Skip to main content
Top
Published in: Clinical and Experimental Medicine 1/2024

Open Access 01-12-2024 | Hashimoto Thyroiditis | Review

Intestinal microbiota regulates the gut-thyroid axis: the new dawn of improving Hashimoto thyroiditis

Authors: Xiaxin Zhu, Chi Zhang, Shuyan Feng, Ruonan He, Shuo Zhang

Published in: Clinical and Experimental Medicine | Issue 1/2024

Login to get access

Abstract

Intestinal microbiota plays an indispensable role in the host's innate immune system, which may be related to the occurrence of many autoimmune diseases. Hashimoto thyroiditis (HT) is one of the most common autoimmune diseases, and there is plenty of evidence indicating that HT may be related to genetics and environmental triggers, but the specific mechanism has not been proven clearly. Significantly, the composition and abundance of intestinal microbiota in patients with HT have an obvious difference. This phenomenon led us to think about whether intestinal microbiota can affect the progress of HT through some mechanisms. By summarizing the potential mechanism of intestinal microflora in regulating Hashimoto thyroiditis, this article explores the possibility of improving HT by regulating intestinal microbiota and summarizes relevant biomarkers as therapeutic targets, which provide new ideas for the clinical diagnosis and treatment of Hashimoto thyroiditis.
Literature
1.
go back to reference Ralli M, et al. Hashimoto’s thyroiditis: an update on pathogenic mechanisms, diagnostic protocols, therapeutic strategies, and potential malignant transformation. Autoimmun Rev. 2020;19(10):102649.PubMedCrossRef Ralli M, et al. Hashimoto’s thyroiditis: an update on pathogenic mechanisms, diagnostic protocols, therapeutic strategies, and potential malignant transformation. Autoimmun Rev. 2020;19(10):102649.PubMedCrossRef
2.
go back to reference Klubo-Gwiezdzinska J, Wartofsky L. Hashimoto thyroiditis: an evidence-based guide to etiology, diagnosis and treatment. Pol Arch Intern Med. 2022;132(3):16222.PubMedPubMedCentral Klubo-Gwiezdzinska J, Wartofsky L. Hashimoto thyroiditis: an evidence-based guide to etiology, diagnosis and treatment. Pol Arch Intern Med. 2022;132(3):16222.PubMedPubMedCentral
3.
go back to reference McLeod DSA, Cooper DS. The incidence and prevalence of thyroid autoimmunity. Endocrine. 2012;42(2):252–65.PubMedCrossRef McLeod DSA, Cooper DS. The incidence and prevalence of thyroid autoimmunity. Endocrine. 2012;42(2):252–65.PubMedCrossRef
4.
go back to reference Ott J, et al. The incidence of lymphocytic thyroid infiltration and Hashimoto’s thyroiditis increased in patients operated for benign goiter over a 31-year period. Virchows Archiv Int J Pathol. 2011;459(3):277–81.CrossRef Ott J, et al. The incidence of lymphocytic thyroid infiltration and Hashimoto’s thyroiditis increased in patients operated for benign goiter over a 31-year period. Virchows Archiv Int J Pathol. 2011;459(3):277–81.CrossRef
5.
go back to reference Ragusa F, et al. Hashimotos’ thyroiditis: epidemiology, pathogenesis, clinic and therapy. Best Pract Res Clin Endocrinol Metab. 2019;33(6):101367.PubMedCrossRef Ragusa F, et al. Hashimotos’ thyroiditis: epidemiology, pathogenesis, clinic and therapy. Best Pract Res Clin Endocrinol Metab. 2019;33(6):101367.PubMedCrossRef
7.
go back to reference Teng W, et al. Effect of iodine intake on thyroid diseases in China. N Engl J Med. 2006;354(26):2783–93.PubMedCrossRef Teng W, et al. Effect of iodine intake on thyroid diseases in China. N Engl J Med. 2006;354(26):2783–93.PubMedCrossRef
8.
go back to reference Caturegli P, De Remigis A, Rose NR. Hashimoto thyroiditis: clinical and diagnostic criteria. Autoimmun Rev. 2014;13(4–5):391–7.PubMedCrossRef Caturegli P, De Remigis A, Rose NR. Hashimoto thyroiditis: clinical and diagnostic criteria. Autoimmun Rev. 2014;13(4–5):391–7.PubMedCrossRef
10.
11.
12.
go back to reference Virili C, et al. Gut microbiota and Hashimoto’s thyroiditis. Rev Endocr Metab Disord. 2018;19(4):293–300.PubMedCrossRef Virili C, et al. Gut microbiota and Hashimoto’s thyroiditis. Rev Endocr Metab Disord. 2018;19(4):293–300.PubMedCrossRef
13.
go back to reference Suzuki K, et al. GALT: organization and dynamics leading to IgA synthesis. Adv Immunol. 2010;107:153–85.PubMedCrossRef Suzuki K, et al. GALT: organization and dynamics leading to IgA synthesis. Adv Immunol. 2010;107:153–85.PubMedCrossRef
14.
go back to reference Hooper LV, Macpherson AJ. Immune adaptations that maintain homeostasis with the intestinal microbiota. Nat Rev Immunol. 2010;10(3):159–69.PubMedCrossRef Hooper LV, Macpherson AJ. Immune adaptations that maintain homeostasis with the intestinal microbiota. Nat Rev Immunol. 2010;10(3):159–69.PubMedCrossRef
15.
go back to reference Kamada N, et al. Role of the gut microbiota in immunity and inflammatory disease. Nat Rev Immunol. 2013;13(5):321–35.PubMedCrossRef Kamada N, et al. Role of the gut microbiota in immunity and inflammatory disease. Nat Rev Immunol. 2013;13(5):321–35.PubMedCrossRef
16.
go back to reference Mallon P, et al. Probiotics for induction of remission in ulcerative colitis. In: The Cochrane database of systematic reviews, no. 4; 2007. p. CD005573. Mallon P, et al. Probiotics for induction of remission in ulcerative colitis. In: The Cochrane database of systematic reviews, no. 4; 2007. p. CD005573.
17.
go back to reference Simon E, et al. Probiotics, prebiotics, and synbiotics: implications and beneficial effects against irritable bowel syndrome. Nutrients. 2021;13(6):2112.PubMedPubMedCentralCrossRef Simon E, et al. Probiotics, prebiotics, and synbiotics: implications and beneficial effects against irritable bowel syndrome. Nutrients. 2021;13(6):2112.PubMedPubMedCentralCrossRef
18.
go back to reference Liu Y, et al. Probiotic Lactobacillus rhamnosus GG prevents liver fibrosis through inhibiting hepatic bile acid synthesis and enhancing bile acid excretion in mice. Hepatology (Baltimore, MD). 2020;71(6):2050–66.PubMedCrossRef Liu Y, et al. Probiotic Lactobacillus rhamnosus GG prevents liver fibrosis through inhibiting hepatic bile acid synthesis and enhancing bile acid excretion in mice. Hepatology (Baltimore, MD). 2020;71(6):2050–66.PubMedCrossRef
20.
go back to reference Zaiss MM, et al. The gut-joint axis in rheumatoid arthritis. Nat Rev Rheumatol. 2021;17(4):224–37.PubMedCrossRef Zaiss MM, et al. The gut-joint axis in rheumatoid arthritis. Nat Rev Rheumatol. 2021;17(4):224–37.PubMedCrossRef
21.
go back to reference Choi S-C, et al. Gut microbiota dysbiosis and altered tryptophan catabolism contribute to autoimmunity in lupus-susceptible mice. Sci Transl Med. 2020;12(551):eaax2220. Choi S-C, et al. Gut microbiota dysbiosis and altered tryptophan catabolism contribute to autoimmunity in lupus-susceptible mice. Sci Transl Med. 2020;12(551):eaax2220.
22.
go back to reference Shin NR, et al. Chemically or surgically induced thyroid dysfunction altered gut microbiota in rat models. FASEB J. 2020;34(6):8686–701.PubMedCrossRef Shin NR, et al. Chemically or surgically induced thyroid dysfunction altered gut microbiota in rat models. FASEB J. 2020;34(6):8686–701.PubMedCrossRef
23.
go back to reference Su X, et al. Gut dysbiosis is associated with primary hypothyroidism with interaction on gut-thyroid axis. Clin Sci (Lond, Engl: 1979). 2020;134(12):1521–35.CrossRef Su X, et al. Gut dysbiosis is associated with primary hypothyroidism with interaction on gut-thyroid axis. Clin Sci (Lond, Engl: 1979). 2020;134(12):1521–35.CrossRef
24.
go back to reference Cayres LCdF, et al. Detection of alterations in the gut microbiota and intestinal permeability in patients with Hashimoto thyroiditis. Front Immunol. 2021;12:579140.PubMedPubMedCentralCrossRef Cayres LCdF, et al. Detection of alterations in the gut microbiota and intestinal permeability in patients with Hashimoto thyroiditis. Front Immunol. 2021;12:579140.PubMedPubMedCentralCrossRef
26.
go back to reference Virili C, Centanni M. “With a little help from my friends”—the role of microbiota in thyroid hormone metabolism and enterohepatic recycling. Mol Cell Endocrinol. 2017;458:39–43.PubMedCrossRef Virili C, Centanni M. “With a little help from my friends”—the role of microbiota in thyroid hormone metabolism and enterohepatic recycling. Mol Cell Endocrinol. 2017;458:39–43.PubMedCrossRef
27.
go back to reference Tomasello G, et al. Dysmicrobism, inflammatory bowel disease and thyroiditis: analysis of the literature. J Biol Regul Homeost Agents. 2015;29(2):265–72.PubMed Tomasello G, et al. Dysmicrobism, inflammatory bowel disease and thyroiditis: analysis of the literature. J Biol Regul Homeost Agents. 2015;29(2):265–72.PubMed
28.
go back to reference Guo Q, et al. Cytokine secretion and pyroptosis of thyroid follicular cells mediated by enhanced NLRP3, NLRP1, NLRC4, and AIM2 inflammasomes are associated with autoimmune thyroiditis. Front Immunol. 2018;9:1197.PubMedPubMedCentralCrossRef Guo Q, et al. Cytokine secretion and pyroptosis of thyroid follicular cells mediated by enhanced NLRP3, NLRP1, NLRC4, and AIM2 inflammasomes are associated with autoimmune thyroiditis. Front Immunol. 2018;9:1197.PubMedPubMedCentralCrossRef
29.
go back to reference Fenneman AC, et al. Gut microbiota and metabolites in the pathogenesis of endocrine disease. Biochem Soc Trans. 2020;48(3):915–31.PubMedCrossRef Fenneman AC, et al. Gut microbiota and metabolites in the pathogenesis of endocrine disease. Biochem Soc Trans. 2020;48(3):915–31.PubMedCrossRef
30.
go back to reference Schroeder BO, Bäckhed F. Signals from the gut microbiota to distant organs in physiology and disease. Nat Med. 2016;22(10):1079–89.PubMedCrossRef Schroeder BO, Bäckhed F. Signals from the gut microbiota to distant organs in physiology and disease. Nat Med. 2016;22(10):1079–89.PubMedCrossRef
31.
go back to reference Donaldson GP, Lee SM, Mazmanian SK. Gut biogeography of the bacterial microbiota. Nat Rev Microbiol. 2016;14(1):20–32.PubMedCrossRef Donaldson GP, Lee SM, Mazmanian SK. Gut biogeography of the bacterial microbiota. Nat Rev Microbiol. 2016;14(1):20–32.PubMedCrossRef
33.
go back to reference Fujisaka S, Watanabe Y, Tobe K. The gut microbiome: a core regulator of metabolism. J Endocrinol. 2022;256(3):e220111. Fujisaka S, Watanabe Y, Tobe K. The gut microbiome: a core regulator of metabolism. J Endocrinol. 2022;256(3):e220111.
34.
go back to reference Gong B, et al. Association between gut microbiota and autoimmune thyroid disease: a systematic review and meta-analysis. Front Endocrinol. 2021;12:774362.CrossRef Gong B, et al. Association between gut microbiota and autoimmune thyroid disease: a systematic review and meta-analysis. Front Endocrinol. 2021;12:774362.CrossRef
35.
go back to reference Zhao F, et al. Alterations of the gut microbiota in Hashimoto’s thyroiditis patients. Thyroid. 2018;28(2):175–86.PubMedCrossRef Zhao F, et al. Alterations of the gut microbiota in Hashimoto’s thyroiditis patients. Thyroid. 2018;28(2):175–86.PubMedCrossRef
36.
go back to reference Ishaq HM, et al. Molecular estimation of alteration in intestinal microbial composition in Hashimoto’s thyroiditis patients. Biomed Pharmacother. 2017;95:865–74.PubMedCrossRef Ishaq HM, et al. Molecular estimation of alteration in intestinal microbial composition in Hashimoto’s thyroiditis patients. Biomed Pharmacother. 2017;95:865–74.PubMedCrossRef
38.
go back to reference Cornejo-Pareja I, et al. Differential microbial pattern description in subjects with autoimmune-based thyroid diseases: a pilot study. J Person Med. 2020;10(4):192.CrossRef Cornejo-Pareja I, et al. Differential microbial pattern description in subjects with autoimmune-based thyroid diseases: a pilot study. J Person Med. 2020;10(4):192.CrossRef
39.
go back to reference Stojanov S, Berlec A, Štrukelj B. The influence of probiotics on the firmicutes/bacteroidetes ratio in the treatment of obesity and inflammatory bowel disease. Microorganisms. 2020;8(11):1715.PubMedPubMedCentralCrossRef Stojanov S, Berlec A, Štrukelj B. The influence of probiotics on the firmicutes/bacteroidetes ratio in the treatment of obesity and inflammatory bowel disease. Microorganisms. 2020;8(11):1715.PubMedPubMedCentralCrossRef
40.
go back to reference Fröhlich E, Wahl R. Microbiota and thyroid interaction in health and disease. Trends Endocrinol Metab. 2019;30(8):479–90.PubMedCrossRef Fröhlich E, Wahl R. Microbiota and thyroid interaction in health and disease. Trends Endocrinol Metab. 2019;30(8):479–90.PubMedCrossRef
41.
go back to reference Liu S, et al. The composition of gut microbiota in patients bearing Hashimoto’s thyroiditis with euthyroidism and hypothyroidism. Int J Endocrinol. 2020;2020:5036959.PubMedPubMedCentralCrossRef Liu S, et al. The composition of gut microbiota in patients bearing Hashimoto’s thyroiditis with euthyroidism and hypothyroidism. Int J Endocrinol. 2020;2020:5036959.PubMedPubMedCentralCrossRef
42.
43.
go back to reference Medzhitov R, Janeway C. The Toll receptor family and microbial recognition. Trends Microbiol. 2000;8(10):452–6.PubMedCrossRef Medzhitov R, Janeway C. The Toll receptor family and microbial recognition. Trends Microbiol. 2000;8(10):452–6.PubMedCrossRef
45.
48.
49.
go back to reference Satoh-Takayama N, et al. Microbial flora drives interleukin 22 production in intestinal NKp46+ cells that provide innate mucosal immune defense. Immunity. 2008;29(6):958–70.PubMedCrossRef Satoh-Takayama N, et al. Microbial flora drives interleukin 22 production in intestinal NKp46+ cells that provide innate mucosal immune defense. Immunity. 2008;29(6):958–70.PubMedCrossRef
50.
go back to reference Sanos SL, et al. RORgammat and commensal microflora are required for the differentiation of mucosal interleukin 22-producing NKp46+ cells. Nat Immunol. 2009;10(1):83–91.PubMedCrossRef Sanos SL, et al. RORgammat and commensal microflora are required for the differentiation of mucosal interleukin 22-producing NKp46+ cells. Nat Immunol. 2009;10(1):83–91.PubMedCrossRef
51.
go back to reference Kunii J, et al. Commensal bacteria promote migration of mast cells into the intestine. Immunobiology. 2011;216(6):692–7.PubMedCrossRef Kunii J, et al. Commensal bacteria promote migration of mast cells into the intestine. Immunobiology. 2011;216(6):692–7.PubMedCrossRef
52.
go back to reference Bischoff SC, Krämer S. Human mast cells, bacteria, and intestinal immunity. Immunol Rev. 2007;217:329–37.PubMedCrossRef Bischoff SC, Krämer S. Human mast cells, bacteria, and intestinal immunity. Immunol Rev. 2007;217:329–37.PubMedCrossRef
54.
go back to reference Virili C, Stramazzo I, Centanni M. Gut microbiome and thyroid autoimmunity. Best Pract Res Clin Endocrinol Metab. 2021;35(3):101506.PubMedCrossRef Virili C, Stramazzo I, Centanni M. Gut microbiome and thyroid autoimmunity. Best Pract Res Clin Endocrinol Metab. 2021;35(3):101506.PubMedCrossRef
55.
go back to reference Round JL, Mazmanian SK. Inducible Foxp3+ regulatory T-cell development by a commensal bacterium of the intestinal microbiota. Proc Natl Acad Sci USA. 2010;107(27):12204–9.ADSPubMedPubMedCentralCrossRef Round JL, Mazmanian SK. Inducible Foxp3+ regulatory T-cell development by a commensal bacterium of the intestinal microbiota. Proc Natl Acad Sci USA. 2010;107(27):12204–9.ADSPubMedPubMedCentralCrossRef
56.
go back to reference Yasuda K, Takeuchi Y, Hirota K. The pathogenicity of Th17 cells in autoimmune diseases. Semin Immunopathol. 2019;41(3):283–97.PubMedCrossRef Yasuda K, Takeuchi Y, Hirota K. The pathogenicity of Th17 cells in autoimmune diseases. Semin Immunopathol. 2019;41(3):283–97.PubMedCrossRef
57.
go back to reference Cekanaviciute E, et al. Gut bacteria from multiple sclerosis patients modulate human T cells and exacerbate symptoms in mouse models. Proc Natl Acad Sci USA. 2017;114(40):10713–8.ADSPubMedPubMedCentralCrossRef Cekanaviciute E, et al. Gut bacteria from multiple sclerosis patients modulate human T cells and exacerbate symptoms in mouse models. Proc Natl Acad Sci USA. 2017;114(40):10713–8.ADSPubMedPubMedCentralCrossRef
58.
go back to reference Ostman S, et al. Impaired regulatory T cell function in germ-free mice. Eur J Immunol. 2006;36(9):2336–46.PubMedCrossRef Ostman S, et al. Impaired regulatory T cell function in germ-free mice. Eur J Immunol. 2006;36(9):2336–46.PubMedCrossRef
61.
go back to reference Telesford KM, et al. A commensal symbiotic factor derived from Bacteroides fragilis promotes human CD39(+)Foxp3(+) T cells and Treg function. Gut Microbes. 2015;6(4):234–42.PubMedPubMedCentralCrossRef Telesford KM, et al. A commensal symbiotic factor derived from Bacteroides fragilis promotes human CD39(+)Foxp3(+) T cells and Treg function. Gut Microbes. 2015;6(4):234–42.PubMedPubMedCentralCrossRef
62.
go back to reference Mazmanian SK, et al. An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system. Cell. 2005;122(1):107–18.PubMedCrossRef Mazmanian SK, et al. An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system. Cell. 2005;122(1):107–18.PubMedCrossRef
63.
go back to reference Wang Y, et al. A commensal bacterial product elicits and modulates migratory capacity of CD39(+) CD4 T regulatory subsets in the suppression of neuroinflammation. Gut Microbes. 2014;5(4):552–61.PubMedCrossRef Wang Y, et al. A commensal bacterial product elicits and modulates migratory capacity of CD39(+) CD4 T regulatory subsets in the suppression of neuroinflammation. Gut Microbes. 2014;5(4):552–61.PubMedCrossRef
64.
go back to reference Mørland B, Midtvedt T. Phagocytosis, peritoneal influx, and enzyme activities in peritoneal macrophages from germfree, conventional, and ex-germfree mice. Infect Immun. 1984;44(3):750–2.PubMedPubMedCentralCrossRef Mørland B, Midtvedt T. Phagocytosis, peritoneal influx, and enzyme activities in peritoneal macrophages from germfree, conventional, and ex-germfree mice. Infect Immun. 1984;44(3):750–2.PubMedPubMedCentralCrossRef
65.
go back to reference Zhang W, et al. Lactic acid bacterial colonization and human rotavirus infection influence distribution and frequencies of monocytes/macrophages and dendritic cells in neonatal gnotobiotic pigs. Vet Immunol Immunopathol. 2008;121(3–4):222–31.PubMedCrossRef Zhang W, et al. Lactic acid bacterial colonization and human rotavirus infection influence distribution and frequencies of monocytes/macrophages and dendritic cells in neonatal gnotobiotic pigs. Vet Immunol Immunopathol. 2008;121(3–4):222–31.PubMedCrossRef
66.
go back to reference Benvenga S, Guarneri F. Molecular mimicry and autoimmune thyroid disease. Rev Endocr Metab Disord. 2016;17(4):485–98.PubMedCrossRef Benvenga S, Guarneri F. Molecular mimicry and autoimmune thyroid disease. Rev Endocr Metab Disord. 2016;17(4):485–98.PubMedCrossRef
67.
go back to reference Sousa MdAC, Paraná R, Andrade LJdO. Sequence similarity between thyroid self-protein and hepatitis C virus polyprotein: possible triggering mechanism of autoimmune thyroiditis. Arq Gastroenterol. 2016;53(3):185–91.ADSPubMedCrossRef Sousa MdAC, Paraná R, Andrade LJdO. Sequence similarity between thyroid self-protein and hepatitis C virus polyprotein: possible triggering mechanism of autoimmune thyroiditis. Arq Gastroenterol. 2016;53(3):185–91.ADSPubMedCrossRef
68.
go back to reference Cusick MF, Libbey JE, Fujinami RS. Molecular mimicry as a mechanism of autoimmune disease. Clin Rev Allergy Immunol. 2012;42(1):102–11.PubMedCrossRef Cusick MF, Libbey JE, Fujinami RS. Molecular mimicry as a mechanism of autoimmune disease. Clin Rev Allergy Immunol. 2012;42(1):102–11.PubMedCrossRef
69.
go back to reference Kiseleva EP, et al. The role of components of Bifidobacterium and Lactobacillus in pathogenesis and serologic diagnosis of autoimmune thyroid diseases. Benef Microbes. 2011;2(2):139–54.PubMedCrossRef Kiseleva EP, et al. The role of components of Bifidobacterium and Lactobacillus in pathogenesis and serologic diagnosis of autoimmune thyroid diseases. Benef Microbes. 2011;2(2):139–54.PubMedCrossRef
70.
go back to reference Masala S, et al. Lack of humoral response against Helicobacter pylori peptides homologous to human ZnT8 in Hashimoto’s thyroiditis patients. J Infect Dev Ctries. 2015;9(6):631–4.PubMedCrossRef Masala S, et al. Lack of humoral response against Helicobacter pylori peptides homologous to human ZnT8 in Hashimoto’s thyroiditis patients. J Infect Dev Ctries. 2015;9(6):631–4.PubMedCrossRef
71.
go back to reference Benvenga S, et al. Human thyroid autoantigens and proteins of Yersinia and Borrelia share amino acid sequence homology that includes binding motifs to HLA-DR molecules and T-cell receptor. Thyroid. 2006;16(3):225–36.PubMedCrossRef Benvenga S, et al. Human thyroid autoantigens and proteins of Yersinia and Borrelia share amino acid sequence homology that includes binding motifs to HLA-DR molecules and T-cell receptor. Thyroid. 2006;16(3):225–36.PubMedCrossRef
74.
go back to reference Arata N, et al. By-stander activation in autoimmune thyroiditis: studies on experimental autoimmune thyroiditis in the GFP+ fluorescent mouse. Clin Immunol (Orlando, Fla). 2006;121(1):108–17.CrossRef Arata N, et al. By-stander activation in autoimmune thyroiditis: studies on experimental autoimmune thyroiditis in the GFP+ fluorescent mouse. Clin Immunol (Orlando, Fla). 2006;121(1):108–17.CrossRef
75.
76.
go back to reference Thrasyvoulides A, Lymberi P. Evidence for intramolecular B-cell epitope spreading during experimental immunization with an immunogenic thyroglobulin peptide. Clin Exp Immunol. 2003;132(3):401–7.PubMedPubMedCentralCrossRef Thrasyvoulides A, Lymberi P. Evidence for intramolecular B-cell epitope spreading during experimental immunization with an immunogenic thyroglobulin peptide. Clin Exp Immunol. 2003;132(3):401–7.PubMedPubMedCentralCrossRef
77.
go back to reference Lerner A, Aminov R, Matthias T. Dysbiosis may trigger autoimmune diseases via inappropriate post-translational modification of host proteins. Front Microbiol. 2016;7:84.PubMedPubMedCentralCrossRef Lerner A, Aminov R, Matthias T. Dysbiosis may trigger autoimmune diseases via inappropriate post-translational modification of host proteins. Front Microbiol. 2016;7:84.PubMedPubMedCentralCrossRef
78.
go back to reference Muller S, Radic M. Citrullinated autoantigens: from diagnostic markers to pathogenetic mechanisms. Clin Rev Allergy Immunol. 2015;49(2):232–9.PubMedCrossRef Muller S, Radic M. Citrullinated autoantigens: from diagnostic markers to pathogenetic mechanisms. Clin Rev Allergy Immunol. 2015;49(2):232–9.PubMedCrossRef
79.
go back to reference Macdonald TT, Monteleone G. Immunity, inflammation, and allergy in the gut. Science (New York, NY). 2005;307(5717):1920–5.ADSPubMedCrossRef Macdonald TT, Monteleone G. Immunity, inflammation, and allergy in the gut. Science (New York, NY). 2005;307(5717):1920–5.ADSPubMedCrossRef
80.
go back to reference Natividad JMM, Verdu EF. Modulation of intestinal barrier by intestinal microbiota: pathological and therapeutic implications. Pharmacol Res. 2013;69(1):42–51.PubMedCrossRef Natividad JMM, Verdu EF. Modulation of intestinal barrier by intestinal microbiota: pathological and therapeutic implications. Pharmacol Res. 2013;69(1):42–51.PubMedCrossRef
81.
go back to reference Meslin JC, Fontaine N, Andrieux C. Variation of mucin distribution in the rat intestine, caecum and colon: effect of the bacterial flora. Comp Biochem Physiol Part A Mol Integr Physiol. 1999;123(3):235–9.CrossRef Meslin JC, Fontaine N, Andrieux C. Variation of mucin distribution in the rat intestine, caecum and colon: effect of the bacterial flora. Comp Biochem Physiol Part A Mol Integr Physiol. 1999;123(3):235–9.CrossRef
82.
go back to reference Čaja F, et al. Immune activation by microbiome shapes the colon mucosa: Comparison between healthy rat mucosa under conventional and germ-free conditions. J Immunotoxicol. 2021;18(1):37–49.PubMedCrossRef Čaja F, et al. Immune activation by microbiome shapes the colon mucosa: Comparison between healthy rat mucosa under conventional and germ-free conditions. J Immunotoxicol. 2021;18(1):37–49.PubMedCrossRef
83.
84.
go back to reference Demir E, et al. The relationship between elevated plasma zonulin levels and Hashimoto’s thyroiditis. Turk J Med Sci. 2022;52(3):605–12.PubMedCrossRef Demir E, et al. The relationship between elevated plasma zonulin levels and Hashimoto’s thyroiditis. Turk J Med Sci. 2022;52(3):605–12.PubMedCrossRef
85.
go back to reference Fasano A. Zonulin and its regulation of intestinal barrier function: the biological door to inflammation, autoimmunity, and cancer. Physiol Rev. 2011;91(1):151–75.PubMedCrossRef Fasano A. Zonulin and its regulation of intestinal barrier function: the biological door to inflammation, autoimmunity, and cancer. Physiol Rev. 2011;91(1):151–75.PubMedCrossRef
86.
go back to reference Manfredo Vieira S, et al. Translocation of a gut pathobiont drives autoimmunity in mice and humans. Science (New York, NY). 2018;359(6380):1156–61.ADSPubMedCrossRef Manfredo Vieira S, et al. Translocation of a gut pathobiont drives autoimmunity in mice and humans. Science (New York, NY). 2018;359(6380):1156–61.ADSPubMedCrossRef
89.
go back to reference Yang L, et al. Impaired autophagy in intestinal epithelial cells alters gut microbiota and host immune responses. Appl Environ Microbiol. 2018;84(18):e00880–18. Yang L, et al. Impaired autophagy in intestinal epithelial cells alters gut microbiota and host immune responses. Appl Environ Microbiol. 2018;84(18):e00880–18.
90.
go back to reference Zhang C, et al. Inhibition of autophagic degradation process contributes to claudin-2 expression increase and epithelial tight junction dysfunction in TNF-α treated cell monolayers. Int J Mol Sci. 2017;18(1):157.PubMedPubMedCentralCrossRef Zhang C, et al. Inhibition of autophagic degradation process contributes to claudin-2 expression increase and epithelial tight junction dysfunction in TNF-α treated cell monolayers. Int J Mol Sci. 2017;18(1):157.PubMedPubMedCentralCrossRef
91.
go back to reference Hu C-AA, et al. Autophagy and tight junction proteins in the intestine and intestinal diseases. Anim Nutr (Zhongguo Xu Mu Shou Yi Xue Hui). 2015;1(3):123–7. Hu C-AA, et al. Autophagy and tight junction proteins in the intestine and intestinal diseases. Anim Nutr (Zhongguo Xu Mu Shou Yi Xue Hui). 2015;1(3):123–7.
92.
93.
go back to reference Foerster EG, et al. How autophagy controls the intestinal epithelial barrier. Autophagy. 2022;18(1):86–103.PubMedCrossRef Foerster EG, et al. How autophagy controls the intestinal epithelial barrier. Autophagy. 2022;18(1):86–103.PubMedCrossRef
95.
go back to reference Konca Degertekin C, et al. Circulating Th17 cytokine levels are altered in Hashimoto’s thyroiditis. Cytokine. 2016;80:13–7.PubMedCrossRef Konca Degertekin C, et al. Circulating Th17 cytokine levels are altered in Hashimoto’s thyroiditis. Cytokine. 2016;80:13–7.PubMedCrossRef
97.
go back to reference Zheng T, et al. Increased Interleukin-23 in Hashimoto’s thyroiditis disease induces autophagy suppression and reactive oxygen species accumulation. Front Immunol. 2018;9:96.PubMedPubMedCentralCrossRef Zheng T, et al. Increased Interleukin-23 in Hashimoto’s thyroiditis disease induces autophagy suppression and reactive oxygen species accumulation. Front Immunol. 2018;9:96.PubMedPubMedCentralCrossRef
98.
go back to reference Lu Q, et al. Caveolin-1 regulates autophagy activity in thyroid follicular cells and is involved in Hashimoto’s thyroiditis disease. Endocr J. 2018;65(9):893–901.PubMedCrossRef Lu Q, et al. Caveolin-1 regulates autophagy activity in thyroid follicular cells and is involved in Hashimoto’s thyroiditis disease. Endocr J. 2018;65(9):893–901.PubMedCrossRef
101.
go back to reference Zhao R, Zhou H, Su SB. A critical role for interleukin-1β in the progression of autoimmune diseases. Int Immunopharmacol. 2013;17(3):658–69.PubMedCrossRef Zhao R, Zhou H, Su SB. A critical role for interleukin-1β in the progression of autoimmune diseases. Int Immunopharmacol. 2013;17(3):658–69.PubMedCrossRef
102.
go back to reference Papadakis KA, et al. Dominant role for TL1A/DR3 pathway in IL-12 plus IL-18-induced IFN-gamma production by peripheral blood and mucosal CCR9+ T lymphocytes. J Immunol (Baltimore, Md: 1950). 2005;174(8):4985–90.CrossRef Papadakis KA, et al. Dominant role for TL1A/DR3 pathway in IL-12 plus IL-18-induced IFN-gamma production by peripheral blood and mucosal CCR9+ T lymphocytes. J Immunol (Baltimore, Md: 1950). 2005;174(8):4985–90.CrossRef
103.
go back to reference Lalor SJ, et al. Caspase-1-processed cytokines IL-1beta and IL-18 promote IL-17 production by gammadelta and CD4 T cells that mediate autoimmunity. J Immunol (Baltimore, Md: 1950). 2011;186(10):5738–48.CrossRef Lalor SJ, et al. Caspase-1-processed cytokines IL-1beta and IL-18 promote IL-17 production by gammadelta and CD4 T cells that mediate autoimmunity. J Immunol (Baltimore, Md: 1950). 2011;186(10):5738–48.CrossRef
104.
go back to reference Shao S, et al. Therapeutic potential of the target on NLRP3 inflammasome in multiple sclerosis. Pharmacol Ther. 2021;227:107880.PubMedCrossRef Shao S, et al. Therapeutic potential of the target on NLRP3 inflammasome in multiple sclerosis. Pharmacol Ther. 2021;227:107880.PubMedCrossRef
106.
go back to reference Kayagaki N, et al. Noncanonical inflammasome activation by intracellular LPS independent of TLR4. Science (New York, NY). 2013;341(6151):1246–9.ADSPubMedCrossRef Kayagaki N, et al. Noncanonical inflammasome activation by intracellular LPS independent of TLR4. Science (New York, NY). 2013;341(6151):1246–9.ADSPubMedCrossRef
107.
go back to reference Jiang W, et al. The relationships between the gut microbiota and its metabolites with thyroid diseases. Front Endocrinol. 2022;13:943408.CrossRef Jiang W, et al. The relationships between the gut microbiota and its metabolites with thyroid diseases. Front Endocrinol. 2022;13:943408.CrossRef
108.
go back to reference Brown AJ, et al. The Orphan G protein-coupled receptors GPR41 and GPR43 are activated by propionate and other short chain carboxylic acids. J Biol Chem. 2003;278(13):11312–9.PubMedCrossRef Brown AJ, et al. The Orphan G protein-coupled receptors GPR41 and GPR43 are activated by propionate and other short chain carboxylic acids. J Biol Chem. 2003;278(13):11312–9.PubMedCrossRef
109.
go back to reference Aoyama M, Kotani J, Usami M. Butyrate and propionate induced activated or non-activated neutrophil apoptosis via HDAC inhibitor activity but without activating GPR-41/GPR-43 pathways. Nutrition (Burbank, Los Angeles County, Calif). 2010;26(6):653–61.PubMedCrossRef Aoyama M, Kotani J, Usami M. Butyrate and propionate induced activated or non-activated neutrophil apoptosis via HDAC inhibitor activity but without activating GPR-41/GPR-43 pathways. Nutrition (Burbank, Los Angeles County, Calif). 2010;26(6):653–61.PubMedCrossRef
110.
111.
go back to reference He J, et al. Short-chain fatty acids and their association with signalling pathways in inflammation, glucose and lipid metabolism. Int J Mol Sci. 2020;21(17):6356.PubMedPubMedCentralCrossRef He J, et al. Short-chain fatty acids and their association with signalling pathways in inflammation, glucose and lipid metabolism. Int J Mol Sci. 2020;21(17):6356.PubMedPubMedCentralCrossRef
112.
go back to reference Chang PV, et al. The microbial metabolite butyrate regulates intestinal macrophage function via histone deacetylase inhibition. Proc Natl Acad Sci USA. 2014;111(6):2247–52.ADSPubMedPubMedCentralCrossRef Chang PV, et al. The microbial metabolite butyrate regulates intestinal macrophage function via histone deacetylase inhibition. Proc Natl Acad Sci USA. 2014;111(6):2247–52.ADSPubMedPubMedCentralCrossRef
113.
go back to reference Macia L, et al. Metabolite-sensing receptors GPR43 and GPR109A facilitate dietary fibre-induced gut homeostasis through regulation of the inflammasome. Nat Commun. 2015;6:6734.ADSPubMedCrossRef Macia L, et al. Metabolite-sensing receptors GPR43 and GPR109A facilitate dietary fibre-induced gut homeostasis through regulation of the inflammasome. Nat Commun. 2015;6:6734.ADSPubMedCrossRef
115.
go back to reference Pan X, et al. Butyrate ameliorates caerulein-induced acute pancreatitis and associated intestinal injury by tissue-specific mechanisms. Br J Pharmacol. 2019;176(23):4446–61.PubMedPubMedCentralCrossRef Pan X, et al. Butyrate ameliorates caerulein-induced acute pancreatitis and associated intestinal injury by tissue-specific mechanisms. Br J Pharmacol. 2019;176(23):4446–61.PubMedPubMedCentralCrossRef
116.
go back to reference Meng S, et al. Short-chain fatty acids and thyroid hormone interact in regulating enterocyte gene transcription. Surgery. 1999;126(2):293–8.PubMedCrossRef Meng S, et al. Short-chain fatty acids and thyroid hormone interact in regulating enterocyte gene transcription. Surgery. 1999;126(2):293–8.PubMedCrossRef
117.
118.
go back to reference Lavelle A, Sokol H. Gut microbiota-derived metabolites as key actors in inflammatory bowel disease. Nat Rev Gastroenterol Hepatol. 2020;17(4):223–37.PubMedCrossRef Lavelle A, Sokol H. Gut microbiota-derived metabolites as key actors in inflammatory bowel disease. Nat Rev Gastroenterol Hepatol. 2020;17(4):223–37.PubMedCrossRef
119.
go back to reference Song X, et al. Microbial bile acid metabolites modulate gut RORγ+ regulatory T cell homeostasis. Nature. 2020;577(7790):410–5.PubMedCrossRef Song X, et al. Microbial bile acid metabolites modulate gut RORγ+ regulatory T cell homeostasis. Nature. 2020;577(7790):410–5.PubMedCrossRef
120.
go back to reference Zhang X, et al. Trimethylamine-N-oxide promotes vascular calcification through activation of NLRP3 (nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing-3) inflammasome and NF-κB (nuclear factor κB) signals. Arterioscler Thromb Vasc Biol. 2020;40(3):751–65.PubMedCrossRef Zhang X, et al. Trimethylamine-N-oxide promotes vascular calcification through activation of NLRP3 (nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing-3) inflammasome and NF-κB (nuclear factor κB) signals. Arterioscler Thromb Vasc Biol. 2020;40(3):751–65.PubMedCrossRef
122.
go back to reference Nicola JP, et al. NF-kappaB p65 subunit mediates lipopolysaccharide-induced Na(+)/I(-) symporter gene expression by involving functional interaction with the paired domain transcription factor Pax8. Mol Endocrinol (Baltimore, Md). 2010;24(9):1846–62.CrossRef Nicola JP, et al. NF-kappaB p65 subunit mediates lipopolysaccharide-induced Na(+)/I(-) symporter gene expression by involving functional interaction with the paired domain transcription factor Pax8. Mol Endocrinol (Baltimore, Md). 2010;24(9):1846–62.CrossRef
123.
go back to reference Jin B, Wang S, Fan Z. Pathogenesis markers of Hashimoto’s disease-a mini review. Front Biosci (Landmark Edition). 2022;27(10):297.CrossRef Jin B, Wang S, Fan Z. Pathogenesis markers of Hashimoto’s disease-a mini review. Front Biosci (Landmark Edition). 2022;27(10):297.CrossRef
124.
125.
go back to reference Liu J, et al. Excessive iodine promotes pyroptosis of thyroid follicular epithelial cells in Hashimoto’s thyroiditis through the ROS-NF-κB-NLRP3 pathway. Front Endocrinol. 2019;10:778.CrossRef Liu J, et al. Excessive iodine promotes pyroptosis of thyroid follicular epithelial cells in Hashimoto’s thyroiditis through the ROS-NF-κB-NLRP3 pathway. Front Endocrinol. 2019;10:778.CrossRef
126.
go back to reference Duntas LH. The role of iodine and selenium in autoimmune thyroiditis. Horm Metab Res. 2015;47(10):721–6.PubMedCrossRef Duntas LH. The role of iodine and selenium in autoimmune thyroiditis. Horm Metab Res. 2015;47(10):721–6.PubMedCrossRef
127.
go back to reference Drutel A, Archambeaud F, Caron P. Selenium and the thyroid gland: more good news for clinicians. Clin Endocrinol. 2013;78(2):155–64.CrossRef Drutel A, Archambeaud F, Caron P. Selenium and the thyroid gland: more good news for clinicians. Clin Endocrinol. 2013;78(2):155–64.CrossRef
128.
go back to reference Calomme M, et al. Seleno-lactobacillus. An organic selenium source. Biol Trace Elem Res. 1995;47(1–3):379–83.PubMedCrossRef Calomme M, et al. Seleno-lactobacillus. An organic selenium source. Biol Trace Elem Res. 1995;47(1–3):379–83.PubMedCrossRef
129.
130.
go back to reference Zimmermann MB. The influence of iron status on iodine utilization and thyroid function. Annu Rev Nutr. 2006;26:367–89.PubMedCrossRef Zimmermann MB. The influence of iron status on iodine utilization and thyroid function. Annu Rev Nutr. 2006;26:367–89.PubMedCrossRef
131.
go back to reference Constante M, et al. Iron supplements modulate colon microbiota composition and potentiate the protective effects of probiotics in dextran sodium sulfate-induced colitis. Inflamm Bowel Dis. 2017;23(5):753–66.PubMedCrossRef Constante M, et al. Iron supplements modulate colon microbiota composition and potentiate the protective effects of probiotics in dextran sodium sulfate-induced colitis. Inflamm Bowel Dis. 2017;23(5):753–66.PubMedCrossRef
132.
go back to reference Chieppa M, Giannelli G. Immune cells and microbiota response to iron starvation. Front Med. 2018;5:109.CrossRef Chieppa M, Giannelli G. Immune cells and microbiota response to iron starvation. Front Med. 2018;5:109.CrossRef
133.
go back to reference Bouglé D, et al. Influence of short-chain fatty acids on iron absorption by proximal colon. Scand J Gastroenterol. 2002;37(9):1008–11.PubMedCrossRef Bouglé D, et al. Influence of short-chain fatty acids on iron absorption by proximal colon. Scand J Gastroenterol. 2002;37(9):1008–11.PubMedCrossRef
134.
go back to reference Dostal A, et al. Low iron availability in continuous in vitro colonic fermentations induces strong dysbiosis of the child gut microbial consortium and a decrease in main metabolites. FEMS Microbiol Ecol. 2013;83(1):161–75.PubMedCrossRef Dostal A, et al. Low iron availability in continuous in vitro colonic fermentations induces strong dysbiosis of the child gut microbial consortium and a decrease in main metabolites. FEMS Microbiol Ecol. 2013;83(1):161–75.PubMedCrossRef
135.
go back to reference Yilmaz B, Li H. Gut microbiota and iron: the crucial actors in health and disease. Pharmaceuticals (Basel, Switzerland). 2018;11(4):98.PubMedCrossRef Yilmaz B, Li H. Gut microbiota and iron: the crucial actors in health and disease. Pharmaceuticals (Basel, Switzerland). 2018;11(4):98.PubMedCrossRef
137.
go back to reference Severo JS, et al. The role of zinc in thyroid hormones metabolism. Int J Vitam Nutr Res. 2019;89(1–2):80–8.PubMedCrossRef Severo JS, et al. The role of zinc in thyroid hormones metabolism. Int J Vitam Nutr Res. 2019;89(1–2):80–8.PubMedCrossRef
138.
go back to reference Rutgers M, et al. Enterohepatic circulation of triiodothyronine (T3) in rats: importance of the microflora for the liberation and reabsorption of T3 from biliary T3 conjugates. Endocrinology. 1989;125(6):2822–30.PubMedCrossRef Rutgers M, et al. Enterohepatic circulation of triiodothyronine (T3) in rats: importance of the microflora for the liberation and reabsorption of T3 from biliary T3 conjugates. Endocrinology. 1989;125(6):2822–30.PubMedCrossRef
139.
go back to reference Nguyen TT, et al. 5’- and 5-deiodinase activities in adult rat cecum and large bowel contents inhibited by intestinal microflora. Am J Physiol. 1993;265(3 Pt 1):E521–4.PubMed Nguyen TT, et al. 5’- and 5-deiodinase activities in adult rat cecum and large bowel contents inhibited by intestinal microflora. Am J Physiol. 1993;265(3 Pt 1):E521–4.PubMed
140.
go back to reference Spaggiari G, et al. Probiotics ingestion does not directly affect thyroid hormonal parameters in hypothyroid patients on levothyroxine treatment. Front Endocrinol. 2017;8:316.CrossRef Spaggiari G, et al. Probiotics ingestion does not directly affect thyroid hormonal parameters in hypothyroid patients on levothyroxine treatment. Front Endocrinol. 2017;8:316.CrossRef
142.
go back to reference Lauritano EC, et al. Association between hypothyroidism and small intestinal bacterial overgrowth. J Clin Endocrinol Metab. 2007;92(11):4180–4.PubMedCrossRef Lauritano EC, et al. Association between hypothyroidism and small intestinal bacterial overgrowth. J Clin Endocrinol Metab. 2007;92(11):4180–4.PubMedCrossRef
143.
go back to reference Gunsar F, et al. Effect of hypo- and hyperthyroidism on gastric myoelectrical activity. Dig Dis Sci. 2003;48(4):706–12.PubMedCrossRef Gunsar F, et al. Effect of hypo- and hyperthyroidism on gastric myoelectrical activity. Dig Dis Sci. 2003;48(4):706–12.PubMedCrossRef
144.
go back to reference Fukunaga K. Refractory gastrointestinal bleeding treated with thyroid hormone replacement. J Clin Gastroenterol. 2001;33(2):145–7.PubMedCrossRef Fukunaga K. Refractory gastrointestinal bleeding treated with thyroid hormone replacement. J Clin Gastroenterol. 2001;33(2):145–7.PubMedCrossRef
146.
go back to reference Rotondi Aufiero V, Fasano A, Mazzarella G. Non-celiac gluten sensitivity: how its gut immune activation and potential dietary management differ from celiac disease. Mol Nutr Food Res. 2018;62(9):e1700854.PubMedCrossRef Rotondi Aufiero V, Fasano A, Mazzarella G. Non-celiac gluten sensitivity: how its gut immune activation and potential dietary management differ from celiac disease. Mol Nutr Food Res. 2018;62(9):e1700854.PubMedCrossRef
147.
go back to reference Cuan-Baltazar Y, Soto-Vega E. Microorganisms associated to thyroid autoimmunity. Autoimmun Rev. 2020;19(9):102614.PubMedCrossRef Cuan-Baltazar Y, Soto-Vega E. Microorganisms associated to thyroid autoimmunity. Autoimmun Rev. 2020;19(9):102614.PubMedCrossRef
148.
go back to reference Cellini M, et al. Hashimoto’s thyroiditis and autoimmune gastritis. Front Endocrinol. 2017;8:92.CrossRef Cellini M, et al. Hashimoto’s thyroiditis and autoimmune gastritis. Front Endocrinol. 2017;8:92.CrossRef
149.
go back to reference Shi W-J, et al. Associations of helicobacter pylori infection and cytotoxin-associated gene A status with autoimmune thyroid diseases: a meta-analysis. Thyroid. 2013;23(10):1294–300.PubMedCrossRef Shi W-J, et al. Associations of helicobacter pylori infection and cytotoxin-associated gene A status with autoimmune thyroid diseases: a meta-analysis. Thyroid. 2013;23(10):1294–300.PubMedCrossRef
150.
go back to reference Checchi S, et al. Prevalence of parietal cell antibodies in a large cohort of patients with autoimmune thyroiditis. Thyroid. 2010;20(12):1385–9.PubMedCrossRef Checchi S, et al. Prevalence of parietal cell antibodies in a large cohort of patients with autoimmune thyroiditis. Thyroid. 2010;20(12):1385–9.PubMedCrossRef
151.
go back to reference Nicolaou A, et al. Predictive value of gastrin levels for the diagnosis of gastric enterochromaffin-like cell hyperplasia in patients with Hashimoto’s thyroiditis. Neuroendocrinology. 2014;99(2):118–22.PubMedCrossRef Nicolaou A, et al. Predictive value of gastrin levels for the diagnosis of gastric enterochromaffin-like cell hyperplasia in patients with Hashimoto’s thyroiditis. Neuroendocrinology. 2014;99(2):118–22.PubMedCrossRef
152.
go back to reference Rao SSC, Bhagatwala J. Small intestinal bacterial overgrowth: clinical features and therapeutic management. Clin Transl Gastroenterol. 2019;10(10):e00078.PubMedPubMedCentralCrossRef Rao SSC, Bhagatwala J. Small intestinal bacterial overgrowth: clinical features and therapeutic management. Clin Transl Gastroenterol. 2019;10(10):e00078.PubMedPubMedCentralCrossRef
153.
go back to reference Shah SC, et al. Meta-analysis: antibiotic therapy for small intestinal bacterial overgrowth. Aliment Pharmacol Ther. 2013;38(8):925–34.PubMedCrossRef Shah SC, et al. Meta-analysis: antibiotic therapy for small intestinal bacterial overgrowth. Aliment Pharmacol Ther. 2013;38(8):925–34.PubMedCrossRef
154.
go back to reference Lauritano EC, et al. Antibiotic therapy in small intestinal bacterial overgrowth: rifaximin versus metronidazole. Eur Rev Med Pharmacol Sci. 2009;13(2):111–6.PubMed Lauritano EC, et al. Antibiotic therapy in small intestinal bacterial overgrowth: rifaximin versus metronidazole. Eur Rev Med Pharmacol Sci. 2009;13(2):111–6.PubMed
155.
go back to reference Kim M-S, et al. The effect of rifaximin on gut flora and Staphylococcus resistance. Dig Dis Sci. 2013;58(6):1676–82.PubMedCrossRef Kim M-S, et al. The effect of rifaximin on gut flora and Staphylococcus resistance. Dig Dis Sci. 2013;58(6):1676–82.PubMedCrossRef
156.
go back to reference Xu D, et al. Rifaximin alters intestinal bacteria and prevents stress-induced gut inflammation and visceral hyperalgesia in rats. Gastroenterology. 2014;146(2):484.PubMedCrossRef Xu D, et al. Rifaximin alters intestinal bacteria and prevents stress-induced gut inflammation and visceral hyperalgesia in rats. Gastroenterology. 2014;146(2):484.PubMedCrossRef
157.
go back to reference Maccaferri S, et al. Rifaximin modulates the colonic microbiota of patients with Crohn’s disease: an in vitro approach using a continuous culture colonic model system. J Antimicrob Chemother. 2010;65(12):2556–65.PubMedCrossRef Maccaferri S, et al. Rifaximin modulates the colonic microbiota of patients with Crohn’s disease: an in vitro approach using a continuous culture colonic model system. J Antimicrob Chemother. 2010;65(12):2556–65.PubMedCrossRef
158.
go back to reference Lauritano EC, et al. Rifaximin dose-finding study for the treatment of small intestinal bacterial overgrowth. Aliment Pharmacol Ther. 2005;22(1):31–5.PubMedCrossRef Lauritano EC, et al. Rifaximin dose-finding study for the treatment of small intestinal bacterial overgrowth. Aliment Pharmacol Ther. 2005;22(1):31–5.PubMedCrossRef
159.
go back to reference Scarpellini E, et al. High dosage rifaximin for the treatment of small intestinal bacterial overgrowth. Aliment Pharmacol Ther. 2007;25(7):781–6.PubMedCrossRef Scarpellini E, et al. High dosage rifaximin for the treatment of small intestinal bacterial overgrowth. Aliment Pharmacol Ther. 2007;25(7):781–6.PubMedCrossRef
160.
161.
162.
go back to reference Huo D, et al. Probiotic Bifidobacterium longum supplied with methimazole improved the thyroid function of Graves’ disease patients through the gut-thyroid axis. Commun Biol. 2021;4(1):1046.PubMedPubMedCentralCrossRef Huo D, et al. Probiotic Bifidobacterium longum supplied with methimazole improved the thyroid function of Graves’ disease patients through the gut-thyroid axis. Commun Biol. 2021;4(1):1046.PubMedPubMedCentralCrossRef
163.
go back to reference Williams EA, et al. Clinical trial: a multistrain probiotic preparation significantly reduces symptoms of irritable bowel syndrome in a double-blind placebo-controlled study. Aliment Pharmacol Ther. 2009;29(1):97–103.PubMedCrossRef Williams EA, et al. Clinical trial: a multistrain probiotic preparation significantly reduces symptoms of irritable bowel syndrome in a double-blind placebo-controlled study. Aliment Pharmacol Ther. 2009;29(1):97–103.PubMedCrossRef
164.
165.
go back to reference Talebi S, et al. The effects of synbiotic supplementation on thyroid function and inflammation in hypothyroid patients: a randomized, double-blind, placebo-controlled trial. Complement Ther Med. 2020;48:102234.PubMedCrossRef Talebi S, et al. The effects of synbiotic supplementation on thyroid function and inflammation in hypothyroid patients: a randomized, double-blind, placebo-controlled trial. Complement Ther Med. 2020;48:102234.PubMedCrossRef
166.
168.
go back to reference Zheng L, et al. Fecal microbiota transplantation in the metabolic diseases: current status and perspectives. World J Gastroenterol. 2022;28(23):2546–60.PubMedPubMedCentralCrossRef Zheng L, et al. Fecal microbiota transplantation in the metabolic diseases: current status and perspectives. World J Gastroenterol. 2022;28(23):2546–60.PubMedPubMedCentralCrossRef
169.
go back to reference van Nood E, et al. Duodenal infusion of donor feces for recurrent Clostridium difficile. N Engl J Med. 2013;368(5):407–15.PubMedCrossRef van Nood E, et al. Duodenal infusion of donor feces for recurrent Clostridium difficile. N Engl J Med. 2013;368(5):407–15.PubMedCrossRef
170.
171.
go back to reference David LA, et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature. 2014;505(7484):559–63.ADSPubMedCrossRef David LA, et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature. 2014;505(7484):559–63.ADSPubMedCrossRef
173.
174.
go back to reference Konijeti GG, et al. Efficacy of the autoimmune protocol diet for inflammatory bowel disease. Inflamm Bowel Dis. 2017;23(11):2054–60.PubMedCrossRef Konijeti GG, et al. Efficacy of the autoimmune protocol diet for inflammatory bowel disease. Inflamm Bowel Dis. 2017;23(11):2054–60.PubMedCrossRef
175.
go back to reference Abbott RD, Sadowski A, Alt AG. Efficacy of the autoimmune protocol diet as part of a multi-disciplinary, supported lifestyle intervention for Hashimoto’s thyroiditis. Cureus. 2019;11(4):e4556.PubMedPubMedCentral Abbott RD, Sadowski A, Alt AG. Efficacy of the autoimmune protocol diet as part of a multi-disciplinary, supported lifestyle intervention for Hashimoto’s thyroiditis. Cureus. 2019;11(4):e4556.PubMedPubMedCentral
176.
go back to reference Ruggeri RM, et al. Influence of dietary habits on oxidative stress markers in Hashimoto’s thyroiditis. Thyroid. 2021;31(1):706–7.PubMedCrossRef Ruggeri RM, et al. Influence of dietary habits on oxidative stress markers in Hashimoto’s thyroiditis. Thyroid. 2021;31(1):706–7.PubMedCrossRef
177.
go back to reference Virili C, et al. Atypical celiac disease as cause of increased need for thyroxine: a systematic study. J Clin Endocrinol Metab. 2012;97(3):E419–22.PubMedCrossRef Virili C, et al. Atypical celiac disease as cause of increased need for thyroxine: a systematic study. J Clin Endocrinol Metab. 2012;97(3):E419–22.PubMedCrossRef
178.
go back to reference Krysiak R, Szkróbka W, Okopień B. The effect of gluten-free diet on thyroid autoimmunity in drug-naïve women with Hashimoto’s thyroiditis: a pilot study. Exp Clin Endocrinol Diabetes. 2019;127(7):417–22.PubMedCrossRef Krysiak R, Szkróbka W, Okopień B. The effect of gluten-free diet on thyroid autoimmunity in drug-naïve women with Hashimoto’s thyroiditis: a pilot study. Exp Clin Endocrinol Diabetes. 2019;127(7):417–22.PubMedCrossRef
179.
go back to reference Mikulska AA, et al. Metabolic characteristics of Hashimoto’s thyroiditis patients and the role of microelements and diet in the disease management-an overview. Int J Mol Sci. 2022;23(12):6580.PubMedPubMedCentralCrossRef Mikulska AA, et al. Metabolic characteristics of Hashimoto’s thyroiditis patients and the role of microelements and diet in the disease management-an overview. Int J Mol Sci. 2022;23(12):6580.PubMedPubMedCentralCrossRef
181.
go back to reference Chahardoli R, et al. Can supplementation with vitamin D modify thyroid autoantibodies (anti-TPO Ab, Anti-Tg Ab) and thyroid profile (T3, T4, TSH) in Hashimoto’s thyroiditis? A double blind, randomized clinical trial. Horm Metab Res. 2019;51(5):296–301.PubMedCrossRef Chahardoli R, et al. Can supplementation with vitamin D modify thyroid autoantibodies (anti-TPO Ab, Anti-Tg Ab) and thyroid profile (T3, T4, TSH) in Hashimoto’s thyroiditis? A double blind, randomized clinical trial. Horm Metab Res. 2019;51(5):296–301.PubMedCrossRef
182.
go back to reference Fasano A, et al. Zonulin, a newly discovered modulator of intestinal permeability, and its expression in coeliac disease. Lancet (London, England). 2000;355(9214):1518–9.PubMedCrossRef Fasano A, et al. Zonulin, a newly discovered modulator of intestinal permeability, and its expression in coeliac disease. Lancet (London, England). 2000;355(9214):1518–9.PubMedCrossRef
183.
go back to reference Tripathi A, et al. Identification of human zonulin, a physiological modulator of tight junctions, as prehaptoglobin-2. Proc Natl Acad Sci USA. 2009;106(39):16799–804.ADSPubMedPubMedCentralCrossRef Tripathi A, et al. Identification of human zonulin, a physiological modulator of tight junctions, as prehaptoglobin-2. Proc Natl Acad Sci USA. 2009;106(39):16799–804.ADSPubMedPubMedCentralCrossRef
184.
go back to reference Zheng D, et al. Elevated levels of circulating biomarkers related to leaky gut syndrome and bacterial translocation are associated with Graves’ disease. Front Endocrinol. 2021;12:796212.CrossRef Zheng D, et al. Elevated levels of circulating biomarkers related to leaky gut syndrome and bacterial translocation are associated with Graves’ disease. Front Endocrinol. 2021;12:796212.CrossRef
185.
go back to reference Martinon F, Burns K, Tschopp J. The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Mol Cell. 2002;10(2):417–26.PubMedCrossRef Martinon F, Burns K, Tschopp J. The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Mol Cell. 2002;10(2):417–26.PubMedCrossRef
186.
go back to reference Kawashima A, et al. Demonstration of innate immune responses in the thyroid gland: potential to sense danger and a possible trigger for autoimmune reactions. Thyroid. 2013;23(4):477–87.PubMedPubMedCentralCrossRef Kawashima A, et al. Demonstration of innate immune responses in the thyroid gland: potential to sense danger and a possible trigger for autoimmune reactions. Thyroid. 2013;23(4):477–87.PubMedPubMedCentralCrossRef
187.
go back to reference Liu Z, et al. Thyrocyte interleukin-18 expression is up-regulated by interferon-γ and may contribute to thyroid destruction in Hashimoto’s thyroiditis. Int J Exp Pathol. 2010;91(5):420–5.PubMedPubMedCentralCrossRef Liu Z, et al. Thyrocyte interleukin-18 expression is up-regulated by interferon-γ and may contribute to thyroid destruction in Hashimoto’s thyroiditis. Int J Exp Pathol. 2010;91(5):420–5.PubMedPubMedCentralCrossRef
188.
go back to reference Seo S-U, et al. Distinct commensals induce interleukin-1β via NLRP3 inflammasome in inflammatory monocytes to promote intestinal inflammation in response to injury. Immunity. 2015;42(4):744–55.PubMedPubMedCentralCrossRef Seo S-U, et al. Distinct commensals induce interleukin-1β via NLRP3 inflammasome in inflammatory monocytes to promote intestinal inflammation in response to injury. Immunity. 2015;42(4):744–55.PubMedPubMedCentralCrossRef
190.
go back to reference Furusawa Y, et al. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature. 2013;504(7480):446–50.ADSPubMedCrossRef Furusawa Y, et al. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature. 2013;504(7480):446–50.ADSPubMedCrossRef
191.
go back to reference Nicola JP, et al. Functional toll-like receptor 4 conferring lipopolysaccharide responsiveness is expressed in thyroid cells. Endocrinology. 2009;150(1):500–8.PubMedCrossRef Nicola JP, et al. Functional toll-like receptor 4 conferring lipopolysaccharide responsiveness is expressed in thyroid cells. Endocrinology. 2009;150(1):500–8.PubMedCrossRef
192.
go back to reference Sánchez E, et al. Contribution of TNF-alpha and nuclear factor-kappaB signaling to type 2 iodothyronine deiodinase activation in the mediobasal hypothalamus after lipopolysaccharide administration. Endocrinology. 2010;151(8):3827–35.PubMedPubMedCentralCrossRef Sánchez E, et al. Contribution of TNF-alpha and nuclear factor-kappaB signaling to type 2 iodothyronine deiodinase activation in the mediobasal hypothalamus after lipopolysaccharide administration. Endocrinology. 2010;151(8):3827–35.PubMedPubMedCentralCrossRef
193.
go back to reference Baur A, et al. Effects of proinflammatory cytokines on anterior pituitary 5’-deiodinase type I and type II. J Endocrinol. 2000;167(3):505–15.PubMedCrossRef Baur A, et al. Effects of proinflammatory cytokines on anterior pituitary 5’-deiodinase type I and type II. J Endocrinol. 2000;167(3):505–15.PubMedCrossRef
194.
go back to reference Doden H, et al. Metabolism of oxo-bile acids and characterization of recombinant 12α-hydroxysteroid dehydrogenases from bile acid 7α-dehydroxylating human gut bacteria. Appl Environ Microbiol. 2018;84(10):e00235–18. Doden H, et al. Metabolism of oxo-bile acids and characterization of recombinant 12α-hydroxysteroid dehydrogenases from bile acid 7α-dehydroxylating human gut bacteria. Appl Environ Microbiol. 2018;84(10):e00235–18.
196.
go back to reference Liu J, et al. Serum metabolomic patterns in patients with autoimmune thyroid disease. Endocr Pract. 2020;26(1):82–96.PubMedCrossRef Liu J, et al. Serum metabolomic patterns in patients with autoimmune thyroid disease. Endocr Pract. 2020;26(1):82–96.PubMedCrossRef
197.
go back to reference Lu X, et al. Changes in histone H3 lysine 4 trimethylation in Hashimoto’s thyroiditis. Arch Med Sci AMS. 2022;18(1):153–63.MathSciNetPubMed Lu X, et al. Changes in histone H3 lysine 4 trimethylation in Hashimoto’s thyroiditis. Arch Med Sci AMS. 2022;18(1):153–63.MathSciNetPubMed
198.
go back to reference Zhao S, et al. H3K4 methylation regulates LPS-induced proinflammatory cytokine expression and release in macrophages. Shock (Augusta, Ga). 2019;51(3):401–6.PubMedCrossRef Zhao S, et al. H3K4 methylation regulates LPS-induced proinflammatory cytokine expression and release in macrophages. Shock (Augusta, Ga). 2019;51(3):401–6.PubMedCrossRef
199.
go back to reference Bassi V, et al. Identification of a correlation between Helicobacter pylori infection and Graves’ disease. Helicobacter. 2010;15(6):558–62.PubMedCrossRef Bassi V, et al. Identification of a correlation between Helicobacter pylori infection and Graves’ disease. Helicobacter. 2010;15(6):558–62.PubMedCrossRef
Metadata
Title
Intestinal microbiota regulates the gut-thyroid axis: the new dawn of improving Hashimoto thyroiditis
Authors
Xiaxin Zhu
Chi Zhang
Shuyan Feng
Ruonan He
Shuo Zhang
Publication date
01-12-2024
Publisher
Springer International Publishing
Published in
Clinical and Experimental Medicine / Issue 1/2024
Print ISSN: 1591-8890
Electronic ISSN: 1591-9528
DOI
https://doi.org/10.1007/s10238-024-01304-4

Other articles of this Issue 1/2024

Clinical and Experimental Medicine 1/2024 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine