Skip to main content
Top
Published in: BMC Cancer 1/2024

Open Access 01-12-2024 | Gynecologic Cancer | Review

The emerging roles of long non-coding RNA (lncRNA) H19 in gynecologic cancers

Authors: Majid Ghasemian, Mojtaba Zehtabi, Mahrokh Abouali Gale Dari, Fatemeh Khojasteh Pour, Ghasem Azizi Tabesh, Farideh Moramezi, Razieh Mohammad Jafari, Mojgan Barati, Shahab Uddin, Maryam Farzaneh

Published in: BMC Cancer | Issue 1/2024

Login to get access

Abstract

Long non-coding RNA (lncRNA) H19 has gained significant recognition as a pivotal contributor to the initiation and advancement of gynecologic cancers, encompassing ovarian, endometrial, cervical, and breast cancers. H19 exhibits a complex array of mechanisms, demonstrating dualistic effects on tumorigenesis as it can function as both an oncogene and a tumor suppressor, contingent upon the specific context and type of cancer being investigated. In ovarian cancer, H19 promotes tumor growth, metastasis, and chemoresistance through modulation of key signaling pathways and interaction with microRNAs. Conversely, in endometrial cancer, H19 acts as a tumor suppressor by inhibiting proliferation, inducing apoptosis, and regulating epithelial-mesenchymal transition. Additionally, H19 has been implicated in cervical and breast cancers, where it influences cell proliferation, invasion, and immune evasion. Moreover, H19 has potential as a diagnostic and prognostic biomarker for gynecologic cancers, with its expression levels correlating with clinical parameters and patient outcomes. Understanding the functional roles of H19 in gynecologic cancers is crucial for the development of targeted therapeutic strategies and personalized treatment approaches. Further investigation into the intricate molecular mechanisms underlying H19’s involvement in gynecologic malignancies is warranted to fully unravel its therapeutic potential and clinical implications. This review aims to elucidate the functional roles of H19 in various gynecologic malignancies.
Literature
1.
go back to reference Di Fiore R, Suleiman S, Calleja-Agius J. CD133 as biomarker and therapeutic target in gynecologic malignancies. Springer; 2023.CrossRef Di Fiore R, Suleiman S, Calleja-Agius J. CD133 as biomarker and therapeutic target in gynecologic malignancies. Springer; 2023.CrossRef
2.
go back to reference Ledford LRC, Lockwood S. Scope and epidemiology of gynecologic cancers: an overview. Semin Oncol Nurs. 2019;35:147–50.PubMedCrossRef Ledford LRC, Lockwood S. Scope and epidemiology of gynecologic cancers: an overview. Semin Oncol Nurs. 2019;35:147–50.PubMedCrossRef
3.
go back to reference Łukasiewicz S, Czeczelewski M, Forma A, Baj J, Sitarz R, Stanisławek A. Breast Cancer—epidemiology, risk factors, classification, prognostic markers, and current treatment strategies—an updated review. Cancers. 2021;13:4287.PubMedPubMedCentralCrossRef Łukasiewicz S, Czeczelewski M, Forma A, Baj J, Sitarz R, Stanisławek A. Breast Cancer—epidemiology, risk factors, classification, prognostic markers, and current treatment strategies—an updated review. Cancers. 2021;13:4287.PubMedPubMedCentralCrossRef
4.
go back to reference Sheikhnezhad L, Hassankhani H, Sawin EM, Sanaat Z, Sahebihagh MH. Intimate partner violence in women with breast and gynaecologic cancers: a systematic review. J Adv Nurs. 2023;79:1211–24.PubMedCrossRef Sheikhnezhad L, Hassankhani H, Sawin EM, Sanaat Z, Sahebihagh MH. Intimate partner violence in women with breast and gynaecologic cancers: a systematic review. J Adv Nurs. 2023;79:1211–24.PubMedCrossRef
5.
go back to reference Keyvani V, Kheradmand N, Navaei ZN, Mollazadeh S, Esmaeili S-A. Epidemiological trends and risk factors of gynecological cancers: an update. Med Oncol. 2023;40:93.PubMedCrossRef Keyvani V, Kheradmand N, Navaei ZN, Mollazadeh S, Esmaeili S-A. Epidemiological trends and risk factors of gynecological cancers: an update. Med Oncol. 2023;40:93.PubMedCrossRef
6.
go back to reference Wu R, Wu C, Zhu B, Li J, Zhao W. Screening and validation of potential markers associated with uterine corpus endometrial carcinoma and polycystic ovary syndrome based on bioinformatics methods. Front Mol Biosci. 2023;10:1192313.PubMedPubMedCentralCrossRef Wu R, Wu C, Zhu B, Li J, Zhao W. Screening and validation of potential markers associated with uterine corpus endometrial carcinoma and polycystic ovary syndrome based on bioinformatics methods. Front Mol Biosci. 2023;10:1192313.PubMedPubMedCentralCrossRef
7.
go back to reference Shetty C, Rizvi SMHA, Sharaf J, Williams K-AD, Tariq M, Acharekar MV, et al. Risk of gynecological cancers in women with polycystic ovary syndrome and the pathophysiology of association. Cureus. 2023;15 Shetty C, Rizvi SMHA, Sharaf J, Williams K-AD, Tariq M, Acharekar MV, et al. Risk of gynecological cancers in women with polycystic ovary syndrome and the pathophysiology of association. Cureus. 2023;15
8.
go back to reference Jones ME, Schoemaker MJ, Wright LB, Ashworth A, Swerdlow AJ. Smoking and risk of breast cancer in the generations study cohort. Breast Cancer Res. 2017;19:1–14.CrossRef Jones ME, Schoemaker MJ, Wright LB, Ashworth A, Swerdlow AJ. Smoking and risk of breast cancer in the generations study cohort. Breast Cancer Res. 2017;19:1–14.CrossRef
9.
go back to reference Koshiyama M. The effects of the dietary and nutrient intake on gynecologic cancers. In Healthcare MDPI. 2019;88 Koshiyama M. The effects of the dietary and nutrient intake on gynecologic cancers. In Healthcare MDPI. 2019;88
10.
go back to reference Liontos M, Fiste O, Zagouri F, Dimopoulos MA. Advances in Gynecological Cancers. Int J Mol Sci. 2022;23 Liontos M, Fiste O, Zagouri F, Dimopoulos MA. Advances in Gynecological Cancers. Int J Mol Sci. 2022;23
11.
go back to reference Lother D, Robert M, Elwood E, Smith S, Tunariu N, Johnston SRD, et al. Imaging in metastatic breast cancer, CT, PET/CT, MRI, WB-DWI, CCA: review and new perspectives. Cancer Imaging. 2023;23:53.PubMedPubMedCentralCrossRef Lother D, Robert M, Elwood E, Smith S, Tunariu N, Johnston SRD, et al. Imaging in metastatic breast cancer, CT, PET/CT, MRI, WB-DWI, CCA: review and new perspectives. Cancer Imaging. 2023;23:53.PubMedPubMedCentralCrossRef
12.
go back to reference Şahin F, Aydın E, Öcal EUB, Özdemir S, Kasapoğlu AM, Akbayır Ö. Evaluation of colposcopy and LEEP results performed in gynecology and gynecological oncology surgery services. Eur J Gynaecol Oncol. 2023;1:8. Şahin F, Aydın E, Öcal EUB, Özdemir S, Kasapoğlu AM, Akbayır Ö. Evaluation of colposcopy and LEEP results performed in gynecology and gynecological oncology surgery services. Eur J Gynaecol Oncol. 2023;1:8.
13.
go back to reference Vitale SG, Buzzaccarini G, Riemma G, Pacheco LA, Sardo ADS, Carugno J, et al. Endometrial biopsy: indications, techniques and recommendations. An evidence-based guideline for clinical practice. Journal of gynecology obstetrics and human. Reproduction. 2023:102588. Vitale SG, Buzzaccarini G, Riemma G, Pacheco LA, Sardo ADS, Carugno J, et al. Endometrial biopsy: indications, techniques and recommendations. An evidence-based guideline for clinical practice. Journal of gynecology obstetrics and human. Reproduction. 2023:102588.
14.
go back to reference Bilir E, Kahramanoğlu İ. The role of hysteroscopy in fertility preservation in endometrial cancer and atypical endometrial hyperplasia: a semi-systematic literature review. Arch Gynecol Obstet. 2023:1–14. Bilir E, Kahramanoğlu İ. The role of hysteroscopy in fertility preservation in endometrial cancer and atypical endometrial hyperplasia: a semi-systematic literature review. Arch Gynecol Obstet. 2023:1–14.
15.
go back to reference Lu Y, Chen J, Wei R, Lin W, Chen Y, Su Y, et al. Application of robotic surgery and traditional laparoscopic surgery in lymph node dissection for gynecological cancer: a meta-analysis. Oncol Lett. 2023;25:1–10.CrossRef Lu Y, Chen J, Wei R, Lin W, Chen Y, Su Y, et al. Application of robotic surgery and traditional laparoscopic surgery in lymph node dissection for gynecological cancer: a meta-analysis. Oncol Lett. 2023;25:1–10.CrossRef
16.
go back to reference Onuki M, Takahashi F, Iwata T, Nakazawa H, Yahata H, Kanao H, et al. Human papillomavirus vaccine impact on invasive cervical cancer in Japan: preliminary results from cancer statistics and the MINT study. Cancer Sci. 2023;114(11):4426–32.PubMedPubMedCentralCrossRef Onuki M, Takahashi F, Iwata T, Nakazawa H, Yahata H, Kanao H, et al. Human papillomavirus vaccine impact on invasive cervical cancer in Japan: preliminary results from cancer statistics and the MINT study. Cancer Sci. 2023;114(11):4426–32.PubMedPubMedCentralCrossRef
17.
go back to reference Kahn RM, Ahsan MD, Chapman-Davis E, Holcomb K, Nitecki R, Rauh-Hain JA, et al. Barriers to completion of cascade genetic testing: how can we improve the uptake of testing for hereditary breast and ovarian cancer syndrome? Familial Cancer. 2023;22:127–33.PubMedCrossRef Kahn RM, Ahsan MD, Chapman-Davis E, Holcomb K, Nitecki R, Rauh-Hain JA, et al. Barriers to completion of cascade genetic testing: how can we improve the uptake of testing for hereditary breast and ovarian cancer syndrome? Familial Cancer. 2023;22:127–33.PubMedCrossRef
18.
go back to reference Melli B, Sileo FG, Palicelli A, Kuhn E, Nardi V, Mandato VD. Tumor-infiltrating lymphocytes (TILs) and gynecological cancers. Springer; 2023.CrossRef Melli B, Sileo FG, Palicelli A, Kuhn E, Nardi V, Mandato VD. Tumor-infiltrating lymphocytes (TILs) and gynecological cancers. Springer; 2023.CrossRef
19.
go back to reference Alur-Gupta S, Fruchtman H, Paroder V. Fertility-sparing options for cancer patients. Abdom Radiol. 2023;48:1618–28.CrossRef Alur-Gupta S, Fruchtman H, Paroder V. Fertility-sparing options for cancer patients. Abdom Radiol. 2023;48:1618–28.CrossRef
20.
go back to reference Terao Y. Cutting-edge treatment for gynecological malignancies. Juntendo Med J. 2023;69:86–91.CrossRef Terao Y. Cutting-edge treatment for gynecological malignancies. Juntendo Med J. 2023;69:86–91.CrossRef
21.
go back to reference Lee J, Lin J-B, Weng C-S, Chen S-J, Chen T-C, Chen Y-J. Impact of reduced margin pelvic radiotherapy on gastrointestinal toxicity and outcome in gynecological cancer. Clin Transl Radiation Oncol. 2023;43:100671.CrossRef Lee J, Lin J-B, Weng C-S, Chen S-J, Chen T-C, Chen Y-J. Impact of reduced margin pelvic radiotherapy on gastrointestinal toxicity and outcome in gynecological cancer. Clin Transl Radiation Oncol. 2023;43:100671.CrossRef
22.
23.
go back to reference Tolcher A, Hamilton E, Coleman RL. The evolving landscape of antibody-drug conjugates in gynecologic cancers. Cancer Treat Rev. 2023:102546. Tolcher A, Hamilton E, Coleman RL. The evolving landscape of antibody-drug conjugates in gynecologic cancers. Cancer Treat Rev. 2023:102546.
24.
go back to reference Kobori T. New insights into immunotherapy for gynecological Cancer. J Clin Med. 2022:11. Kobori T. New insights into immunotherapy for gynecological Cancer. J Clin Med. 2022:11.
25.
go back to reference Zhang C, Sheng Y, Sun X, Wang Y. New insights for gynecological cancer therapies: from molecular mechanisms and clinical evidence to future directions. Cancer Metastasis Rev. 2023:1–35. Zhang C, Sheng Y, Sun X, Wang Y. New insights for gynecological cancer therapies: from molecular mechanisms and clinical evidence to future directions. Cancer Metastasis Rev. 2023:1–35.
26.
go back to reference Kurnit KC, Fleming GF, Lengyel E. Updates and new options in advanced epithelial ovarian cancer treatment. Obstet Gynecol. 2021;137:108.PubMedCrossRef Kurnit KC, Fleming GF, Lengyel E. Updates and new options in advanced epithelial ovarian cancer treatment. Obstet Gynecol. 2021;137:108.PubMedCrossRef
27.
go back to reference Rai AK, Borah P, Kataki AC. Molecular profiling of Gynaecological Cancer and breast Cancer. In: Fundamentals in Gynaecologic malignancy. Springer; 2023. p. 9–24. Rai AK, Borah P, Kataki AC. Molecular profiling of Gynaecological Cancer and breast Cancer. In: Fundamentals in Gynaecologic malignancy. Springer; 2023. p. 9–24.
28.
go back to reference Johnson AM, Teoh D, Jewett P, Darst BF, Mattson J, Hoffmann C, et al. Genetic variants associated with post-traumatic stress symptoms in patients with gynecologic cancer. Gynecol Oncol. 2023;170:102–7.PubMedCrossRef Johnson AM, Teoh D, Jewett P, Darst BF, Mattson J, Hoffmann C, et al. Genetic variants associated with post-traumatic stress symptoms in patients with gynecologic cancer. Gynecol Oncol. 2023;170:102–7.PubMedCrossRef
29.
go back to reference Beg A, Parveen R, Fouad H, Yahia ME, Hassanein AS. Role of different non-coding RNAs as ovarian cancer biomarkers. J Ovar Res. 2022;15:72.CrossRef Beg A, Parveen R, Fouad H, Yahia ME, Hassanein AS. Role of different non-coding RNAs as ovarian cancer biomarkers. J Ovar Res. 2022;15:72.CrossRef
30.
go back to reference Mattick JS, Amaral PP, Carninci P, Carpenter S, Chang HY, Chen L-L, et al. Long non-coding RNAs: definitions, functions, challenges and recommendations. Nat Rev Mol Cell Biol. 2023;24:430–47.PubMedCrossRef Mattick JS, Amaral PP, Carninci P, Carpenter S, Chang HY, Chen L-L, et al. Long non-coding RNAs: definitions, functions, challenges and recommendations. Nat Rev Mol Cell Biol. 2023;24:430–47.PubMedCrossRef
32.
go back to reference Ghafouri-Fard S, Esmaeili M, Taheri M. H19 lncRNA: roles in tumorigenesis. Biomed Pharmacother. 2020;123:109774.PubMedCrossRef Ghafouri-Fard S, Esmaeili M, Taheri M. H19 lncRNA: roles in tumorigenesis. Biomed Pharmacother. 2020;123:109774.PubMedCrossRef
34.
35.
go back to reference Xin W, Wang Y, Hua K, Liu S. The role of long noncoding RNA H19 in gynecological pathologies: insights into gene regulation and immune modulation (review). Int J Mol Med. 2023;52 Xin W, Wang Y, Hua K, Liu S. The role of long noncoding RNA H19 in gynecological pathologies: insights into gene regulation and immune modulation (review). Int J Mol Med. 2023;52
36.
go back to reference Zhang L, Zhou Y, Huang T, Cheng AS, Yu J, Kang W, et al. The interplay of LncRNA-H19 and its binding partners in physiological process and gastric carcinogenesis. Int J Mol Sci. 2017;18:450.PubMedPubMedCentralCrossRef Zhang L, Zhou Y, Huang T, Cheng AS, Yu J, Kang W, et al. The interplay of LncRNA-H19 and its binding partners in physiological process and gastric carcinogenesis. Int J Mol Sci. 2017;18:450.PubMedPubMedCentralCrossRef
37.
go back to reference Alipoor B, Parvar SN, Sabati Z, Ghaedi H, Ghasemi H. An updated review of the H19 lncRNA in human cancer: molecular mechanism and diagnostic and therapeutic importance. Mol Biol Rep. 2020;47:6357–74.PubMedCrossRef Alipoor B, Parvar SN, Sabati Z, Ghaedi H, Ghasemi H. An updated review of the H19 lncRNA in human cancer: molecular mechanism and diagnostic and therapeutic importance. Mol Biol Rep. 2020;47:6357–74.PubMedCrossRef
38.
go back to reference Monnier P, Martinet C, Pontis J, Stancheva I, Ait-Si-Ali S, Dandolo L. H19 lncRNA controls gene expression of the imprinted gene network by recruiting MBD1. Proc Natl Acad Sci. 2013;110:20693–8.PubMedPubMedCentralCrossRef Monnier P, Martinet C, Pontis J, Stancheva I, Ait-Si-Ali S, Dandolo L. H19 lncRNA controls gene expression of the imprinted gene network by recruiting MBD1. Proc Natl Acad Sci. 2013;110:20693–8.PubMedPubMedCentralCrossRef
39.
go back to reference Imig J, Brunschweiger A, Brümmer A, Guennewig B, Mittal N, Kishore S, et al. miR-CLIP capture of a miRNA targetome uncovers a lincRNA H19-miR-106a interaction. Nat Chem Biol. 2015;11:107–14.PubMedCrossRef Imig J, Brunschweiger A, Brümmer A, Guennewig B, Mittal N, Kishore S, et al. miR-CLIP capture of a miRNA targetome uncovers a lincRNA H19-miR-106a interaction. Nat Chem Biol. 2015;11:107–14.PubMedCrossRef
40.
go back to reference Wang C, Plusquin M, Ghantous A, Herceg Z, Alfano R, Cox B, et al. DNA methylation of insulin-like growth factor 2 and H19 cluster in cord blood and prenatal air pollution exposure to fine particulate matter. Environ Health. 2020;19:1–12.PubMedPubMedCentralCrossRef Wang C, Plusquin M, Ghantous A, Herceg Z, Alfano R, Cox B, et al. DNA methylation of insulin-like growth factor 2 and H19 cluster in cord blood and prenatal air pollution exposure to fine particulate matter. Environ Health. 2020;19:1–12.PubMedPubMedCentralCrossRef
41.
go back to reference Zhong J, Tu X, Kong Y, Guo L, Li B, Zhong W, et al. LncRNA H19 promotes odontoblastic differentiation of human dental pulp stem cells by regulating miR-140-5p and BMP-2/FGF9. Stem Cell Res Ther. 2020;11:202.PubMedPubMedCentralCrossRef Zhong J, Tu X, Kong Y, Guo L, Li B, Zhong W, et al. LncRNA H19 promotes odontoblastic differentiation of human dental pulp stem cells by regulating miR-140-5p and BMP-2/FGF9. Stem Cell Res Ther. 2020;11:202.PubMedPubMedCentralCrossRef
42.
go back to reference Zeng L, Sun S, Han D, Liu Y, Liu H, Feng H, et al. Long non-coding RNA H19/SAHH axis epigenetically regulates odontogenic differentiation of human dental pulp stem cells. Cell Signal. 2018;52:65–73.PubMedCrossRef Zeng L, Sun S, Han D, Liu Y, Liu H, Feng H, et al. Long non-coding RNA H19/SAHH axis epigenetically regulates odontogenic differentiation of human dental pulp stem cells. Cell Signal. 2018;52:65–73.PubMedCrossRef
43.
go back to reference Zeng H, He D, Xie H, Zhao Y, Peng Z, Deng H, et al. H19 regulates angiogenic capacity of extravillous trophoblasts by H19/miR-106a-5p/VEGFA axis. Arch Gynecol Obstet. 2020;301:671–9.PubMedCrossRef Zeng H, He D, Xie H, Zhao Y, Peng Z, Deng H, et al. H19 regulates angiogenic capacity of extravillous trophoblasts by H19/miR-106a-5p/VEGFA axis. Arch Gynecol Obstet. 2020;301:671–9.PubMedCrossRef
44.
go back to reference Huang Y, Zheng Y, Jia L, Li W. Long noncoding RNA H19 promotes osteoblast differentiation via TGF-β1/Smad3/HDAC signaling pathway by deriving miR-675. Stem Cells. 2015;33:3481–92.PubMedCrossRef Huang Y, Zheng Y, Jia L, Li W. Long noncoding RNA H19 promotes osteoblast differentiation via TGF-β1/Smad3/HDAC signaling pathway by deriving miR-675. Stem Cells. 2015;33:3481–92.PubMedCrossRef
45.
go back to reference Liang W-C, Fu W-M, Wang Y-B, Sun Y-X, Xu L-L, Wong C-W, et al. H19 activates Wnt signaling and promotes osteoblast differentiation by functioning as a competing endogenous RNA. Sci Rep. 2016;6:1–11. Liang W-C, Fu W-M, Wang Y-B, Sun Y-X, Xu L-L, Wong C-W, et al. H19 activates Wnt signaling and promotes osteoblast differentiation by functioning as a competing endogenous RNA. Sci Rep. 2016;6:1–11.
46.
go back to reference Lanzillotti C, De Mattei M, Mazziotta C, Taraballi F, Rotondo JC, Tognon M, et al. Long non-coding RNAs and microRNAs interplay in osteogenic differentiation of mesenchymal stem cells. Front Cell Dev Biol. 2021;9:646032.PubMedPubMedCentralCrossRef Lanzillotti C, De Mattei M, Mazziotta C, Taraballi F, Rotondo JC, Tognon M, et al. Long non-coding RNAs and microRNAs interplay in osteogenic differentiation of mesenchymal stem cells. Front Cell Dev Biol. 2021;9:646032.PubMedPubMedCentralCrossRef
47.
go back to reference Zhong L, Liu P, Fan J, Luo Y. Long non-coding RNA H19: physiological functions and involvements in central nervous system disorders. Neurochem Int. 2021;148:105072.PubMedCrossRef Zhong L, Liu P, Fan J, Luo Y. Long non-coding RNA H19: physiological functions and involvements in central nervous system disorders. Neurochem Int. 2021;148:105072.PubMedCrossRef
48.
go back to reference Chen S, Liu D, Zhou Z, Qin S. Role of long non-coding RNA H19 in the development of osteoporosis. Mol Med. 2021;27:1–10.CrossRef Chen S, Liu D, Zhou Z, Qin S. Role of long non-coding RNA H19 in the development of osteoporosis. Mol Med. 2021;27:1–10.CrossRef
49.
go back to reference Su W, Huo Q, Wu H, Wang L, Ding X, Liang L, et al. The function of LncRNA-H19 in cardiac hypertrophy. Cell Biosci. 2021;11:1–11.CrossRef Su W, Huo Q, Wu H, Wang L, Ding X, Liang L, et al. The function of LncRNA-H19 in cardiac hypertrophy. Cell Biosci. 2021;11:1–11.CrossRef
50.
go back to reference Hashemi M, Moosavi MS, Abed HM, Dehghani M, Aalipour M, Heydari EA, et al. Long non-coding RNA (lncRNA) H19 in human cancer: from proliferation and metastasis to therapy. Pharmacol Res. 2022;184:106418.PubMedCrossRef Hashemi M, Moosavi MS, Abed HM, Dehghani M, Aalipour M, Heydari EA, et al. Long non-coding RNA (lncRNA) H19 in human cancer: from proliferation and metastasis to therapy. Pharmacol Res. 2022;184:106418.PubMedCrossRef
51.
go back to reference Shuman C, Kalish JM, Weksberg R. Beckwith-wiedemann syndrome. GeneReviews®[Internet]; 2023. Shuman C, Kalish JM, Weksberg R. Beckwith-wiedemann syndrome. GeneReviews®[Internet]; 2023.
52.
go back to reference Tang F, Zhang S, Wang H, Xu S, Yang S, Zhu X, et al. lncRNA H19 Promotes Ox-LDL-Induced Dysfunction of Human Aortic Endothelial Cells through the miR-152/VEGFA Axis. J Healthcare Eng. 2022, 2022; Tang F, Zhang S, Wang H, Xu S, Yang S, Zhu X, et al. lncRNA H19 Promotes Ox-LDL-Induced Dysfunction of Human Aortic Endothelial Cells through the miR-152/VEGFA Axis. J Healthcare Eng. 2022, 2022;
53.
go back to reference Fan Z, Liu S, Zhou H. LncRNA H19 regulates proliferation, apoptosis and ECM degradation of aortic smooth muscle cells via miR-1-3p/ADAM10 axis in thoracic aortic aneurysm. Biochem Genet. 2022;60:790–806.PubMedCrossRef Fan Z, Liu S, Zhou H. LncRNA H19 regulates proliferation, apoptosis and ECM degradation of aortic smooth muscle cells via miR-1-3p/ADAM10 axis in thoracic aortic aneurysm. Biochem Genet. 2022;60:790–806.PubMedCrossRef
54.
55.
go back to reference Zhang X, Luo M, Zhang J, Guo B, Singh S, Lin X, et al. The role of lncRNA H19 in tumorigenesis and drug resistance of human cancers. Front Genet. 2022;13:1005522.PubMedPubMedCentralCrossRef Zhang X, Luo M, Zhang J, Guo B, Singh S, Lin X, et al. The role of lncRNA H19 in tumorigenesis and drug resistance of human cancers. Front Genet. 2022;13:1005522.PubMedPubMedCentralCrossRef
56.
go back to reference Yörüker EE, Keskin M, Kulle CB, Holdenrieder S, Gezer U. Diagnostic and prognostic value of circulating lncRNA H19 in gastric cancer. Biomed Rep. 2018;9:181–6.PubMedPubMedCentral Yörüker EE, Keskin M, Kulle CB, Holdenrieder S, Gezer U. Diagnostic and prognostic value of circulating lncRNA H19 in gastric cancer. Biomed Rep. 2018;9:181–6.PubMedPubMedCentral
57.
go back to reference Liu F-t. Pan H, Xia G-f, Qiu C, Zhu Z-m: prognostic and clinicopathological significance of long noncoding RNA H19 overexpression in human solid tumors: evidence from a meta-analysis. Oncotarget. 2016;7:83177.PubMedPubMedCentralCrossRef Liu F-t. Pan H, Xia G-f, Qiu C, Zhu Z-m: prognostic and clinicopathological significance of long noncoding RNA H19 overexpression in human solid tumors: evidence from a meta-analysis. Oncotarget. 2016;7:83177.PubMedPubMedCentralCrossRef
58.
go back to reference Zhang L, Wang D, Yu P. LncRNA H19 regulates the expression of its target gene HOXA10 in endometrial carcinoma through competing with miR-612. Eur Rev Med Pharmacol Sci. 2018;22:4820–7.PubMed Zhang L, Wang D, Yu P. LncRNA H19 regulates the expression of its target gene HOXA10 in endometrial carcinoma through competing with miR-612. Eur Rev Med Pharmacol Sci. 2018;22:4820–7.PubMed
59.
go back to reference Zhang K, Luo Z, Zhang Y, Zhang L, Wu L, Liu L, et al. Circulating lncRNA H19 in plasma as a novel biomarker for breast cancer. Cancer Biomark. 2016;17:187–94.PubMedCrossRef Zhang K, Luo Z, Zhang Y, Zhang L, Wu L, Liu L, et al. Circulating lncRNA H19 in plasma as a novel biomarker for breast cancer. Cancer Biomark. 2016;17:187–94.PubMedCrossRef
60.
go back to reference Tornesello ML, Faraonio R, Buonaguro L, Annunziata C, Starita N, Cerasuolo A, et al. The role of microRNAs, long non-coding RNAs, and circular RNAs in cervical cancer. Front Oncol. 2020;10:150.PubMedPubMedCentralCrossRef Tornesello ML, Faraonio R, Buonaguro L, Annunziata C, Starita N, Cerasuolo A, et al. The role of microRNAs, long non-coding RNAs, and circular RNAs in cervical cancer. Front Oncol. 2020;10:150.PubMedPubMedCentralCrossRef
61.
go back to reference Liu S, Xin W, Tang X, Qiu J, Zhang Y, Hua K. LncRNA H19 overexpression in endometriosis and its utility as a novel biomarker for predicting recurrence. Reprod Sci. 2020;27:1687–97.PubMedCrossRef Liu S, Xin W, Tang X, Qiu J, Zhang Y, Hua K. LncRNA H19 overexpression in endometriosis and its utility as a novel biomarker for predicting recurrence. Reprod Sci. 2020;27:1687–97.PubMedCrossRef
62.
go back to reference Sun H, Wang G, Peng Y, Zeng Y, Zhu QN, Li TL, et al. H19 lncRNA mediates 17β-estradiol-induced cell proliferation in MCF-7 breast cancer cells. Oncol Rep. 2015;33:3045–52.PubMedCrossRef Sun H, Wang G, Peng Y, Zeng Y, Zhu QN, Li TL, et al. H19 lncRNA mediates 17β-estradiol-induced cell proliferation in MCF-7 breast cancer cells. Oncol Rep. 2015;33:3045–52.PubMedCrossRef
63.
go back to reference Si X, Zang R, Zhang E, Liu Y, Shi X, Zhang E, et al. LncRNA H19 confers chemoresistance in ERα-positive breast cancer through epigenetic silencing of the pro-apoptotic gene BIK. Oncotarget. 2016;7:81452–62.PubMedPubMedCentralCrossRef Si X, Zang R, Zhang E, Liu Y, Shi X, Zhang E, et al. LncRNA H19 confers chemoresistance in ERα-positive breast cancer through epigenetic silencing of the pro-apoptotic gene BIK. Oncotarget. 2016;7:81452–62.PubMedPubMedCentralCrossRef
64.
go back to reference Peng F, Li TT, Wang KL, Xiao GQ, Wang JH, Zhao HD, et al. H19/let-7/LIN28 reciprocal negative regulatory circuit promotes breast cancer stem cell maintenance. Cell Death Dis. 2017;8:e2569.PubMedPubMedCentralCrossRef Peng F, Li TT, Wang KL, Xiao GQ, Wang JH, Zhao HD, et al. H19/let-7/LIN28 reciprocal negative regulatory circuit promotes breast cancer stem cell maintenance. Cell Death Dis. 2017;8:e2569.PubMedPubMedCentralCrossRef
65.
go back to reference Zhu QN, Wang G, Guo Y, Peng Y, Zhang R, Deng JL, et al. LncRNA H19 is a major mediator of doxorubicin chemoresistance in breast cancer cells through a cullin4A-MDR1 pathway. Oncotarget. 2017;8:91990–2003.PubMedPubMedCentralCrossRef Zhu QN, Wang G, Guo Y, Peng Y, Zhang R, Deng JL, et al. LncRNA H19 is a major mediator of doxorubicin chemoresistance in breast cancer cells through a cullin4A-MDR1 pathway. Oncotarget. 2017;8:91990–2003.PubMedPubMedCentralCrossRef
66.
go back to reference Zhou W, Ye XL, Xu J, Cao MG, Fang ZY, Li LY, et al. The lncRNA H19 mediates breast cancer cell plasticity during EMT and MET plasticity by differentially sponging miR-200b/c and let-7b. Sci Signal. 2017;10 Zhou W, Ye XL, Xu J, Cao MG, Fang ZY, Li LY, et al. The lncRNA H19 mediates breast cancer cell plasticity during EMT and MET plasticity by differentially sponging miR-200b/c and let-7b. Sci Signal. 2017;10
67.
go back to reference Basak P, Chatterjee S, Bhat V, Su A, Jin H, Lee-Wing V, et al. Long non-coding RNA H19 acts as an estrogen receptor modulator that is required for endocrine therapy resistance in ER+ breast Cancer cells. Cell Physiol Biochem. 2018;51:1518–32.PubMedCrossRef Basak P, Chatterjee S, Bhat V, Su A, Jin H, Lee-Wing V, et al. Long non-coding RNA H19 acts as an estrogen receptor modulator that is required for endocrine therapy resistance in ER+ breast Cancer cells. Cell Physiol Biochem. 2018;51:1518–32.PubMedCrossRef
68.
go back to reference Gao H, Hao G, Sun Y, Li L, Wang Y. Long noncoding RNA H19 mediated the chemosensitivity of breast cancer cells via Wnt pathway and EMT process. Onco Targets Ther. 2018;11:8001–12.PubMedPubMedCentralCrossRef Gao H, Hao G, Sun Y, Li L, Wang Y. Long noncoding RNA H19 mediated the chemosensitivity of breast cancer cells via Wnt pathway and EMT process. Onco Targets Ther. 2018;11:8001–12.PubMedPubMedCentralCrossRef
69.
go back to reference Han J, Han B, Wu X, Hao J, Dong X, Shen Q, et al. Knockdown of lncRNA H19 restores chemo-sensitivity in paclitaxel-resistant triple-negative breast cancer through triggering apoptosis and regulating Akt signaling pathway. Toxicol Appl Pharmacol. 2018;359:55–61.PubMedCrossRef Han J, Han B, Wu X, Hao J, Dong X, Shen Q, et al. Knockdown of lncRNA H19 restores chemo-sensitivity in paclitaxel-resistant triple-negative breast cancer through triggering apoptosis and regulating Akt signaling pathway. Toxicol Appl Pharmacol. 2018;359:55–61.PubMedCrossRef
70.
go back to reference Wang J, Xie S, Yang J, Xiong H, Jia Y, Zhou Y, et al. The long noncoding RNA H19 promotes tamoxifen resistance in breast cancer via autophagy. J Hematol Oncol. 2019;12:81.PubMedPubMedCentralCrossRef Wang J, Xie S, Yang J, Xiong H, Jia Y, Zhou Y, et al. The long noncoding RNA H19 promotes tamoxifen resistance in breast cancer via autophagy. J Hematol Oncol. 2019;12:81.PubMedPubMedCentralCrossRef
71.
go back to reference Sun Z, Zhang C, Wang T, Shi P, Tian X, Guo Y. Correlation between long non-coding RNAs (lncRNAs) H19 expression and trastuzumab resistance in breast cancer. J Cancer Res Ther. 2019;15:933–40.PubMedCrossRef Sun Z, Zhang C, Wang T, Shi P, Tian X, Guo Y. Correlation between long non-coding RNAs (lncRNAs) H19 expression and trastuzumab resistance in breast cancer. J Cancer Res Ther. 2019;15:933–40.PubMedCrossRef
72.
go back to reference Wang Y, Wu Z, Li Y, Zheng Z, Yan J, Tian S, et al. Long non-coding RNA H19 promotes proliferation, migration and invasion and inhibits apoptosis of breast Cancer cells by targeting miR-491-5p/ZNF703 Axis. Cancer Manag Res. 2020;12:9247–58.PubMedPubMedCentralCrossRef Wang Y, Wu Z, Li Y, Zheng Z, Yan J, Tian S, et al. Long non-coding RNA H19 promotes proliferation, migration and invasion and inhibits apoptosis of breast Cancer cells by targeting miR-491-5p/ZNF703 Axis. Cancer Manag Res. 2020;12:9247–58.PubMedPubMedCentralCrossRef
73.
go back to reference Yan L, Yang S, Yue CX, Wei XY, Peng W, Dong ZY, et al. Long noncoding RNA H19 acts as a miR-340-3p sponge to promote epithelial-mesenchymal transition by regulating YWHAZ expression in paclitaxel-resistant breast cancer cells. Environ Toxicol. 2020;35:1015–28.PubMedCrossRef Yan L, Yang S, Yue CX, Wei XY, Peng W, Dong ZY, et al. Long noncoding RNA H19 acts as a miR-340-3p sponge to promote epithelial-mesenchymal transition by regulating YWHAZ expression in paclitaxel-resistant breast cancer cells. Environ Toxicol. 2020;35:1015–28.PubMedCrossRef
74.
go back to reference Wang Y, Zhou P, Li P, Yang F, Gao XQ. Long non-coding RNA H19 regulates proliferation and doxorubicin resistance in MCF-7 cells by targeting PARP1. Bioengineered. 2020;11:536–46.PubMedPubMedCentralCrossRef Wang Y, Zhou P, Li P, Yang F, Gao XQ. Long non-coding RNA H19 regulates proliferation and doxorubicin resistance in MCF-7 cells by targeting PARP1. Bioengineered. 2020;11:536–46.PubMedPubMedCentralCrossRef
75.
go back to reference Li Y, Ma H-Y, Hu X-W, Qu Y-Y, Wen X, Zhang Y, et al. LncRNA H19 promotes triple-negative breast cancer cells invasion and metastasis through the p53/TNFAIP8 pathway. Cancer Cell Int. 2020;20:200.PubMedPubMedCentralCrossRef Li Y, Ma H-Y, Hu X-W, Qu Y-Y, Wen X, Zhang Y, et al. LncRNA H19 promotes triple-negative breast cancer cells invasion and metastasis through the p53/TNFAIP8 pathway. Cancer Cell Int. 2020;20:200.PubMedPubMedCentralCrossRef
76.
go back to reference Sun H, Wang G, Cai J, Wei X, Zeng Y, Peng Y, et al. Long non-coding RNA H19 mediates N-acetyltransferase 1 gene methylation in the development of tamoxifen resistance in breast cancer. Exp Ther Med. 2022;23:12.PubMedCrossRef Sun H, Wang G, Cai J, Wei X, Zeng Y, Peng Y, et al. Long non-coding RNA H19 mediates N-acetyltransferase 1 gene methylation in the development of tamoxifen resistance in breast cancer. Exp Ther Med. 2022;23:12.PubMedCrossRef
77.
go back to reference Chen J, Qin C, Zhou Y, Chen Y, Mao M, Yang J. Metformin may induce ferroptosis by inhibiting autophagy via lncRNA H19 in breast cancer. FEBS Open Bio. 2022;12:146–53.PubMedCrossRef Chen J, Qin C, Zhou Y, Chen Y, Mao M, Yang J. Metformin may induce ferroptosis by inhibiting autophagy via lncRNA H19 in breast cancer. FEBS Open Bio. 2022;12:146–53.PubMedCrossRef
78.
go back to reference Iempridee T. Long non-coding RNA H19 enhances cell proliferation and anchorage-independent growth of cervical cancer cell lines. Exp Biol Med (Maywood). 2017;242:184–93.PubMedCrossRef Iempridee T. Long non-coding RNA H19 enhances cell proliferation and anchorage-independent growth of cervical cancer cell lines. Exp Biol Med (Maywood). 2017;242:184–93.PubMedCrossRef
79.
go back to reference Peng L, Yuan XQ, Liu ZY, Li WL, Zhang CY, Zhang YQ, et al. High lncRNA H19 expression as prognostic indicator: data mining in female cancers and polling analysis in non-female cancers. Oncotarget. 2017;8:1655–67.PubMedCrossRef Peng L, Yuan XQ, Liu ZY, Li WL, Zhang CY, Zhang YQ, et al. High lncRNA H19 expression as prognostic indicator: data mining in female cancers and polling analysis in non-female cancers. Oncotarget. 2017;8:1655–67.PubMedCrossRef
80.
go back to reference Ou L, Wang D, Zhang H, Yu Q, Hua F. Decreased expression of miR-138-5p by lncRNA H19 in cervical Cancer promotes tumor proliferation. Oncol Res. 2018;26:401–10.PubMedPubMedCentralCrossRef Ou L, Wang D, Zhang H, Yu Q, Hua F. Decreased expression of miR-138-5p by lncRNA H19 in cervical Cancer promotes tumor proliferation. Oncol Res. 2018;26:401–10.PubMedPubMedCentralCrossRef
81.
go back to reference Huang MC, Chou YH, Shen HP, Ng SC, Lee YC, Sun YH, et al. The clinicopathological characteristic associations of long non-coding RNA gene H19 polymorphisms with uterine cervical cancer. J Cancer. 2019;10:6191–8.PubMedPubMedCentralCrossRef Huang MC, Chou YH, Shen HP, Ng SC, Lee YC, Sun YH, et al. The clinicopathological characteristic associations of long non-coding RNA gene H19 polymorphisms with uterine cervical cancer. J Cancer. 2019;10:6191–8.PubMedPubMedCentralCrossRef
82.
go back to reference Zhu Z, Song L, He J, Sun Y, Liu X, Zou X. Ectopic expressed long non-coding RNA H19 contributes to malignant cell behavior of ovarian cancer. Int J Clin Exp Pathol. 2015;8:10082–91.PubMedPubMedCentral Zhu Z, Song L, He J, Sun Y, Liu X, Zou X. Ectopic expressed long non-coding RNA H19 contributes to malignant cell behavior of ovarian cancer. Int J Clin Exp Pathol. 2015;8:10082–91.PubMedPubMedCentral
83.
go back to reference Zheng ZG, Xu H, Suo SS, Xu XL, Ni MW, Gu LH, et al. The essential role of H19 contributing to cisplatin resistance by regulating glutathione metabolism in high-grade serous ovarian Cancer. Sci Rep. 2016;6:26093.PubMedPubMedCentralCrossRef Zheng ZG, Xu H, Suo SS, Xu XL, Ni MW, Gu LH, et al. The essential role of H19 contributing to cisplatin resistance by regulating glutathione metabolism in high-grade serous ovarian Cancer. Sci Rep. 2016;6:26093.PubMedPubMedCentralCrossRef
84.
go back to reference Li J, Huang Y, Deng X, Luo M, Wang X, Hu H, et al. Long noncoding RNA H19 promotes transforming growth factor-β-induced epithelial-mesenchymal transition by acting as a competing endogenous RNA of miR-370-3p in ovarian cancer cells. Onco Targets Ther. 2018;11:427–40.PubMedPubMedCentralCrossRef Li J, Huang Y, Deng X, Luo M, Wang X, Hu H, et al. Long noncoding RNA H19 promotes transforming growth factor-β-induced epithelial-mesenchymal transition by acting as a competing endogenous RNA of miR-370-3p in ovarian cancer cells. Onco Targets Ther. 2018;11:427–40.PubMedPubMedCentralCrossRef
85.
go back to reference Sajadpoor Z, Amini-Farsani Z, Teimori H, Shamsara M, Sangtarash MH, Ghasemi-Dehkordi P, et al. Valproic acid promotes apoptosis and cisplatin sensitivity through downregulation of H19 noncoding RNA in ovarian A2780 cells. Appl Biochem Biotechnol. 2018;185:1132–44.PubMedCrossRef Sajadpoor Z, Amini-Farsani Z, Teimori H, Shamsara M, Sangtarash MH, Ghasemi-Dehkordi P, et al. Valproic acid promotes apoptosis and cisplatin sensitivity through downregulation of H19 noncoding RNA in ovarian A2780 cells. Appl Biochem Biotechnol. 2018;185:1132–44.PubMedCrossRef
86.
go back to reference Zheng X, Zhou Y, Chen W, Chen L, Lu J, He F, et al. Ginsenoside 20(S)-Rg3 prevents PKM2-targeting miR-324-5p from H19 sponging to antagonize the Warburg effect in ovarian Cancer cells. Cell Physiol Biochem. 2018;51:1340–53.PubMedCrossRef Zheng X, Zhou Y, Chen W, Chen L, Lu J, He F, et al. Ginsenoside 20(S)-Rg3 prevents PKM2-targeting miR-324-5p from H19 sponging to antagonize the Warburg effect in ovarian Cancer cells. Cell Physiol Biochem. 2018;51:1340–53.PubMedCrossRef
87.
go back to reference Wu Y, Zhou Y, He J, Sun H, Jin Z. Long non-coding RNA H19 mediates ovarian cancer cell cisplatin-resistance and migration during EMT. Int J Clin Exp Pathol. 2019;12:2506–15.PubMedPubMedCentral Wu Y, Zhou Y, He J, Sun H, Jin Z. Long non-coding RNA H19 mediates ovarian cancer cell cisplatin-resistance and migration during EMT. Int J Clin Exp Pathol. 2019;12:2506–15.PubMedPubMedCentral
88.
go back to reference Zhang H-B, Zeng Y, Li T-L, Wang G. Correlation between polymorphisms in IGF2/H19 gene locus and epithelial ovarian cancer risk in Chinese population. Genomics. 2020;112:2510–5.PubMedCrossRef Zhang H-B, Zeng Y, Li T-L, Wang G. Correlation between polymorphisms in IGF2/H19 gene locus and epithelial ovarian cancer risk in Chinese population. Genomics. 2020;112:2510–5.PubMedCrossRef
89.
go back to reference Wang Y, Gao WJ. Long non-coding RNA-H19 promotes ovarian cancer cell proliferation and migration via the microRNA-140/Wnt1 axis. Kaohsiung J Med Sci. 2021;37:768–75.PubMedCrossRef Wang Y, Gao WJ. Long non-coding RNA-H19 promotes ovarian cancer cell proliferation and migration via the microRNA-140/Wnt1 axis. Kaohsiung J Med Sci. 2021;37:768–75.PubMedCrossRef
90.
go back to reference Zhao L, Sun W, Zheng A, Zhang Y, Fang C, Zhang P. Ginsenoside Rg3 suppresses ovarian cancer cell proliferation and invasion by inhibiting the expression of lncRNA H19. Acta Biochim Pol. 2021; Zhao L, Sun W, Zheng A, Zhang Y, Fang C, Zhang P. Ginsenoside Rg3 suppresses ovarian cancer cell proliferation and invasion by inhibiting the expression of lncRNA H19. Acta Biochim Pol. 2021;
91.
go back to reference Ghazal S, McKinnon B, Zhou J, Mueller M, Men Y, Yang L, et al. H19 lnc RNA alters stromal cell growth via IGF signaling in the endometrium of women with endometriosis. EMBO Mol Med. 2015;7:996–1003.PubMedPubMedCentralCrossRef Ghazal S, McKinnon B, Zhou J, Mueller M, Men Y, Yang L, et al. H19 lnc RNA alters stromal cell growth via IGF signaling in the endometrium of women with endometriosis. EMBO Mol Med. 2015;7:996–1003.PubMedPubMedCentralCrossRef
92.
go back to reference Yan L, Zhou J, Gao Y, Ghazal S, Lu L, Bellone S, et al. Regulation of tumor cell migration and invasion by the H19/let-7 axis is antagonized by metformin-induced DNA methylation. Oncogene. 2015;34:3076–84.PubMedCrossRef Yan L, Zhou J, Gao Y, Ghazal S, Lu L, Bellone S, et al. Regulation of tumor cell migration and invasion by the H19/let-7 axis is antagonized by metformin-induced DNA methylation. Oncogene. 2015;34:3076–84.PubMedCrossRef
93.
go back to reference Zhao L, Li Z, Chen W, Zhai W, Pan J, Pang H, et al. H19 promotes endometrial cancer progression by modulating epithelial-mesenchymal transition. Oncol Lett. 2017;13:363–9.PubMedCrossRef Zhao L, Li Z, Chen W, Zhai W, Pan J, Pang H, et al. H19 promotes endometrial cancer progression by modulating epithelial-mesenchymal transition. Oncol Lett. 2017;13:363–9.PubMedCrossRef
94.
go back to reference Liu Z, Liu L, Zhong Y, Cai M, Gao J, Tan C, et al. LncRNA H19 over-expression inhibited Th17 cell differentiation to relieve endometriosis through miR-342-3p/IER3 pathway. Cell Biosci. 2019;9:84.PubMedPubMedCentralCrossRef Liu Z, Liu L, Zhong Y, Cai M, Gao J, Tan C, et al. LncRNA H19 over-expression inhibited Th17 cell differentiation to relieve endometriosis through miR-342-3p/IER3 pathway. Cell Biosci. 2019;9:84.PubMedPubMedCentralCrossRef
95.
go back to reference Liu S, Qiu J, Tang X, Cui H, Zhang Q, Yang Q. LncRNA-H19 regulates cell proliferation and invasion of ectopic endometrium by targeting ITGB3 via modulating miR-124-3p. Exp Cell Res. 2019;381:215–22.PubMedCrossRef Liu S, Qiu J, Tang X, Cui H, Zhang Q, Yang Q. LncRNA-H19 regulates cell proliferation and invasion of ectopic endometrium by targeting ITGB3 via modulating miR-124-3p. Exp Cell Res. 2019;381:215–22.PubMedCrossRef
96.
go back to reference Xu Z, Zhang L, Yu Q, Zhang Y, Yan L, Chen Z. The estrogen-regulated lncRNA H19/miR-216a-5p axis alters stromal cell invasion and migration via ACTA2 in endometriosis. Mol Hum Reprod. 2019;25:550–61.PubMedCrossRef Xu Z, Zhang L, Yu Q, Zhang Y, Yan L, Chen Z. The estrogen-regulated lncRNA H19/miR-216a-5p axis alters stromal cell invasion and migration via ACTA2 in endometriosis. Mol Hum Reprod. 2019;25:550–61.PubMedCrossRef
97.
98.
go back to reference Liu S, Qiu J, Tang X, Li Q, Shao W. Estrogen regulates the expression and function of lncRNA-H19 in ectopic endometrium. Int J Women's Health. 2022;14:821.CrossRef Liu S, Qiu J, Tang X, Li Q, Shao W. Estrogen regulates the expression and function of lncRNA-H19 in ectopic endometrium. Int J Women's Health. 2022;14:821.CrossRef
99.
go back to reference Kamrani S, Amirchaghmaghi E, Ghaffari F, Shahhoseini M, Ghaedi K. Altered gene expression of VEGF, IGFs and H19 lncRNA and epigenetic profile of H19-DMR region in endometrial tissues of women with endometriosis. Reprod Health. 2022;19:1–9.CrossRef Kamrani S, Amirchaghmaghi E, Ghaffari F, Shahhoseini M, Ghaedi K. Altered gene expression of VEGF, IGFs and H19 lncRNA and epigenetic profile of H19-DMR region in endometrial tissues of women with endometriosis. Reprod Health. 2022;19:1–9.CrossRef
100.
go back to reference Szaflik T, Romanowicz H, Szyłło K, Kołaciński R, Michalska MM, Samulak D, et al. Analysis of long non-coding RNA (lncRNA) UCA1, MALAT1, TC0101441, and H19 expression in endometriosis. Int J Mol Sci. 2022;23:11583.PubMedPubMedCentralCrossRef Szaflik T, Romanowicz H, Szyłło K, Kołaciński R, Michalska MM, Samulak D, et al. Analysis of long non-coding RNA (lncRNA) UCA1, MALAT1, TC0101441, and H19 expression in endometriosis. Int J Mol Sci. 2022;23:11583.PubMedPubMedCentralCrossRef
101.
go back to reference Shima H, Kida K, Adachi S, Yamada A, Sugae S, Narui K, et al. Lnc RNA H19 is associated with poor prognosis in breast cancer patients and promotes cancer stemness. Breast Cancer Res Treat. 2018;170:507–16.PubMedCrossRef Shima H, Kida K, Adachi S, Yamada A, Sugae S, Narui K, et al. Lnc RNA H19 is associated with poor prognosis in breast cancer patients and promotes cancer stemness. Breast Cancer Res Treat. 2018;170:507–16.PubMedCrossRef
102.
go back to reference Sabnis AJ, Bivona TG. Principles of resistance to targeted cancer therapy: lessons from basic and translational cancer biology. Trends Mol Med. 2019;25:185–97.PubMedPubMedCentralCrossRef Sabnis AJ, Bivona TG. Principles of resistance to targeted cancer therapy: lessons from basic and translational cancer biology. Trends Mol Med. 2019;25:185–97.PubMedPubMedCentralCrossRef
103.
go back to reference Elias-Rizk T, El Hajj J, Segal-Bendirdjian E, Hilal G. The long non coding RNA H19 as a biomarker for breast cancer diagnosis in Lebanese women. Sci Rep. 2020;10:22228.PubMedPubMedCentralCrossRef Elias-Rizk T, El Hajj J, Segal-Bendirdjian E, Hilal G. The long non coding RNA H19 as a biomarker for breast cancer diagnosis in Lebanese women. Sci Rep. 2020;10:22228.PubMedPubMedCentralCrossRef
104.
go back to reference Özgür E, Ferhatoğlu F, Şen F, Saip P, Gezer U. Circulating lncRNA H19 may be a useful marker of response to neoadjuvant chemotherapy in breast cancer. Cancer Biomark. 2020;27:11–7.PubMedCrossRef Özgür E, Ferhatoğlu F, Şen F, Saip P, Gezer U. Circulating lncRNA H19 may be a useful marker of response to neoadjuvant chemotherapy in breast cancer. Cancer Biomark. 2020;27:11–7.PubMedCrossRef
105.
go back to reference Wang J, Sun J, Yang F. The role of long non-coding RNA H19 in breast cancer. Oncol Lett. 2020;19:7–16.PubMed Wang J, Sun J, Yang F. The role of long non-coding RNA H19 in breast cancer. Oncol Lett. 2020;19:7–16.PubMed
106.
go back to reference Tian X, Zuo X, Hou M, Li C, Teng Y. LncRNA-H19 regulates chemoresistance to carboplatin in epithelial ovarian cancer through microRNA-29b-3p and STAT3. J Cancer. 2021;12:5712.PubMedPubMedCentralCrossRef Tian X, Zuo X, Hou M, Li C, Teng Y. LncRNA-H19 regulates chemoresistance to carboplatin in epithelial ovarian cancer through microRNA-29b-3p and STAT3. J Cancer. 2021;12:5712.PubMedPubMedCentralCrossRef
107.
go back to reference Zeng Y, Li T-L, Zhang H-B, Deng J-L, Zhang R, Sun H, et al. Polymorphisms in IGF2/H19 gene locus are associated with platinum-based chemotherapeutic response in Chinese patients with epithelial ovarian cancer. Pharmacogenomics. 2019;20:179–88.PubMedCrossRef Zeng Y, Li T-L, Zhang H-B, Deng J-L, Zhang R, Sun H, et al. Polymorphisms in IGF2/H19 gene locus are associated with platinum-based chemotherapeutic response in Chinese patients with epithelial ovarian cancer. Pharmacogenomics. 2019;20:179–88.PubMedCrossRef
108.
go back to reference Zhao Y, Yin B, Xia B. Expression and clinical significance of long non-coding ribonucleic acid LOC554202 and H19 in serum of cervical Cancer. Indian J Pharm Sci. 2022:247–52. Zhao Y, Yin B, Xia B. Expression and clinical significance of long non-coding ribonucleic acid LOC554202 and H19 in serum of cervical Cancer. Indian J Pharm Sci. 2022:247–52.
Metadata
Title
The emerging roles of long non-coding RNA (lncRNA) H19 in gynecologic cancers
Authors
Majid Ghasemian
Mojtaba Zehtabi
Mahrokh Abouali Gale Dari
Fatemeh Khojasteh Pour
Ghasem Azizi Tabesh
Farideh Moramezi
Razieh Mohammad Jafari
Mojgan Barati
Shahab Uddin
Maryam Farzaneh
Publication date
01-12-2024
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2024
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/s12885-023-11743-z

Other articles of this Issue 1/2024

BMC Cancer 1/2024 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine