inform. 2002;35:352–9.CrossRef
48.
go back to reference Chen P-H, Lin C-J, Schölkopf B. A tutorial on ν-support vector machines. Appl Stoch Models Bus Ind. 2005;21:111–36.CrossRef Chen P-H, Lin C-J, Schölkopf B. A tutorial on ν-support vector machines. Appl Stoch Models Bus Ind. 2005;21:111–36.CrossRef
49.
go back to reference Rokach L, Maimon O. Decision Trees. In: The Data Mining and Knowledge Discovery Handbook. 2005. p. 165–92. Rokach L, Maimon O. Decision Trees. In: The Data Mining and Knowledge Discovery Handbook. 2005. p. 165–92.
50.
go back to reference Pal M. Random forest classifier for remote sensing classification. Int J Remote Sens. 2005;26:217–22.CrossRef Pal M. Random forest classifier for remote sensing classification. Int J Remote Sens. 2005;26:217–22.CrossRef
51.
go back to reference Chen T, Guestrin C, XGBoost:. A Scalable Tree Boosting System. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, NY, USA: Association for Computing Machinery; 2016. p. 785–94. Chen T, Guestrin C, XGBoost:. A Scalable Tree Boosting System. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, NY, USA: Association for Computing Machinery; 2016. p. 785–94.
52.
go back to reference Ke G, Meng Q, Finley T, Wang T, Chen W, Ma W et al. LightGBM: a highly efficient gradient boosting decision tree. In: Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook, NY, USA: Curran Associates Inc.; 2017. p. 3149–57. Ke G, Meng Q, Finley T, Wang T, Chen W, Ma W et al. LightGBM: a highly efficient gradient boosting decision tree. In: Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook, NY, USA: Curran Associates Inc.; 2017. p. 3149–57.
53.
go back to reference Chawla NV, Bowyer KW, Hall LO, Kegelmeyer WP. SMOTE: synthetic minority over-sampling technique. J Artif Int Res. 2002;16:321–57. Chawla NV, Bowyer KW, Hall LO, Kegelmeyer WP. SMOTE: synthetic minority over-sampling technique. J Artif Int Res. 2002;16:321–57.
54.
go back to reference Lu H, Uddin S, Hajati F, Moni MA, Khushi M. A patient network-based machine learning model for disease prediction: the case of type 2 diabetes mellitus. Appl Intell. 2022;52:2411–22.CrossRef Lu H, Uddin S, Hajati F, Moni MA, Khushi M. A patient network-based machine learning model for disease prediction: the case of type 2 diabetes mellitus. Appl Intell. 2022;52:2411–22.CrossRef
55.
go back to reference Lu H, Uddin S. OPEN a weighted patient network–based framework for predicting chronic diseases using graph neural networks. Sci Rep:13. Lu H, Uddin S. OPEN a weighted patient network–based framework for predicting chronic diseases using graph neural networks. Sci Rep:13.
56.
go back to reference Sun Z, Yin H, Chen H, Chen T, Cui L, Yang F. Disease Prediction via Graph neural networks. IEEE J Biomed Health Inform. 2020;:1–1. Sun Z, Yin H, Chen H, Chen T, Cui L, Yang F. Disease Prediction via Graph neural networks. IEEE J Biomed Health Inform. 2020;:1–1.
Metadata
Title
Risk prediction of heart failure in patients with ischemic heart disease using network analytics and stacking ensemble learning
Authors
Dejia Zhou
Hang Qiu
Liya Wang
Minghui Shen
Publication date
01-12-2023
Publisher
BioMed Central
Keyword
Heart Failure
Published in
BMC Medical Informatics and Decision Making / Issue 1/2023
Electronic ISSN: 1472-6947
DOI
https://doi.org/10.1186/s12911-023-02196-2

Other articles of this Issue 1/2023

BMC Medical Informatics and Decision Making 1/2023 Go to the issue