Skip to main content
Top
Published in: Pediatric Nephrology 4/2010

01-04-2010 | Review

Growth-plate cartilage in chronic renal failure

Author: Cheryl P. Sanchez

Published in: Pediatric Nephrology | Issue 4/2010

Login to get access

Abstract

Bone growth occurs in the growth-plate cartilage located at the ends of long bones. Changes in the architecture, abnormalities in matrix organization, reduction in protein staining and RNA expression of factors involved in cell signaling have been described in the growth-plate cartilage of nephrectomized animals. These changes can lead to a smaller growth plate associated with decrease in chondrocyte proliferation, delayed hypertrophy, and prolonged initiation of mineralization and vascular invasion. As a result, chronic renal failure can result in stunted body growth and skeletal deformities. Multiple etiologic factors can contribute to impaired bone growth in renal failure, including suboptimal nutrition, metabolic acidosis, and secondary hyperparathyroidism. Recent findings have also shown the tight connection between chondro/osteogenesis, hematopoiesis, and immunogenesis.
Literature
1.
go back to reference Abad V, Meyers JL, Weise M, Gafni RI, Barnes KM, Nilsson O, Bacher JD, Baron J (2002) The role of the resting zone in growth plate chondrogenesis. Endocrinology 143:1851–1857CrossRefPubMed Abad V, Meyers JL, Weise M, Gafni RI, Barnes KM, Nilsson O, Bacher JD, Baron J (2002) The role of the resting zone in growth plate chondrogenesis. Endocrinology 143:1851–1857CrossRefPubMed
2.
go back to reference Vortkamp A, Lee K, Lankse B, Segre GV, Kronenberg HM, Tabin CJ (1996) Regulation of rate of cartilage differentiation by Indian hedgehog and PTH-related protein. Science 273:613–622CrossRefPubMed Vortkamp A, Lee K, Lankse B, Segre GV, Kronenberg HM, Tabin CJ (1996) Regulation of rate of cartilage differentiation by Indian hedgehog and PTH-related protein. Science 273:613–622CrossRefPubMed
4.
go back to reference Alvarez J, Sohn P, Zeng X, Doetschman T, Robbins D, Serra R (2002) TGFβ2 mediates the effects of hedgehog on hypertrophic differentiation and PTHrP expression. Development 129:1913–1924PubMed Alvarez J, Sohn P, Zeng X, Doetschman T, Robbins D, Serra R (2002) TGFβ2 mediates the effects of hedgehog on hypertrophic differentiation and PTHrP expression. Development 129:1913–1924PubMed
5.
go back to reference MacLean HE, Guo J, Knight MC, Zhang P, Cobrinik D, Kronenberg HM (2004) The cyclin-dependent kinase inhibitor p57Kip2 mediates proliferative actions of PTHrP in chondrocytes. J Clin Invest 113:1334–1343PubMed MacLean HE, Guo J, Knight MC, Zhang P, Cobrinik D, Kronenberg HM (2004) The cyclin-dependent kinase inhibitor p57Kip2 mediates proliferative actions of PTHrP in chondrocytes. J Clin Invest 113:1334–1343PubMed
6.
go back to reference Karaplis AC, Luz A, Glowacki J, Bronson RT, Tybulewicz VLJ, Kronenberg HM, Mulligan RC (1994) Lethal skeletal dysplasia from targeted disruption of the parathyroid hormone-related peptide gene. Genes Dev 8:277–289CrossRefPubMed Karaplis AC, Luz A, Glowacki J, Bronson RT, Tybulewicz VLJ, Kronenberg HM, Mulligan RC (1994) Lethal skeletal dysplasia from targeted disruption of the parathyroid hormone-related peptide gene. Genes Dev 8:277–289CrossRefPubMed
7.
go back to reference Amizuka N, Warshawsky H, Henderson JE, Goltzman D, Karaplis AC (1994) Parathyroid hormone-related peptide-depleted mice show abnormal epiphyseal cartilage development and altered endochondral bone formation. J Cell Biol 126:1611–1623CrossRefPubMed Amizuka N, Warshawsky H, Henderson JE, Goltzman D, Karaplis AC (1994) Parathyroid hormone-related peptide-depleted mice show abnormal epiphyseal cartilage development and altered endochondral bone formation. J Cell Biol 126:1611–1623CrossRefPubMed
8.
go back to reference Weir EC, Philbrick WM, Amling M, Neff LA, Baron R, Broadus AE (1996) Targeted overexpression of parathyroid hormone-related peptide in chondrocytes causes chondrodysplasia and delayed endochondral bone formation. Proc Natl Acad Sci USA 93:10240–10245CrossRefPubMed Weir EC, Philbrick WM, Amling M, Neff LA, Baron R, Broadus AE (1996) Targeted overexpression of parathyroid hormone-related peptide in chondrocytes causes chondrodysplasia and delayed endochondral bone formation. Proc Natl Acad Sci USA 93:10240–10245CrossRefPubMed
9.
go back to reference Zhang M, Xie R, Hou W, Wang B, Shen R, Wang X, Wang Q, Zhu T, Jonason J, Chen D (2009) PTHrP prevents chondrocyte premature hypertrophy by inducing cyclin-D1-dependent Runx2 and Runx3 phosphorylation, ubiquitylation and proteasomal degradation. J Cell Sci 122:1382–1389CrossRefPubMed Zhang M, Xie R, Hou W, Wang B, Shen R, Wang X, Wang Q, Zhu T, Jonason J, Chen D (2009) PTHrP prevents chondrocyte premature hypertrophy by inducing cyclin-D1-dependent Runx2 and Runx3 phosphorylation, ubiquitylation and proteasomal degradation. J Cell Sci 122:1382–1389CrossRefPubMed
10.
go back to reference Dong Y, Soung YD, Schwarz E, O'Keefe R, Drissi H (2006) Wnt induction of chondrocyte hypertrophy through the Runx2 transcription factor. J Cell Physiol 208:77–86CrossRefPubMed Dong Y, Soung YD, Schwarz E, O'Keefe R, Drissi H (2006) Wnt induction of chondrocyte hypertrophy through the Runx2 transcription factor. J Cell Physiol 208:77–86CrossRefPubMed
11.
go back to reference Yoshida C, Komori T (2005) Role of Runx proteins in chondrogenesis. Crit Rev Eukaryot Gene Expr 15:243–254PubMed Yoshida C, Komori T (2005) Role of Runx proteins in chondrogenesis. Crit Rev Eukaryot Gene Expr 15:243–254PubMed
12.
go back to reference Komori T (2005) Regulation of skeletal development by the Runx family of transcription factors. J Cell Biochem 95:445–453CrossRefPubMed Komori T (2005) Regulation of skeletal development by the Runx family of transcription factors. J Cell Biochem 95:445–453CrossRefPubMed
13.
go back to reference Fujita T, Azuma Y, Fukuyama R, Hattori Y, Yoshida C, Koida M, Ogita K, Komori T (2004) Runx2 induces osteoblast and chondrocyte differentiation and enhances their migration by coupling with PI3K-Akt signaling. J Cell Biol 166:85–95CrossRefPubMed Fujita T, Azuma Y, Fukuyama R, Hattori Y, Yoshida C, Koida M, Ogita K, Komori T (2004) Runx2 induces osteoblast and chondrocyte differentiation and enhances their migration by coupling with PI3K-Akt signaling. J Cell Biol 166:85–95CrossRefPubMed
14.
go back to reference Enomoto H, Shiojiri S, Hoshi K, Furuichi T, Fukuyama R, Yoshida C, Kanatani N, Nakamura R, Mizuno A, Zanno A, Yano K, Yasuda H, Higashio K, Takada K, Komori T (2003) Induction of osteoclast differentiation by Runx2 through receptor activator of nuclear factor-kappa B ligand (RANKL) and osteoprotegerin regulation and partial rescue of osteoclastogenesis in Runx2-/- mice by RANKL transgene. J Biol Chem 278:23971–23977CrossRefPubMed Enomoto H, Shiojiri S, Hoshi K, Furuichi T, Fukuyama R, Yoshida C, Kanatani N, Nakamura R, Mizuno A, Zanno A, Yano K, Yasuda H, Higashio K, Takada K, Komori T (2003) Induction of osteoclast differentiation by Runx2 through receptor activator of nuclear factor-kappa B ligand (RANKL) and osteoprotegerin regulation and partial rescue of osteoclastogenesis in Runx2-/- mice by RANKL transgene. J Biol Chem 278:23971–23977CrossRefPubMed
15.
go back to reference Hunziker EB, Kapfinger E, Saager C (1999) Hypertrophy of growth plate chondrocytes in vivo is accompanied by modulations in the activity state and surface area of their cytoplasmic organelles. Histochem Cell Biol 112:115–123CrossRefPubMed Hunziker EB, Kapfinger E, Saager C (1999) Hypertrophy of growth plate chondrocytes in vivo is accompanied by modulations in the activity state and surface area of their cytoplasmic organelles. Histochem Cell Biol 112:115–123CrossRefPubMed
16.
go back to reference Reinecke M, Schmid AC, Heyberger-Meyer B, Hunziker EB, Zapf J (2000) Effect of growth hormone and insulin-like growth factor I (IGF-I) on the expression of IGF-I messenger ribonucleic acid and peptide in rat tibial growth plate and articular chondrocytes in vivo. Endocrinology 141:2847–2853CrossRefPubMed Reinecke M, Schmid AC, Heyberger-Meyer B, Hunziker EB, Zapf J (2000) Effect of growth hormone and insulin-like growth factor I (IGF-I) on the expression of IGF-I messenger ribonucleic acid and peptide in rat tibial growth plate and articular chondrocytes in vivo. Endocrinology 141:2847–2853CrossRefPubMed
17.
go back to reference Srinivas V, Bohensky J, Shapiro IM (2009) Autophagy: a new phase in the maturation of growth plate chondrocytes is regulated by HIF, mTOR and AMP kinase. Cells Tissues Organs 189:88–92CrossRefPubMed Srinivas V, Bohensky J, Shapiro IM (2009) Autophagy: a new phase in the maturation of growth plate chondrocytes is regulated by HIF, mTOR and AMP kinase. Cells Tissues Organs 189:88–92CrossRefPubMed
18.
go back to reference Li J, Sarosi I, Yan X-Q, Morony S, Capparelli C, Tan H-L, McCabe S, Elliott R, Scully S, Van G, Kaufman S, Juan S-C, Sun Y, Tarpley J, Martin L, Christensen K, McCabe J, Kostenuik P, Hsu H, Fletcher F, Dunstan CR, Lacey DL, Boyle WJ (2000) RANK is the intrinsic hematopoietic cell surface receptor that controls osteoclastogenesis and regulation of bone mass and calcium metabolism. Proc Natl Acad Sci USA 97:1566–1571CrossRefPubMed Li J, Sarosi I, Yan X-Q, Morony S, Capparelli C, Tan H-L, McCabe S, Elliott R, Scully S, Van G, Kaufman S, Juan S-C, Sun Y, Tarpley J, Martin L, Christensen K, McCabe J, Kostenuik P, Hsu H, Fletcher F, Dunstan CR, Lacey DL, Boyle WJ (2000) RANK is the intrinsic hematopoietic cell surface receptor that controls osteoclastogenesis and regulation of bone mass and calcium metabolism. Proc Natl Acad Sci USA 97:1566–1571CrossRefPubMed
19.
go back to reference Zelzer E, Mamluk R, Ferrara N, Johnson R, Schipani E, Olsen B (2006) VEGFA is necessary for chondrocyte survival during bone development. Development 131:2161–2171CrossRef Zelzer E, Mamluk R, Ferrara N, Johnson R, Schipani E, Olsen B (2006) VEGFA is necessary for chondrocyte survival during bone development. Development 131:2161–2171CrossRef
20.
go back to reference Stricker S, Fundele R, Vortkamp A, Mundlos S (2002) Role of Runx genes in chondrocyte differentiation. Dev Biol 245:95–108CrossRefPubMed Stricker S, Fundele R, Vortkamp A, Mundlos S (2002) Role of Runx genes in chondrocyte differentiation. Dev Biol 245:95–108CrossRefPubMed
21.
go back to reference Hofbauer L, Heufelder A (2001) Role of receptor activator of nuclear factor-kappaB ligand and osteoprotegerin in bone cell biology. J Mol Med 79:243–253CrossRefPubMed Hofbauer L, Heufelder A (2001) Role of receptor activator of nuclear factor-kappaB ligand and osteoprotegerin in bone cell biology. J Mol Med 79:243–253CrossRefPubMed
22.
go back to reference Walsh M, Kim N, Kadono Y, Rho J, Lee S, Lorenzo J, Choi Y (2006) Osteoimmunology: interplay between the immune system and bone metabolism. Ann Rev Immunol 24:33–63CrossRef Walsh M, Kim N, Kadono Y, Rho J, Lee S, Lorenzo J, Choi Y (2006) Osteoimmunology: interplay between the immune system and bone metabolism. Ann Rev Immunol 24:33–63CrossRef
23.
go back to reference Sharma AP, Sharma RK, Kapoor R, Kornecki A, Sural S, Filler G (2007) Incomplete distal renal tubular acidosis affects growth in children. Nephrol Dial Transplant 22:2879–2885CrossRefPubMed Sharma AP, Sharma RK, Kapoor R, Kornecki A, Sural S, Filler G (2007) Incomplete distal renal tubular acidosis affects growth in children. Nephrol Dial Transplant 22:2879–2885CrossRefPubMed
24.
go back to reference Challa A, Krieg RJ, Thabet MA, Veldhuis JD, Chan JC (1993) Metabolic acidosis inhibits growth hormone secretion in rats: mechanism of growth retardation. Am J Physiol 265:E547–E553PubMed Challa A, Krieg RJ, Thabet MA, Veldhuis JD, Chan JC (1993) Metabolic acidosis inhibits growth hormone secretion in rats: mechanism of growth retardation. Am J Physiol 265:E547–E553PubMed
25.
go back to reference Goldberg R, Reshef-Bankai E, Coleman R, Green J, Maor G (2006) Chronic acidosis-induced growth retardation is mediated by proton-induced expression of Gs protein. J Bone Miner Res 215:703–713CrossRef Goldberg R, Reshef-Bankai E, Coleman R, Green J, Maor G (2006) Chronic acidosis-induced growth retardation is mediated by proton-induced expression of Gs protein. J Bone Miner Res 215:703–713CrossRef
26.
go back to reference Green J, Maor G (2000) Effect of metabolic acidosis on the growth hormone/IGF-I endocrine axis in skeletal growth centers. Kidney Int 57:2258–2267CrossRefPubMed Green J, Maor G (2000) Effect of metabolic acidosis on the growth hormone/IGF-I endocrine axis in skeletal growth centers. Kidney Int 57:2258–2267CrossRefPubMed
27.
go back to reference Waldman S, Couto D, Omelon S, Kandel R (2004) Effect of sodium bicarbonate on extracellular pH, matrix accumulation, and morphology of cultured articular chondrocytes. Tissue Eng 10:1633–1640CrossRefPubMed Waldman S, Couto D, Omelon S, Kandel R (2004) Effect of sodium bicarbonate on extracellular pH, matrix accumulation, and morphology of cultured articular chondrocytes. Tissue Eng 10:1633–1640CrossRefPubMed
28.
go back to reference Wu M, Urban J, Cui Z, Xu X (2007) Effect of extracellular ph on matrix synthesis by chondrocytes in 3D agarose gel. Biotechnol Prog 23:430–434CrossRefPubMed Wu M, Urban J, Cui Z, Xu X (2007) Effect of extracellular ph on matrix synthesis by chondrocytes in 3D agarose gel. Biotechnol Prog 23:430–434CrossRefPubMed
29.
go back to reference Jandziszak K, Suarez C, Saenger PH, Brion LP (2000) Time course of the response to recombinant growth hormone in acidotic mice. Pediatr Nephrol 14:922–926CrossRefPubMed Jandziszak K, Suarez C, Saenger PH, Brion LP (2000) Time course of the response to recombinant growth hormone in acidotic mice. Pediatr Nephrol 14:922–926CrossRefPubMed
30.
go back to reference Gat-Yablonski G, Shtaif B, Abraham E, Phillip M (2008) Nutrition-induced catch-up growth at the growth plate. J Pediatr Endocrinol Metab 21:879–893PubMed Gat-Yablonski G, Shtaif B, Abraham E, Phillip M (2008) Nutrition-induced catch-up growth at the growth plate. J Pediatr Endocrinol Metab 21:879–893PubMed
31.
go back to reference Farnum CA, Lee AO, O'Hara K, Wilsman NJ (2003) Effect of short-term fasting on bone elongation rates: an analysis of catch-up growth in young male rats. Pediatr Res 53:33–41PubMed Farnum CA, Lee AO, O'Hara K, Wilsman NJ (2003) Effect of short-term fasting on bone elongation rates: an analysis of catch-up growth in young male rats. Pediatr Res 53:33–41PubMed
32.
go back to reference Molinos I, Santos F, Carbajo-Perez E, Garcia E, Rodriguez J, Garcia-Alvarez O, Gil H, Ordonez FA, Loredo V, Mallada L (2006) Catch-up growth follows an abnormal pattern in experimental renal insufficiency and growth hormone treatment normalizes it. Kidney Int 70:1955–1961PubMed Molinos I, Santos F, Carbajo-Perez E, Garcia E, Rodriguez J, Garcia-Alvarez O, Gil H, Ordonez FA, Loredo V, Mallada L (2006) Catch-up growth follows an abnormal pattern in experimental renal insufficiency and growth hormone treatment normalizes it. Kidney Int 70:1955–1961PubMed
33.
go back to reference Gevers E, Hannah M, Waters M, Robinson I (2009) Regulation of rapid stat5 phosphorylation in the resting cells of the growth plate and in the liver by growth hormone and feeding. Endocrinology 150:3627–3636CrossRef Gevers E, Hannah M, Waters M, Robinson I (2009) Regulation of rapid stat5 phosphorylation in the resting cells of the growth plate and in the liver by growth hormone and feeding. Endocrinology 150:3627–3636CrossRef
34.
go back to reference Schaefer F, Chen Y, Tsao T, Nouri P, Rabkin R (2001) Impaired JAK-STAT signal transduction contributes to growth hormone resistance in chronic uremia. J Clin Invest 108:467–475PubMed Schaefer F, Chen Y, Tsao T, Nouri P, Rabkin R (2001) Impaired JAK-STAT signal transduction contributes to growth hormone resistance in chronic uremia. J Clin Invest 108:467–475PubMed
35.
go back to reference Ram PA, Waxman DJ (1999) SOCS/CIS protein inhibition of growth hormone-stimulated STAT5 signaling by multiple mechanisms. J Biol Chem 274:35553–35561CrossRefPubMed Ram PA, Waxman DJ (1999) SOCS/CIS protein inhibition of growth hormone-stimulated STAT5 signaling by multiple mechanisms. J Biol Chem 274:35553–35561CrossRefPubMed
36.
go back to reference Tollet-Egnell P, Flores-Morales A, Stavreus-Evers A, Sahlin L, Norstedt G (1999) Growth hormone regulation of SOCS-2, SOCS-3, and CIS messenger ribonucleic acid expression in the rat. Endocrinology 140:3693–3704CrossRefPubMed Tollet-Egnell P, Flores-Morales A, Stavreus-Evers A, Sahlin L, Norstedt G (1999) Growth hormone regulation of SOCS-2, SOCS-3, and CIS messenger ribonucleic acid expression in the rat. Endocrinology 140:3693–3704CrossRefPubMed
37.
go back to reference Gat-Yablonski G, Ben-Ari T, Shtaif B, Potievsky O, Moran O, Eshet R, Maor G, Segev Y, Phillip M (2004) Leptin reverses the inhibitory effect of caloric restriction on longitudinal growth. Endocrinology 145:343–350CrossRefPubMed Gat-Yablonski G, Ben-Ari T, Shtaif B, Potievsky O, Moran O, Eshet R, Maor G, Segev Y, Phillip M (2004) Leptin reverses the inhibitory effect of caloric restriction on longitudinal growth. Endocrinology 145:343–350CrossRefPubMed
38.
go back to reference Arbeiter A, Buscher R, Petersenn S, Hauffa B, Mann K, Hoyer PF (2009) Ghrelin and other appetite-regulating hormones in paediatric patients with chronic renal failure during dialysis and following kidney transplantation. Nephrol Dial Transplant 24:643–646CrossRefPubMed Arbeiter A, Buscher R, Petersenn S, Hauffa B, Mann K, Hoyer PF (2009) Ghrelin and other appetite-regulating hormones in paediatric patients with chronic renal failure during dialysis and following kidney transplantation. Nephrol Dial Transplant 24:643–646CrossRefPubMed
39.
go back to reference Cobo A, Lopez JM, Carbajo E, Santos F, Alvarez J, Fernandez M, Weruaga A (1999) Growth plate cartilage formation and resorption are differentially expressed in growth retarded uremic rats. J Am Soc Nephrol 10:971–979PubMed Cobo A, Lopez JM, Carbajo E, Santos F, Alvarez J, Fernandez M, Weruaga A (1999) Growth plate cartilage formation and resorption are differentially expressed in growth retarded uremic rats. J Am Soc Nephrol 10:971–979PubMed
40.
go back to reference Sanchez C, He Y, Leiferman E, Wilsman N (2004) Bone elongation in rats with renal failure and mild or advanced secondary hyperparathyroidism. Kidney Int 65:1740–1748CrossRefPubMed Sanchez C, He Y, Leiferman E, Wilsman N (2004) Bone elongation in rats with renal failure and mild or advanced secondary hyperparathyroidism. Kidney Int 65:1740–1748CrossRefPubMed
41.
go back to reference Sanchez C, He Y (2007) Bone growth during daily or intermittent calcitriol treatment during renal failure with advanced secondary hyperparathyroidism. Kidney Int 72:582–591CrossRefPubMed Sanchez C, He Y (2007) Bone growth during daily or intermittent calcitriol treatment during renal failure with advanced secondary hyperparathyroidism. Kidney Int 72:582–591CrossRefPubMed
42.
go back to reference Alvarez J, Balbin M, Fernandez M, Lopez JM (2001) Collagen metabolism is markedly altered in the hypertrophic cartilage of growth plates from rats with growth impairment secondary to chronic renal failure. J Bone Miner Res 16:511–524CrossRefPubMed Alvarez J, Balbin M, Fernandez M, Lopez JM (2001) Collagen metabolism is markedly altered in the hypertrophic cartilage of growth plates from rats with growth impairment secondary to chronic renal failure. J Bone Miner Res 16:511–524CrossRefPubMed
43.
go back to reference Bengtsson T, Aszodi A, Nicolae C, Hunziker EB, Lundgren-Akerlund E, Fassler R (2005) Loss of α10β1 integrin expression leads to moderate dysfunction of growth plate chondrocytes. J Cell Sci 118:929–936CrossRefPubMed Bengtsson T, Aszodi A, Nicolae C, Hunziker EB, Lundgren-Akerlund E, Fassler R (2005) Loss of α10β1 integrin expression leads to moderate dysfunction of growth plate chondrocytes. J Cell Sci 118:929–936CrossRefPubMed
44.
go back to reference Hopper T, Wehrli FW, Saha P, Andre J, Wright A, Sanchez C, Leonard M (2007) Quantitative microcomputed tomography assessment of intratrabecular, intertrabecular, and cortical bone architecture in a rat model of severe renal osteodystrophy. J Comput Assist Tomogr 31:320–328CrossRefPubMed Hopper T, Wehrli FW, Saha P, Andre J, Wright A, Sanchez C, Leonard M (2007) Quantitative microcomputed tomography assessment of intratrabecular, intertrabecular, and cortical bone architecture in a rat model of severe renal osteodystrophy. J Comput Assist Tomogr 31:320–328CrossRefPubMed
45.
go back to reference Yano S, Sugimoto T, Tsukamoto T, Chihara K, Kobayashi A, Kitazawa S, Maeda S, Kitazawa R (2003) Decrease in vitamin D receptor and calcium-sensing receptor in highly proliferative parathyroid adenomas. Eur J Endocrinol 148:403–411CrossRefPubMed Yano S, Sugimoto T, Tsukamoto T, Chihara K, Kobayashi A, Kitazawa S, Maeda S, Kitazawa R (2003) Decrease in vitamin D receptor and calcium-sensing receptor in highly proliferative parathyroid adenomas. Eur J Endocrinol 148:403–411CrossRefPubMed
46.
go back to reference Masuyama R, Stockmans I, Torrekens S, Looveren RV, Maes C, Carmeliet P, Bouillon R, Carmeliet G (2006) Vitamin D receptor in chondrocytes promotes osteoclastogenesis and regulates FGF23 production in osteoblasts. J Clin Invest 116:3150–3159CrossRefPubMed Masuyama R, Stockmans I, Torrekens S, Looveren RV, Maes C, Carmeliet P, Bouillon R, Carmeliet G (2006) Vitamin D receptor in chondrocytes promotes osteoclastogenesis and regulates FGF23 production in osteoblasts. J Clin Invest 116:3150–3159CrossRefPubMed
47.
go back to reference Chang W, Tu C, Chen T, Bikle D, Shoback D (2008) The extracellular calcium-sensing receptor (CaSR) is a critical modulator of skeletal development. Sci Signal 1:ra1CrossRefPubMed Chang W, Tu C, Chen T, Bikle D, Shoback D (2008) The extracellular calcium-sensing receptor (CaSR) is a critical modulator of skeletal development. Sci Signal 1:ra1CrossRefPubMed
48.
go back to reference Canadillas S, Canalejo A, Santamaria R, Rodriguez ME, Estepa JC, Martin-Malo A, Bravo J, Ramos B, Aguilera-Tejero E, Rodriguez M, Almaden Y (2005) Calcium-sensing receptor expression and parathyroid hormone secretion in hyperplastic parathyroid glands from humans. J Am Soc Nephrol 16:2190–2197CrossRefPubMed Canadillas S, Canalejo A, Santamaria R, Rodriguez ME, Estepa JC, Martin-Malo A, Bravo J, Ramos B, Aguilera-Tejero E, Rodriguez M, Almaden Y (2005) Calcium-sensing receptor expression and parathyroid hormone secretion in hyperplastic parathyroid glands from humans. J Am Soc Nephrol 16:2190–2197CrossRefPubMed
49.
go back to reference Nakagawa K, Perez E, Oh J, Santos F, Geldyyev A, Gross M, Schaefer F, Schmitt C (2008) Cinacalcet does not affect longitudinal growth but increases body weight gain in experimental uraemia. Nephrol Dial Transplant 23:2761–2767CrossRefPubMed Nakagawa K, Perez E, Oh J, Santos F, Geldyyev A, Gross M, Schaefer F, Schmitt C (2008) Cinacalcet does not affect longitudinal growth but increases body weight gain in experimental uraemia. Nephrol Dial Transplant 23:2761–2767CrossRefPubMed
50.
go back to reference Muscheites J, Wigger M, Drueckler E, Fischer D, Kundt G, Haffner D (2008) Cinacalcet for secondary hyperparathyroidism in children with end-stage renal disease. Pediatr Nephrol 23:1823–1829CrossRefPubMed Muscheites J, Wigger M, Drueckler E, Fischer D, Kundt G, Haffner D (2008) Cinacalcet for secondary hyperparathyroidism in children with end-stage renal disease. Pediatr Nephrol 23:1823–1829CrossRefPubMed
51.
go back to reference Silverstein D, Kher K, Moudgil A, Khurana M, Wilcox J, Moylan K (2008) Cinacalcet is efficacious in pediatric dialysis patients. Pediatr Nephrol 23:1817–1822CrossRefPubMed Silverstein D, Kher K, Moudgil A, Khurana M, Wilcox J, Moylan K (2008) Cinacalcet is efficacious in pediatric dialysis patients. Pediatr Nephrol 23:1817–1822CrossRefPubMed
52.
go back to reference Kolek O, Hines E, Jones M, LeSueur L, Lipko M, Kiela P, Collins J, Haussler M, Ghishan F (2005) 1α, 25-Dihydroxyvitamin D3 upregulates FGF23 gene expression in bone: the final link in a renal-gastrointestinal-skeletal axis that controls phosphate transport. Am J Physiol Gastrointest Liver Physiol 289:G1036–G1042CrossRefPubMed Kolek O, Hines E, Jones M, LeSueur L, Lipko M, Kiela P, Collins J, Haussler M, Ghishan F (2005) 1α, 25-Dihydroxyvitamin D3 upregulates FGF23 gene expression in bone: the final link in a renal-gastrointestinal-skeletal axis that controls phosphate transport. Am J Physiol Gastrointest Liver Physiol 289:G1036–G1042CrossRefPubMed
53.
54.
go back to reference Julien M, Khoshniat S, Lacreusette A, Gatius M, Bozec A, Wagner E, Wittrant Y, Masson M, Weiss P, Beck L, Magne D, Guicheux J (2009) Phosphate-dependent regulation of MGP in osteoblasts: Role of ERK1/2 and Fra-1. J Bone Miner Res. doi:10.1359/jbmr.090508 PubMed Julien M, Khoshniat S, Lacreusette A, Gatius M, Bozec A, Wagner E, Wittrant Y, Masson M, Weiss P, Beck L, Magne D, Guicheux J (2009) Phosphate-dependent regulation of MGP in osteoblasts: Role of ERK1/2 and Fra-1. J Bone Miner Res. doi:10.​1359/​jbmr.​090508 PubMed
55.
go back to reference Wesseling-Perry K, Pereira R, Wang H, Elashoff RM, Sahney S, Gales B, Jüppner H, Salusky IB (2009) Relationship between plasma FGF-23 concentration and bone mineralization in children with renal failure on peritoneal dialysis. J Clin Endocrinol Metab 94:511–517CrossRefPubMed Wesseling-Perry K, Pereira R, Wang H, Elashoff RM, Sahney S, Gales B, Jüppner H, Salusky IB (2009) Relationship between plasma FGF-23 concentration and bone mineralization in children with renal failure on peritoneal dialysis. J Clin Endocrinol Metab 94:511–517CrossRefPubMed
58.
go back to reference Neves P, Trivino J, Casaubon F, Santos V, Mendes P, Romao P, Bexiga I, Bernardo I (2006) Elderly patients on chronic hemodialysis with hyperparathyroidism: increase of hemoglobin level after intravenous calcitriol. Int Urol Nephrol 38:175–177CrossRefPubMed Neves P, Trivino J, Casaubon F, Santos V, Mendes P, Romao P, Bexiga I, Bernardo I (2006) Elderly patients on chronic hemodialysis with hyperparathyroidism: increase of hemoglobin level after intravenous calcitriol. Int Urol Nephrol 38:175–177CrossRefPubMed
59.
go back to reference Lin C, Hung C, Yang C, Huang C (2004) Improved anemia and reduced erythropoietin need by medical or surgical intervention of secondary hyperparathyroidism in hemodialysis patients. Ren Fail 26:289–295CrossRefPubMed Lin C, Hung C, Yang C, Huang C (2004) Improved anemia and reduced erythropoietin need by medical or surgical intervention of secondary hyperparathyroidism in hemodialysis patients. Ren Fail 26:289–295CrossRefPubMed
60.
go back to reference Sweeney E, Campbell M, Watkins K, Hunter C, Jacenko O (2008) Altered endochondral ossification in collagen X mouse models leads to impaired immune responses. Dev Dyn 237:2693–2704CrossRefPubMed Sweeney E, Campbell M, Watkins K, Hunter C, Jacenko O (2008) Altered endochondral ossification in collagen X mouse models leads to impaired immune responses. Dev Dyn 237:2693–2704CrossRefPubMed
61.
go back to reference Jacenko O, Roberts DW, Campbell MR, McManus PM, Gress CJ, Tao Z (2002) Linking hematopoiesis to endochondral skeletogenesis through analysis of mice transgenic for collagen X. Am J Pathol 160:2019–2034PubMed Jacenko O, Roberts DW, Campbell MR, McManus PM, Gress CJ, Tao Z (2002) Linking hematopoiesis to endochondral skeletogenesis through analysis of mice transgenic for collagen X. Am J Pathol 160:2019–2034PubMed
Metadata
Title
Growth-plate cartilage in chronic renal failure
Author
Cheryl P. Sanchez
Publication date
01-04-2010
Publisher
Springer-Verlag
Published in
Pediatric Nephrology / Issue 4/2010
Print ISSN: 0931-041X
Electronic ISSN: 1432-198X
DOI
https://doi.org/10.1007/s00467-009-1307-6

Other articles of this Issue 4/2010

Pediatric Nephrology 4/2010 Go to the issue