Skip to main content
Top
Published in: Current Treatment Options in Oncology 4/2024

12-03-2024 | Gynecologic Cancer

Circulating Tumor DNA (ctDNA) and Its Role in Gynecologic Malignancies

Authors: Tali Pomerantz, MD, Rebecca Brooks, MD

Published in: Current Treatment Options in Oncology | Issue 4/2024

Login to get access

Opinion statement

Circulating tumor DNA (ctDNA) refers to small fragments of DNA released into the bloodstream by cancer cells. It is obtained through “liquid biopsy;" which most commonly refers to plasma or blood samples, but can be obtained from a number of bodily fluids including ascitic fluid, saliva, and even urine and stool. ctDNA is detected via polymerase chain reaction (PCR) or next-generation sequencing (NGS). The DNA from these samples is analyzed for the detection of point mutations, copy-number alterations, gene fusion, and DNA methylation. These results have the potential for use in cancer diagnosis, determining prognosis, targeting gene-specific therapies, and monitoring for/predicting disease recurrence and response to treatment. ctDNA offers an alternative to tissue biopsy; it is less invasive and can be monitored serially over time without multiple procedures. Moreover it may have the ability to detect disease recurrence or predict behavior in a way that solid tissue biopsies, tumor marker surveillance, and imaging cannot. Recent explosion in interest in ctDNA shows promising developments for widespread adoption of these techniques in cancer care. However, the use of ctDNA in diagnosis and treatment of gynecologic malignancies is currently limited, compared to adoption in other solid-organ tumors such as breast and colorectal cancers. Compared to other cancer types, there appear to be fewer comprehensive studies and clinical validations specifically focusing on the use of ctDNA in gynecologic cancers. More research is needed in this area to advance the potential for use of ctDNA in ovarian, endometrial, and cervical cancers before this can be routinely adopted to improve care for patients with gynecologic malignancies.
Literature
1.
go back to reference Ashworth TR. A case of cancer in which cells similar to those in the tumours were seen in the blood after death. Aust Med J. 1869;14:146. Ashworth TR. A case of cancer in which cells similar to those in the tumours were seen in the blood after death. Aust Med J. 1869;14:146.
2.
go back to reference Mandel P, Metais P. Les acides nucléiques du plasma sanguin chez l’homme. Comptes Rendus des Séances de la Société de Biologie et de Ses Filiales. 1948;142(3–4):241–3.PubMed Mandel P, Metais P. Les acides nucléiques du plasma sanguin chez l’homme. Comptes Rendus des Séances de la Société de Biologie et de Ses Filiales. 1948;142(3–4):241–3.PubMed
3.
go back to reference Leon SA, Shapiro B, Sklaroff DM, Yaros MJ. Free DNA in the serum of cancer patients and the effect of therapy. Cancer Res. 1977;37:646–50.PubMed Leon SA, Shapiro B, Sklaroff DM, Yaros MJ. Free DNA in the serum of cancer patients and the effect of therapy. Cancer Res. 1977;37:646–50.PubMed
5.
go back to reference Bronkhorst AJ, Wentzel JF, Aucamp J, van Dyk E, du Plessis L, Pretorius PJ. Characterization of the cell-free DNA released by cultured cancer cells. Biochim Biophys Acta. 2016;1863(1):157–65.PubMedCrossRef Bronkhorst AJ, Wentzel JF, Aucamp J, van Dyk E, du Plessis L, Pretorius PJ. Characterization of the cell-free DNA released by cultured cancer cells. Biochim Biophys Acta. 2016;1863(1):157–65.PubMedCrossRef
6.
go back to reference Stroun M, Maurice P, Vasioukhin V, Lyautey J, Lederrey C, Lefort F, Rossier A, Chen XQ, Anker P. The origin and mechanism of circulating DNA. Ann N Y Acad Sci. 2000;906:161–8.PubMedCrossRef Stroun M, Maurice P, Vasioukhin V, Lyautey J, Lederrey C, Lefort F, Rossier A, Chen XQ, Anker P. The origin and mechanism of circulating DNA. Ann N Y Acad Sci. 2000;906:161–8.PubMedCrossRef
7.
go back to reference Szilágyi M, Pös O, Márton É, Buglyó G, Soltész B, Keserű J, Penyige A, Szemes T, Nagy B. Circulating cell-free nucleic acids: main characteristics and clinical application. Int J Mol Sci. 2020;21(18):6827.PubMedPubMedCentralCrossRef Szilágyi M, Pös O, Márton É, Buglyó G, Soltész B, Keserű J, Penyige A, Szemes T, Nagy B. Circulating cell-free nucleic acids: main characteristics and clinical application. Int J Mol Sci. 2020;21(18):6827.PubMedPubMedCentralCrossRef
8.
go back to reference Corcoran RB, Chabner BA. Application of cell-free DNA analysis to cancer treatment. N Engl J Med. 2018;379(18):1754–65.PubMedCrossRef Corcoran RB, Chabner BA. Application of cell-free DNA analysis to cancer treatment. N Engl J Med. 2018;379(18):1754–65.PubMedCrossRef
10.
go back to reference Stroun M, Lyautey J, Lederrey C, Olson-Sand A, Anker P. About the possible origin and mechanism of circulating DNA: apoptosis and active DNA release. Clin Chim Acta. 2001;313:139–42.PubMedCrossRef Stroun M, Lyautey J, Lederrey C, Olson-Sand A, Anker P. About the possible origin and mechanism of circulating DNA: apoptosis and active DNA release. Clin Chim Acta. 2001;313:139–42.PubMedCrossRef
11.
go back to reference Racila E, Euhus D, Weiss AJ, Rao C, McConnell J, Terstappen LW, Uhr JW. Detection and characterization of carcinoma cells in the blood. Proc Natl Acad Sci U S A. 1998;95(8):4589–94.PubMedPubMedCentralCrossRef Racila E, Euhus D, Weiss AJ, Rao C, McConnell J, Terstappen LW, Uhr JW. Detection and characterization of carcinoma cells in the blood. Proc Natl Acad Sci U S A. 1998;95(8):4589–94.PubMedPubMedCentralCrossRef
12.
go back to reference Bettegowda C, Sausen M, Leary RJ, et al. Detection of circulating tumor DNA in early- and late-stage human malignancies. Sci Transl Med. 2014;6:22ra424-22ra424.CrossRef Bettegowda C, Sausen M, Leary RJ, et al. Detection of circulating tumor DNA in early- and late-stage human malignancies. Sci Transl Med. 2014;6:22ra424-22ra424.CrossRef
13.
go back to reference Schwarzenbach H, Hoon DS, Pantel K. Cell-free nucleic acids as biomarkers in cancer patients. Nat Rev Cancer. 2011;11(6):426–37.PubMedCrossRef Schwarzenbach H, Hoon DS, Pantel K. Cell-free nucleic acids as biomarkers in cancer patients. Nat Rev Cancer. 2011;11(6):426–37.PubMedCrossRef
14.
go back to reference • Arisi MF, Dotan E, Fernandez SV. Circulating tumor DNA in precision oncology and its applications in colorectal cancer. Int J Mol Sci. 2022;23(8):4441. This article is important for providing the context for ctDNA and its status as a biomarker as well as its use in management of colorectal cancer.PubMedPubMedCentralCrossRef • Arisi MF, Dotan E, Fernandez SV. Circulating tumor DNA in precision oncology and its applications in colorectal cancer. Int J Mol Sci. 2022;23(8):4441. This article is important for providing the context for ctDNA and its status as a biomarker as well as its use in management of colorectal cancer.PubMedPubMedCentralCrossRef
15.
go back to reference • Song P, Wu LR, Yan YH, Zhang JX, Chu T, Kwong LN, Patel AA, Zhang DY. Limitations and opportunities of technologies for the analysis of cell-free DNA in cancer diagnostics. Nat Biomed Eng. 2022;6(3):232–45. This article reviews the technical aspects of cfDNA analysis and application to oncologic diagnostics and patient care.PubMedPubMedCentralCrossRef • Song P, Wu LR, Yan YH, Zhang JX, Chu T, Kwong LN, Patel AA, Zhang DY. Limitations and opportunities of technologies for the analysis of cell-free DNA in cancer diagnostics. Nat Biomed Eng. 2022;6(3):232–45. This article reviews the technical aspects of cfDNA analysis and application to oncologic diagnostics and patient care.PubMedPubMedCentralCrossRef
16.
go back to reference Botezatu I, Serdyuk O, Potapova G, Shelepov V, Alechina R, Molyaka Y, Ananev V, Bazin I, Garin A, Narimanov M, et al. Genetic analysis of DNA excreted in urine: a new approach for detecting specific genomic DNA sequences from cells dying in an organism. Clin Chem. 2000;46:1078–84.PubMedCrossRef Botezatu I, Serdyuk O, Potapova G, Shelepov V, Alechina R, Molyaka Y, Ananev V, Bazin I, Garin A, Narimanov M, et al. Genetic analysis of DNA excreted in urine: a new approach for detecting specific genomic DNA sequences from cells dying in an organism. Clin Chem. 2000;46:1078–84.PubMedCrossRef
17.
go back to reference Mouliere F, Chandrananda D, Piskorz AM, Moore EK, Morris J, Ahlborn LB, Mair R, Goranova T, Marass F, Heider K, et al. Enhanced detection of circulating tumor DNA by fragment size analysis. Sci Transl Med. 2018;10:eaat4921.PubMedPubMedCentralCrossRef Mouliere F, Chandrananda D, Piskorz AM, Moore EK, Morris J, Ahlborn LB, Mair R, Goranova T, Marass F, Heider K, et al. Enhanced detection of circulating tumor DNA by fragment size analysis. Sci Transl Med. 2018;10:eaat4921.PubMedPubMedCentralCrossRef
18.
go back to reference Muhanna N, Di Grappa MA, Chan HHL, Khan T, Jin CS, Zheng Y, Irish JC, Bratman SV. Cell-free DNA kinetics in a pre-clinical model of head and neck cancer. Sci Rep. 2017;7(1):16723.PubMedPubMedCentralCrossRef Muhanna N, Di Grappa MA, Chan HHL, Khan T, Jin CS, Zheng Y, Irish JC, Bratman SV. Cell-free DNA kinetics in a pre-clinical model of head and neck cancer. Sci Rep. 2017;7(1):16723.PubMedPubMedCentralCrossRef
19.
go back to reference Diehl F, Schmidt K, Choti MA, Romans K, Goodman S, Li M, Thornton K, Agrawal N, Sokoll L, Szabo SA, Kinzler KW, Vogelstein B, Diaz LA Jr. Circulating mutant DNA to assess tumor dynamics. Nat Med. 2008;14(9):985–90.PubMedCrossRef Diehl F, Schmidt K, Choti MA, Romans K, Goodman S, Li M, Thornton K, Agrawal N, Sokoll L, Szabo SA, Kinzler KW, Vogelstein B, Diaz LA Jr. Circulating mutant DNA to assess tumor dynamics. Nat Med. 2008;14(9):985–90.PubMedCrossRef
20.
go back to reference Leung F, Kulasingam V, Diamandis EP, Hoon DS, Kinzler K, Pantel K, Alix-Panabières C. Circulating tumor DNA as a cancer biomarker: fact or fiction? Clin Chem. 2016;62(8):1054–60.PubMedPubMedCentralCrossRef Leung F, Kulasingam V, Diamandis EP, Hoon DS, Kinzler K, Pantel K, Alix-Panabières C. Circulating tumor DNA as a cancer biomarker: fact or fiction? Clin Chem. 2016;62(8):1054–60.PubMedPubMedCentralCrossRef
21.
go back to reference Saha S, Araf Y, Promon SK. Circulating tumor DNA in cancer diagnosis, monitoring, and prognosis. J Egypt Natl Canc Inst. 2022;34(1):8.PubMedCrossRef Saha S, Araf Y, Promon SK. Circulating tumor DNA in cancer diagnosis, monitoring, and prognosis. J Egypt Natl Canc Inst. 2022;34(1):8.PubMedCrossRef
22.
go back to reference Lyu N, Rajendran VK, Diefenbach RJ, Charles K, Clarke SJ, Engel A; Sydney 1000 Colorectal cancer study investigators*; Rizos H, Molloy MP, Wang Y. Multiplex detection of ctDNA mutations in plasma of colorectal cancer patients by PCR/SERS assay. Nanotheranostics. 2020; 25;4(4):224-232. Lyu N, Rajendran VK, Diefenbach RJ, Charles K, Clarke SJ, Engel A; Sydney 1000 Colorectal cancer study investigators*; Rizos H, Molloy MP, Wang Y. Multiplex detection of ctDNA mutations in plasma of colorectal cancer patients by PCR/SERS assay. Nanotheranostics. 2020; 25;4(4):224-232.
23.
go back to reference Ondraskova K, Sebuyoya R, Moranova L, Holcakova J, Vonka P, Hrstka R, Bartosik M. Electrochemical biosensors for analysis of DNA point mutations in cancer research. Anal Bioanal Chem. 2023;415(6):1065–85.PubMedCrossRef Ondraskova K, Sebuyoya R, Moranova L, Holcakova J, Vonka P, Hrstka R, Bartosik M. Electrochemical biosensors for analysis of DNA point mutations in cancer research. Anal Bioanal Chem. 2023;415(6):1065–85.PubMedCrossRef
25.
go back to reference Cohen JD, Li L, Wang Y, Thoburn C, Afsari B, Danilova L, Douville C, Javed AA, Wong F, Mattox A, Hruban RH, Wolfgang CL, Goggins MG, Dal Molin M, Wang TL, Roden R, Klein AP, Ptak J, Dobbyn L, Schaefer J, Silliman N, Popoli M, Vogelstein JT, Browne JD, Schoen RE, Brand RE, Tie J, Gibbs P, Wong HL, Mansfield AS, Jen J, Hanash SM, Falconi M, Allen PJ, Zhou S, Bettegowda C, Diaz LA Jr, Tomasetti C, Kinzler KW, Vogelstein B, Lennon AM, Papadopoulos N. Detection and localization of surgically resectable cancers with a multi-analyte blood test. Science. 2018;359(6378):926–30.PubMedPubMedCentralCrossRef Cohen JD, Li L, Wang Y, Thoburn C, Afsari B, Danilova L, Douville C, Javed AA, Wong F, Mattox A, Hruban RH, Wolfgang CL, Goggins MG, Dal Molin M, Wang TL, Roden R, Klein AP, Ptak J, Dobbyn L, Schaefer J, Silliman N, Popoli M, Vogelstein JT, Browne JD, Schoen RE, Brand RE, Tie J, Gibbs P, Wong HL, Mansfield AS, Jen J, Hanash SM, Falconi M, Allen PJ, Zhou S, Bettegowda C, Diaz LA Jr, Tomasetti C, Kinzler KW, Vogelstein B, Lennon AM, Papadopoulos N. Detection and localization of surgically resectable cancers with a multi-analyte blood test. Science. 2018;359(6378):926–30.PubMedPubMedCentralCrossRef
26.
go back to reference Lennon AM, Buchanan AH, Kinde I, Warren A, Honushefsky A, Cohain AT, Ledbetter DH, Sanfilippo F, Sheridan K, Rosica D, Adonizio CS, Hwang HJ, Lahouel K, Cohen JD, Douville C, Patel AA, Hagmann LN, Rolston DD, Malani N, Zhou S, Bettegowda C, Diehl DL, Urban B, Still CD, Kann L, Woods JI, Salvati ZM, Vadakara J, Leeming R, Bhattacharya P, Walter C, Parker A, Lengauer C, Klein A, Tomasetti C, Fishman EK, Hruban RH, Kinzler KW, Vogelstein B, Papadopoulos N. Feasibility of blood testing combined with PET-CT to screen for cancer and guide intervention. Science. 2020;369(6499):eabb9601.PubMedPubMedCentralCrossRef Lennon AM, Buchanan AH, Kinde I, Warren A, Honushefsky A, Cohain AT, Ledbetter DH, Sanfilippo F, Sheridan K, Rosica D, Adonizio CS, Hwang HJ, Lahouel K, Cohen JD, Douville C, Patel AA, Hagmann LN, Rolston DD, Malani N, Zhou S, Bettegowda C, Diehl DL, Urban B, Still CD, Kann L, Woods JI, Salvati ZM, Vadakara J, Leeming R, Bhattacharya P, Walter C, Parker A, Lengauer C, Klein A, Tomasetti C, Fishman EK, Hruban RH, Kinzler KW, Vogelstein B, Papadopoulos N. Feasibility of blood testing combined with PET-CT to screen for cancer and guide intervention. Science. 2020;369(6499):eabb9601.PubMedPubMedCentralCrossRef
27.
go back to reference • Nikanjam M, Kato S, Kurzrock R. Liquid biopsy: current technology and clinical applications. J Hematol Oncol. 2022;15(1):131. This article provides an excellent overview of the technology behind various methods of liquid biopsy, discusses its practical uses, future directions, and challenges.PubMedPubMedCentralCrossRef • Nikanjam M, Kato S, Kurzrock R. Liquid biopsy: current technology and clinical applications. J Hematol Oncol. 2022;15(1):131. This article provides an excellent overview of the technology behind various methods of liquid biopsy, discusses its practical uses, future directions, and challenges.PubMedPubMedCentralCrossRef
28.
go back to reference Charo LM, Eskander RN, Okamura R, Patel SP, Nikanjam M, Lanman RB, Piccioni DE, Kato S, McHale MT, Kurzrock R. Clinical implications of plasma circulating tumor DNA in gynecologic cancer patients. Mol Oncol. 2021;15(1):67–79.PubMedCrossRef Charo LM, Eskander RN, Okamura R, Patel SP, Nikanjam M, Lanman RB, Piccioni DE, Kato S, McHale MT, Kurzrock R. Clinical implications of plasma circulating tumor DNA in gynecologic cancer patients. Mol Oncol. 2021;15(1):67–79.PubMedCrossRef
29.
go back to reference Rizzo A, Ricci AD, Tavolari S, Brandi G. Circulating tumor DNA in biliary tract cancer: current evidence and future perspectives. Cancer Genomics Proteomics. 2020;17(5):441–52.PubMedPubMedCentralCrossRef Rizzo A, Ricci AD, Tavolari S, Brandi G. Circulating tumor DNA in biliary tract cancer: current evidence and future perspectives. Cancer Genomics Proteomics. 2020;17(5):441–52.PubMedPubMedCentralCrossRef
30.
go back to reference Tie J, Kinde I, Wang Y, Wong HL, Roebert J, Christie M, Tacey M, Wong R, Singh M, Karapetis CS, Desai J, Tran B, Strausberg RL, Diaz LA Jr, Papadopoulos N, Kinzler KW, Vogelstein B, Gibbs P. Circulating tumor DNA as an early marker of therapeutic response in patients with metastatic colorectal cancer. Ann Oncol. 2015;26(8):1715–22.PubMedPubMedCentralCrossRef Tie J, Kinde I, Wang Y, Wong HL, Roebert J, Christie M, Tacey M, Wong R, Singh M, Karapetis CS, Desai J, Tran B, Strausberg RL, Diaz LA Jr, Papadopoulos N, Kinzler KW, Vogelstein B, Gibbs P. Circulating tumor DNA as an early marker of therapeutic response in patients with metastatic colorectal cancer. Ann Oncol. 2015;26(8):1715–22.PubMedPubMedCentralCrossRef
31.
go back to reference Parkinson CA, Gale D, Piskorz AM, Biggs H, Hodgkin C, Addley H, Freeman S, Moyle P, Sala E, Sayal K, Hosking K, Gounaris I, Jimenez-Linan M, Earl HM, Qian W, Rosenfeld N, Brenton JD. Exploratory analysis of TP53 mutations in circulating tumour DNA as biomarkers of treatment response for patients with relapsed high-grade serous ovarian carcinoma: a retrospective study. PLoS Med. 2016;13(12):e1002198.PubMedPubMedCentralCrossRef Parkinson CA, Gale D, Piskorz AM, Biggs H, Hodgkin C, Addley H, Freeman S, Moyle P, Sala E, Sayal K, Hosking K, Gounaris I, Jimenez-Linan M, Earl HM, Qian W, Rosenfeld N, Brenton JD. Exploratory analysis of TP53 mutations in circulating tumour DNA as biomarkers of treatment response for patients with relapsed high-grade serous ovarian carcinoma: a retrospective study. PLoS Med. 2016;13(12):e1002198.PubMedPubMedCentralCrossRef
32.
go back to reference Jeannot E, Latouche A, Bonneau C, Calméjane MA, Beaufort C, Ruigrok-Ritstier K, Bataillon G, Larbi Chérif L, Dupain C, Lecerf C, Popovic M, de la Rochefordière A, Lecuru F, Fourchotte V, Jordanova ES, von der Leyen H, Tran-Perennou C, Legrier ME, Dureau S, Raizonville L, Bello Roufai D, Le Tourneau C, Bièche I, Rouzier R, Berns EMJJ, Kamal M, Scholl S. Circulating HPV DNA as a marker for early detection of relapse in patients with cervical cancer. Clin Cancer Res. 2021;27(21):5869–77.PubMedPubMedCentralCrossRef Jeannot E, Latouche A, Bonneau C, Calméjane MA, Beaufort C, Ruigrok-Ritstier K, Bataillon G, Larbi Chérif L, Dupain C, Lecerf C, Popovic M, de la Rochefordière A, Lecuru F, Fourchotte V, Jordanova ES, von der Leyen H, Tran-Perennou C, Legrier ME, Dureau S, Raizonville L, Bello Roufai D, Le Tourneau C, Bièche I, Rouzier R, Berns EMJJ, Kamal M, Scholl S. Circulating HPV DNA as a marker for early detection of relapse in patients with cervical cancer. Clin Cancer Res. 2021;27(21):5869–77.PubMedPubMedCentralCrossRef
33.
go back to reference Grassi T, Harris FR, Smadbeck JB, Murphy SJ, Block MS, Multinu F, Schaefer Klein JL, Zhang P, Karagouga G, Liu MC, Larish A, Lemens MA, Sommerfield MKS, Cappuccio S, Cheville JC, Vasmatzis G, Mariani A. Personalized tumor-specific DNA junctions to detect circulating tumor in patients with endometrial cancer. PLoS One. 2021;16(6):e0252390.PubMedPubMedCentralCrossRef Grassi T, Harris FR, Smadbeck JB, Murphy SJ, Block MS, Multinu F, Schaefer Klein JL, Zhang P, Karagouga G, Liu MC, Larish A, Lemens MA, Sommerfield MKS, Cappuccio S, Cheville JC, Vasmatzis G, Mariani A. Personalized tumor-specific DNA junctions to detect circulating tumor in patients with endometrial cancer. PLoS One. 2021;16(6):e0252390.PubMedPubMedCentralCrossRef
34.
go back to reference Ashley CW, Selenica P, Patel J, Wu M, Nincevic J, Lakhman Y, Zhou Q, Shah RH, Berger MF, Da Cruz PA, Brown DN, Marra A, Iasonos A, Momeni-Boroujeni A, Alektiar KM, Long Roche K, Zivanovic O, Mueller JJ, Zamarin D, Broach VA, Sonoda Y, Leitao MM, Friedman CF, Jewell E, Reis-Filho JS, Ellenson LH, Aghajanian C, Abu-Rustum NR, Cadoo K, Weigelt B. High-sensitivity mutation analysis of cell-free DNA for disease monitoring in endometrial cancer. Clin Cancer Res. 2023;29(2):410–21.PubMedPubMedCentralCrossRef Ashley CW, Selenica P, Patel J, Wu M, Nincevic J, Lakhman Y, Zhou Q, Shah RH, Berger MF, Da Cruz PA, Brown DN, Marra A, Iasonos A, Momeni-Boroujeni A, Alektiar KM, Long Roche K, Zivanovic O, Mueller JJ, Zamarin D, Broach VA, Sonoda Y, Leitao MM, Friedman CF, Jewell E, Reis-Filho JS, Ellenson LH, Aghajanian C, Abu-Rustum NR, Cadoo K, Weigelt B. High-sensitivity mutation analysis of cell-free DNA for disease monitoring in endometrial cancer. Clin Cancer Res. 2023;29(2):410–21.PubMedPubMedCentralCrossRef
35.
go back to reference Dobilas A, Chen Y, Brueffer C, Leandersson P, Saal LH, Borgfeldt C. Preoperative ctDNA Levels Are Associated With Poor Overall Survival in Patients With Ovarian Cancer. Cancer Genomics Proteomics. 2023;20(6suppl):763–70.PubMedPubMedCentralCrossRef Dobilas A, Chen Y, Brueffer C, Leandersson P, Saal LH, Borgfeldt C. Preoperative ctDNA Levels Are Associated With Poor Overall Survival in Patients With Ovarian Cancer. Cancer Genomics Proteomics. 2023;20(6suppl):763–70.PubMedPubMedCentralCrossRef
36.
go back to reference Lee JH, Long GV, Menzies AM, Lo S, Guminski A, Whitbourne K, Peranec M, Scolyer R, Kefford RF, Rizos H, Carlino MS. Association between circulating tumor DNA and pseudoprogression in patients with metastatic melanoma treated with anti-programmed cell death 1 antibodies. JAMA Oncol. 2018;4(5):717–21.PubMedPubMedCentralCrossRef Lee JH, Long GV, Menzies AM, Lo S, Guminski A, Whitbourne K, Peranec M, Scolyer R, Kefford RF, Rizos H, Carlino MS. Association between circulating tumor DNA and pseudoprogression in patients with metastatic melanoma treated with anti-programmed cell death 1 antibodies. JAMA Oncol. 2018;4(5):717–21.PubMedPubMedCentralCrossRef
37.
go back to reference Adashek JJ, Kato S, Ferrara R, Lo Russo G, Kurzrock R. Hyperprogression and immune checkpoint inhibitors: hype or progress? Oncologist. 2020;25(2):94–8.PubMedCrossRef Adashek JJ, Kato S, Ferrara R, Lo Russo G, Kurzrock R. Hyperprogression and immune checkpoint inhibitors: hype or progress? Oncologist. 2020;25(2):94–8.PubMedCrossRef
38.
go back to reference Jensen TJ, Goodman AM, Kato S, Ellison CK, Daniels GA, Kim L, Nakashe P, McCarthy E, Mazloom AR, McLennan G, Grosu DS, Ehrich M, Kurzrock R. Genome-wide sequencing of cell-free DNA identifies copy-number alterations that can be used for monitoring response to immunotherapy in cancer patients. Mol Cancer Ther. 2019;18(2):448–58.PubMedCrossRef Jensen TJ, Goodman AM, Kato S, Ellison CK, Daniels GA, Kim L, Nakashe P, McCarthy E, Mazloom AR, McLennan G, Grosu DS, Ehrich M, Kurzrock R. Genome-wide sequencing of cell-free DNA identifies copy-number alterations that can be used for monitoring response to immunotherapy in cancer patients. Mol Cancer Ther. 2019;18(2):448–58.PubMedCrossRef
39.
go back to reference Nabet BY, Esfahani MS, Moding EJ, Hamilton EG, Chabon JJ, Rizvi H, Steen CB, Chaudhuri AA, Liu CL, Hui AB, Almanza D, Stehr H, Gojenola L, Bonilla RF, Jin MC, Jeon YJ, Tseng D, Liu C, Merghoub T, Neal JW, Wakelee HA, Padda SK, Ramchandran KJ, Das M, Plodkowski AJ, Yoo C, Chen EL, Ko RB, Newman AM, Hellmann MD, Alizadeh AA, Diehn M. Noninvasive early identification of therapeutic benefit from immune checkpoint inhibition. Cell. 2020;183(2):363-376.e13.PubMedPubMedCentralCrossRef Nabet BY, Esfahani MS, Moding EJ, Hamilton EG, Chabon JJ, Rizvi H, Steen CB, Chaudhuri AA, Liu CL, Hui AB, Almanza D, Stehr H, Gojenola L, Bonilla RF, Jin MC, Jeon YJ, Tseng D, Liu C, Merghoub T, Neal JW, Wakelee HA, Padda SK, Ramchandran KJ, Das M, Plodkowski AJ, Yoo C, Chen EL, Ko RB, Newman AM, Hellmann MD, Alizadeh AA, Diehn M. Noninvasive early identification of therapeutic benefit from immune checkpoint inhibition. Cell. 2020;183(2):363-376.e13.PubMedPubMedCentralCrossRef
42.
go back to reference Adashek JJ, Janku F, Kurzrock R. Signed in blood: circulating tumor DNA in cancer diagnosis, treatment and screening. Cancers (Basel). 2021;13(14):3600.PubMedPubMedCentralCrossRef Adashek JJ, Janku F, Kurzrock R. Signed in blood: circulating tumor DNA in cancer diagnosis, treatment and screening. Cancers (Basel). 2021;13(14):3600.PubMedPubMedCentralCrossRef
43.
go back to reference Chae YK, Davis AA, Carneiro BA, Chandra S, Mohindra N, Kalyan A, Kaplan J, Matsangou M, Pai S, Costa R, Jovanovic B, Cristofanilli M, Platanias LC, Giles FJ. Concordance between genomic alterations assessed by next-generation sequencing in tumor tissue or circulating cell-free DNA. Oncotarget. 2016;7(40):65364–73.PubMedPubMedCentralCrossRef Chae YK, Davis AA, Carneiro BA, Chandra S, Mohindra N, Kalyan A, Kaplan J, Matsangou M, Pai S, Costa R, Jovanovic B, Cristofanilli M, Platanias LC, Giles FJ. Concordance between genomic alterations assessed by next-generation sequencing in tumor tissue or circulating cell-free DNA. Oncotarget. 2016;7(40):65364–73.PubMedPubMedCentralCrossRef
44.
go back to reference Schrock AB, Pavlick DC, Klempner SJ, et al. Hybrid capture-based genomic profiling of circulating tumor DNA from patients with advanced cancers of the gastrointestinal tract or anus. Clin Cancer Res. 2018;24:1881–90.PubMedPubMedCentralCrossRef Schrock AB, Pavlick DC, Klempner SJ, et al. Hybrid capture-based genomic profiling of circulating tumor DNA from patients with advanced cancers of the gastrointestinal tract or anus. Clin Cancer Res. 2018;24:1881–90.PubMedPubMedCentralCrossRef
Metadata
Title
Circulating Tumor DNA (ctDNA) and Its Role in Gynecologic Malignancies
Authors
Tali Pomerantz, MD
Rebecca Brooks, MD
Publication date
12-03-2024
Publisher
Springer US
Published in
Current Treatment Options in Oncology / Issue 4/2024
Print ISSN: 1527-2729
Electronic ISSN: 1534-6277
DOI
https://doi.org/10.1007/s11864-024-01180-w

Other articles of this Issue 4/2024

Current Treatment Options in Oncology 4/2024 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine