Skip to main content
Top
Published in: Journal of Orthopaedic Surgery and Research 1/2024

Open Access 01-12-2024 | Growth Factors | Research article

The extracts of osteoblast developed from adipose-derived stem cell and its role in osteogenesis

Authors: Rattanawan Tangporncharoen, Atiruj Silathapanasakul, Patcharapa Tragoonlugkana, Chatchai Pruksapong, Tulyapruek Tawonsawatruk, Aungkura Supokawej

Published in: Journal of Orthopaedic Surgery and Research | Issue 1/2024

Login to get access

Abstract

Cell-based therapy has become an achievable choice in regenerative medicines, particularly for musculoskeletal disorders. Adipose-derived stem cells (ASCs) are an outstanding resource because of their ability and functions. Nevertheless, the use of cells for treatment comes with difficulties in operation and safety. The immunological barrier is also a major limitation of cell therapy, which can lead to unexpected results. Cell-derived products, such as cell extracts, have gained a lot of attention to overcome these limitations. The goal of this study was to optimize the production of ASC-osteoblast extracts as well as their involvement in osteogenesis. The extracts were prepared using a freeze–thaw method with varying temperatures and durations. Overall, osteogenic-associated proteins and osteoinductive potential of the extracts prepared from the osteogenic-induced ASCs were assessed. Our results demonstrated that the freeze–thaw approach is practicable for cell extracts production, with minor differences in temperature and duration having no effect on protein concentration. The ASC-osteoblast extracts contain a significant level of essential specialized proteins that promote osteogenicity. Hence, the freeze–thaw method is applicable for extract preparation and ASC-osteoblast extracts may be beneficial as an optional facilitating biologics in bone anabolic treatment and bone regeneration.
Literature
1.
go back to reference Ensrud KE, Crandall CJ. Osteoporosis. Ann Intern Med. 2017;167(3):ITC17-ITC32. Ensrud KE, Crandall CJ. Osteoporosis. Ann Intern Med. 2017;167(3):ITC17-ITC32.
3.
go back to reference Tu KN, Lie JD, Wan CKV, Cameron MA, Austel AG, Nguyen J, et al. Osteoporosis: a review of treatment options. Pharm Ther. 2018;43(2):92–104. Tu KN, Lie JD, Wan CKV, Cameron MA, Austel AG, Nguyen J, et al. Osteoporosis: a review of treatment options. Pharm Ther. 2018;43(2):92–104.
4.
go back to reference Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006;8(4):315–7.PubMedCrossRef Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006;8(4):315–7.PubMedCrossRef
5.
go back to reference Hematti P, Keating A. Mesenchymal stromal cells in regenerative medicine: a perspective. In: Hematti P, Keating A, editors. Mesenchymal stromal cells: biology and clinical applications. New York: Humana Press; 2013. p. 3–16.CrossRef Hematti P, Keating A. Mesenchymal stromal cells in regenerative medicine: a perspective. In: Hematti P, Keating A, editors. Mesenchymal stromal cells: biology and clinical applications. New York: Humana Press; 2013. p. 3–16.CrossRef
6.
go back to reference Meirelles LdS, Fontes AM, Covas DT, Caplan AI. Mechanisms involved in the therapeutic properties of mesenchymal stem cells. Cytokine Growth Factor Rev. 2009;20(5):419–27.PubMedCrossRef Meirelles LdS, Fontes AM, Covas DT, Caplan AI. Mechanisms involved in the therapeutic properties of mesenchymal stem cells. Cytokine Growth Factor Rev. 2009;20(5):419–27.PubMedCrossRef
7.
go back to reference Han Y, Yang J, Fang J, Zhou Y, Candi E, Wang J, et al. The secretion profile of mesenchymal stem cells and potential applications in treating human diseases. Signal Transduct Target Ther. 2022;7(1):92.PubMedPubMedCentralCrossRef Han Y, Yang J, Fang J, Zhou Y, Candi E, Wang J, et al. The secretion profile of mesenchymal stem cells and potential applications in treating human diseases. Signal Transduct Target Ther. 2022;7(1):92.PubMedPubMedCentralCrossRef
8.
go back to reference Ullah I, Subbarao Raghavendra B, Rho Gyu J. Human mesenchymal stem cells—current trends and future prospective. Biosci Rep. 2015;35(2). Ullah I, Subbarao Raghavendra B, Rho Gyu J. Human mesenchymal stem cells—current trends and future prospective. Biosci Rep. 2015;35(2).
10.
go back to reference Zhang J, Liu Y, Chen Y, Yuan L, Liu H, Wang J, et al. Adipose-derived stem cells: current applications and future directions in the regeneration of multiple tissues. Stem Cells Int. 2020;2020:8810813.PubMedPubMedCentralCrossRef Zhang J, Liu Y, Chen Y, Yuan L, Liu H, Wang J, et al. Adipose-derived stem cells: current applications and future directions in the regeneration of multiple tissues. Stem Cells Int. 2020;2020:8810813.PubMedPubMedCentralCrossRef
11.
go back to reference Sowa Y, Mazda O, Tsuge I, Inafuku N, Kishida T, Morimoto N. Roles of adipose-derived stem cells in cell-based therapy: current status and future scope—a narrative review. Dig Med Res. 2022;5. Sowa Y, Mazda O, Tsuge I, Inafuku N, Kishida T, Morimoto N. Roles of adipose-derived stem cells in cell-based therapy: current status and future scope—a narrative review. Dig Med Res. 2022;5.
12.
go back to reference Al-Ghadban S, Artiles M, Bunnell BA. Adipose stem cells in regenerative medicine: looking forward. Front Bioeng Biotechnol. 2022;9. Al-Ghadban S, Artiles M, Bunnell BA. Adipose stem cells in regenerative medicine: looking forward. Front Bioeng Biotechnol. 2022;9.
13.
go back to reference Pers Y-M, Rackwitz L, Ferreira R, Pullig O, Delfour C, Barry F, et al. Adipose mesenchymal stromal cell-based therapy for severe osteoarthritis of the knee: a phase I dose-escalation trial. Stem Cells Transl Med. 2016;5(7):847–56.PubMedPubMedCentralCrossRef Pers Y-M, Rackwitz L, Ferreira R, Pullig O, Delfour C, Barry F, et al. Adipose mesenchymal stromal cell-based therapy for severe osteoarthritis of the knee: a phase I dose-escalation trial. Stem Cells Transl Med. 2016;5(7):847–56.PubMedPubMedCentralCrossRef
14.
go back to reference Freitag J, Bates D, Wickham J, Shah K, Huguenin L, Tenen A, et al. Adipose-derived mesenchymal stem cell therapy in the treatment of knee osteoarthritis: a randomized controlled trial. Regen Med. 2019;14(3):213–30.PubMedCrossRef Freitag J, Bates D, Wickham J, Shah K, Huguenin L, Tenen A, et al. Adipose-derived mesenchymal stem cell therapy in the treatment of knee osteoarthritis: a randomized controlled trial. Regen Med. 2019;14(3):213–30.PubMedCrossRef
15.
go back to reference Yoshida Y, Matsubara H, Fang X, Hayashi K, Nomura I, Ugaji S, et al. Adipose-derived stem cell sheets accelerate bone healing in rat femoral defects. PLoS ONE. 2019;14(3): e0214488.PubMedPubMedCentralCrossRef Yoshida Y, Matsubara H, Fang X, Hayashi K, Nomura I, Ugaji S, et al. Adipose-derived stem cell sheets accelerate bone healing in rat femoral defects. PLoS ONE. 2019;14(3): e0214488.PubMedPubMedCentralCrossRef
16.
go back to reference Lendeckel S, Jödicke A, Christophis P, Heidinger K, Wolff J, Fraser JK, et al. Autologous stem cells (adipose) and fibrin glue used to treat widespread traumatic calvarial defects: case report. J Craniomaxillofac Surg. 2004;32(6):370–3.PubMedCrossRef Lendeckel S, Jödicke A, Christophis P, Heidinger K, Wolff J, Fraser JK, et al. Autologous stem cells (adipose) and fibrin glue used to treat widespread traumatic calvarial defects: case report. J Craniomaxillofac Surg. 2004;32(6):370–3.PubMedCrossRef
17.
go back to reference Buzhor E, Leshansky L, Blumenthal J, Barash H, Warshawsky D, Mazor Y, Shtrichman R. Cell-based therapy approaches: the hope for incurable diseases. Regen Med. 2014;9(5):649–72.PubMedCrossRef Buzhor E, Leshansky L, Blumenthal J, Barash H, Warshawsky D, Mazor Y, Shtrichman R. Cell-based therapy approaches: the hope for incurable diseases. Regen Med. 2014;9(5):649–72.PubMedCrossRef
19.
go back to reference Sagaradze GD, Nimiritsky PP, Akopyan ZA, Makarevich PI, Efimenko AY. “Cell-free therapeutics” from components secreted by mesenchymal stromal cells as a novel class of biopharmaceuticals. In: Ming-Kung Y, Yuan-Chuan C, editors. Biopharmaceuticals. IntechOpen: Rijeka; 2018. Sagaradze GD, Nimiritsky PP, Akopyan ZA, Makarevich PI, Efimenko AY. “Cell-free therapeutics” from components secreted by mesenchymal stromal cells as a novel class of biopharmaceuticals. In: Ming-Kung Y, Yuan-Chuan C, editors. Biopharmaceuticals. IntechOpen: Rijeka; 2018.
20.
go back to reference Su X, Upadhyay A, Tran SD, Lin Z. Cell-free therapies: the use of cell extracts to mitigate irradiation-injured salivary glands. Biology. 2023;12(2):305.PubMedPubMedCentralCrossRef Su X, Upadhyay A, Tran SD, Lin Z. Cell-free therapies: the use of cell extracts to mitigate irradiation-injured salivary glands. Biology. 2023;12(2):305.PubMedPubMedCentralCrossRef
21.
go back to reference Fang D, Hu S, Liu Y, Quan V-H, Seuntjens J, Tran SD. Identification of the active components in Bone Marrow Soup: a mitigator against irradiation-injury to salivary glands. Sci Rep. 2015;5(1):16017.PubMedPubMedCentralCrossRef Fang D, Hu S, Liu Y, Quan V-H, Seuntjens J, Tran SD. Identification of the active components in Bone Marrow Soup: a mitigator against irradiation-injury to salivary glands. Sci Rep. 2015;5(1):16017.PubMedPubMedCentralCrossRef
22.
go back to reference Foo JB, Looi QH, Chong PP, Hassan NH, Yeo GEC, Ng CY, et al. Comparing the therapeutic potential of stem cells and their secretory products in regenerative medicine. Stem Cells Int. 2021;2021:2616807.PubMedPubMedCentralCrossRef Foo JB, Looi QH, Chong PP, Hassan NH, Yeo GEC, Ng CY, et al. Comparing the therapeutic potential of stem cells and their secretory products in regenerative medicine. Stem Cells Int. 2021;2021:2616807.PubMedPubMedCentralCrossRef
23.
go back to reference Michel G, Blery P, Henoux M, Guicheux J, Weiss P, Brouard S, et al. Bone marrow cell extract promotes the regeneration of irradiated bone. PLoS ONE. 2017;12(5): e0178060.PubMedPubMedCentralCrossRef Michel G, Blery P, Henoux M, Guicheux J, Weiss P, Brouard S, et al. Bone marrow cell extract promotes the regeneration of irradiated bone. PLoS ONE. 2017;12(5): e0178060.PubMedPubMedCentralCrossRef
24.
go back to reference Tran SD, Liu Y, Xia D, Maria OM, Khalili S, Wang RW-J, et al. Paracrine effects of bone marrow soup restore organ function, regeneration, and repair in salivary glands damaged by irradiation. PLoS ONE. 2013;8(4):e61632.PubMedPubMedCentralCrossRef Tran SD, Liu Y, Xia D, Maria OM, Khalili S, Wang RW-J, et al. Paracrine effects of bone marrow soup restore organ function, regeneration, and repair in salivary glands damaged by irradiation. PLoS ONE. 2013;8(4):e61632.PubMedPubMedCentralCrossRef
25.
go back to reference Fang D, Su X, Liu Y, Lee JC, Seuntjens J, Tran SD. Cell extracts from spleen and adipose tissues restore function to irradiation-injured salivary glands. J Tissue Eng Regen Med. 2018;12(2):e1289–96.PubMedCrossRef Fang D, Su X, Liu Y, Lee JC, Seuntjens J, Tran SD. Cell extracts from spleen and adipose tissues restore function to irradiation-injured salivary glands. J Tissue Eng Regen Med. 2018;12(2):e1289–96.PubMedCrossRef
26.
go back to reference Ryu JH, Kim Y, Kim MJ, Park J, Kim JW, Park HS, et al. Membrane-free stem cell extract enhances blood-brain barrier integrity by suppressing NF-κB-mediated activation of NLRP3 inflammasome in mice with ischemic stroke. Life. 2022;12(4):503.PubMedPubMedCentralCrossRef Ryu JH, Kim Y, Kim MJ, Park J, Kim JW, Park HS, et al. Membrane-free stem cell extract enhances blood-brain barrier integrity by suppressing NF-κB-mediated activation of NLRP3 inflammasome in mice with ischemic stroke. Life. 2022;12(4):503.PubMedPubMedCentralCrossRef
27.
go back to reference Albersen M, Fandel TM, Lin G, Wang G, Banie L, Lin C-S, Lue TF. Injections of adipose tissue-derived stem cells and stem cell lysate improve recovery of erectile function in a rat model of cavernous nerve injury. J Sex Med. 2010;7(10):3331–40.PubMedCrossRef Albersen M, Fandel TM, Lin G, Wang G, Banie L, Lin C-S, Lue TF. Injections of adipose tissue-derived stem cells and stem cell lysate improve recovery of erectile function in a rat model of cavernous nerve injury. J Sex Med. 2010;7(10):3331–40.PubMedCrossRef
28.
go back to reference Chen G, Jin Y, Shi X, Qiu Y, Zhang Y, Cheng M, et al. Adipose-derived stem cell-based treatment for acute liver failure. Stem Cell Res Ther. 2015;6(1):40.PubMedPubMedCentralCrossRef Chen G, Jin Y, Shi X, Qiu Y, Zhang Y, Cheng M, et al. Adipose-derived stem cell-based treatment for acute liver failure. Stem Cell Res Ther. 2015;6(1):40.PubMedPubMedCentralCrossRef
29.
go back to reference Song J-y, Kang HJ, Hong JS, Kim CJ, Shim J-Y, Lee CW, Choi J. Umbilical cord-derived mesenchymal stem cell extracts reduce colitis in mice by re-polarizing intestinal macrophages. Sci Rep. 2017;7(1):9412.PubMedPubMedCentralCrossRef Song J-y, Kang HJ, Hong JS, Kim CJ, Shim J-Y, Lee CW, Choi J. Umbilical cord-derived mesenchymal stem cell extracts reduce colitis in mice by re-polarizing intestinal macrophages. Sci Rep. 2017;7(1):9412.PubMedPubMedCentralCrossRef
30.
go back to reference Nishikawa T, Maeda K, Nakamura M, Yamamura T, Sawada T, Mizutani Y, et al. Filtrated adipose tissue-derived mesenchymal stem cell lysate ameliorates experimental acute colitis in mice. Dig Dis Sci. 2021;66(4):1034–44.PubMedCrossRef Nishikawa T, Maeda K, Nakamura M, Yamamura T, Sawada T, Mizutani Y, et al. Filtrated adipose tissue-derived mesenchymal stem cell lysate ameliorates experimental acute colitis in mice. Dig Dis Sci. 2021;66(4):1034–44.PubMedCrossRef
31.
go back to reference Ward CK, Gill RG, Liddell RS, Davies JE. Umbilical cord stem cell lysate: a new biologic injectate for the putative treatment of acute temporomandibular joint inflammation. J Inflamm Res. 2023;16:4287–300.PubMedPubMedCentralCrossRef Ward CK, Gill RG, Liddell RS, Davies JE. Umbilical cord stem cell lysate: a new biologic injectate for the putative treatment of acute temporomandibular joint inflammation. J Inflamm Res. 2023;16:4287–300.PubMedPubMedCentralCrossRef
32.
go back to reference Lin T, Pajarinen J, Nabeshima A, Lu L, Nathan K, Jämsen E, et al. Preconditioning of murine mesenchymal stem cells synergistically enhanced immunomodulation and osteogenesis. Stem Cell Res Ther. 2017;8(1):277.PubMedPubMedCentralCrossRef Lin T, Pajarinen J, Nabeshima A, Lu L, Nathan K, Jämsen E, et al. Preconditioning of murine mesenchymal stem cells synergistically enhanced immunomodulation and osteogenesis. Stem Cell Res Ther. 2017;8(1):277.PubMedPubMedCentralCrossRef
33.
go back to reference Lu Z, Wang G, Dunstan CR, Chen Y, Yenn-Ru LuW, Davies B, Zreiqat H. Activation and promotion of adipose stem cells by tumour necrosis factor-alpha preconditioning for bone regeneration. J Cell Physiol. 2013;228(8):1737–44.PubMedCrossRef Lu Z, Wang G, Dunstan CR, Chen Y, Yenn-Ru LuW, Davies B, Zreiqat H. Activation and promotion of adipose stem cells by tumour necrosis factor-alpha preconditioning for bone regeneration. J Cell Physiol. 2013;228(8):1737–44.PubMedCrossRef
34.
go back to reference Lu Z, Chen Y, Dunstan C, Roohani-Esfahani S, Zreiqat H. Priming adipose stem cells with tumor necrosis factor-alpha preconditioning potentiates their exosome efficacy for bone regeneration. Tissue Eng Part A. 2017;23(21–22):1212–20.PubMedCrossRef Lu Z, Chen Y, Dunstan C, Roohani-Esfahani S, Zreiqat H. Priming adipose stem cells with tumor necrosis factor-alpha preconditioning potentiates their exosome efficacy for bone regeneration. Tissue Eng Part A. 2017;23(21–22):1212–20.PubMedCrossRef
35.
go back to reference Schubert T, Xhema D, Vériter S, Schubert M, Behets C, Delloye C, et al. The enhanced performance of bone allografts using osteogenic-differentiated adipose-derived mesenchymal stem cells. Biomaterials. 2011;32(34):8880–91.PubMedCrossRef Schubert T, Xhema D, Vériter S, Schubert M, Behets C, Delloye C, et al. The enhanced performance of bone allografts using osteogenic-differentiated adipose-derived mesenchymal stem cells. Biomaterials. 2011;32(34):8880–91.PubMedCrossRef
36.
go back to reference Shah AR, Cornejo A, Guda T, Sahar DE, Stephenson SM, Chang S, et al. Differentiated adipose-derived stem cell cocultures for bone regeneration in polymer scaffolds in vivo. J Craniofac Surg. 2014;25(4):1504–9.PubMedCrossRef Shah AR, Cornejo A, Guda T, Sahar DE, Stephenson SM, Chang S, et al. Differentiated adipose-derived stem cell cocultures for bone regeneration in polymer scaffolds in vivo. J Craniofac Surg. 2014;25(4):1504–9.PubMedCrossRef
37.
go back to reference Zhang S-Y, Ren J-Y, Yang B. Priming strategies for controlling stem cell fate: applications and challenges in dental tissue regeneration. World J Stem Cells. 2021;13(11):1625–46.PubMedPubMedCentralCrossRef Zhang S-Y, Ren J-Y, Yang B. Priming strategies for controlling stem cell fate: applications and challenges in dental tissue regeneration. World J Stem Cells. 2021;13(11):1625–46.PubMedPubMedCentralCrossRef
38.
go back to reference Noronha NdC, Mizukami A, Caliári-Oliveira C, Cominal JG, Rocha JLM, Covas DT, et al. Priming approaches to improve the efficacy of mesenchymal stromal cell-based therapies. Stem Cell Res Ther. 2019;10(1):131.PubMedCrossRef Noronha NdC, Mizukami A, Caliári-Oliveira C, Cominal JG, Rocha JLM, Covas DT, et al. Priming approaches to improve the efficacy of mesenchymal stromal cell-based therapies. Stem Cell Res Ther. 2019;10(1):131.PubMedCrossRef
39.
go back to reference Miceli V, Bulati M, Iannolo G, Zito G, Gallo A, Conaldi PG. Therapeutic properties of mesenchymal stromal/stem cells: the need of cell priming for cell-free therapies in regenerative medicine. Int J Mol Sci. 2021;22(2):763.PubMedPubMedCentralCrossRef Miceli V, Bulati M, Iannolo G, Zito G, Gallo A, Conaldi PG. Therapeutic properties of mesenchymal stromal/stem cells: the need of cell priming for cell-free therapies in regenerative medicine. Int J Mol Sci. 2021;22(2):763.PubMedPubMedCentralCrossRef
40.
go back to reference Miceli V, Zito G, Bulati M, Gallo A, Busà R, Iannolo G, Conaldi PG. Different priming strategies improve distinct therapeutic capabilities of mesenchymal stromal/stem cells: potential implications for their clinical use. World J Stem Cells. 2023;15(5):400–20.PubMedPubMedCentralCrossRef Miceli V, Zito G, Bulati M, Gallo A, Busà R, Iannolo G, Conaldi PG. Different priming strategies improve distinct therapeutic capabilities of mesenchymal stromal/stem cells: potential implications for their clinical use. World J Stem Cells. 2023;15(5):400–20.PubMedPubMedCentralCrossRef
41.
go back to reference Le B, Cressman A, Morales D, Fierro FA. First clinical experiences using preconditioning approaches to improve MSC-based therapies. Curr Stem Cell Rep. 2024. Le B, Cressman A, Morales D, Fierro FA. First clinical experiences using preconditioning approaches to improve MSC-based therapies. Curr Stem Cell Rep. 2024.
42.
go back to reference Islam MS, Aryasomayajula A, Selvaganapathy PR. A review on macroscale and microscale cell lysis methods. Micromachines. 2017;8(3):83.CrossRef Islam MS, Aryasomayajula A, Selvaganapathy PR. A review on macroscale and microscale cell lysis methods. Micromachines. 2017;8(3):83.CrossRef
43.
go back to reference Danaeifar M. New horizons in developing cell lysis methods: a review. Biotechnol Bioeng. 2022;119(11):3007–21.PubMedCrossRef Danaeifar M. New horizons in developing cell lysis methods: a review. Biotechnol Bioeng. 2022;119(11):3007–21.PubMedCrossRef
44.
go back to reference Song J-y, Kang HJ, Ju HM, Park A, Park H, Hong JS, et al. Umbilical cord-derived mesenchymal stem cell extracts ameliorate atopic dermatitis in mice by reducing the T cell responses. Sci Rep. 2019;9(1):6623.PubMedPubMedCentralCrossRef Song J-y, Kang HJ, Ju HM, Park A, Park H, Hong JS, et al. Umbilical cord-derived mesenchymal stem cell extracts ameliorate atopic dermatitis in mice by reducing the T cell responses. Sci Rep. 2019;9(1):6623.PubMedPubMedCentralCrossRef
45.
go back to reference Hu J, Zhao Q, Feng Y, Li N, Gu Y, Sun R, et al. Embryonic germ cell extracts erase imprinted genes and improve the efficiency of induced pluripotent stem cells. Sci Rep. 2018;8(1):10955.PubMedPubMedCentralCrossRef Hu J, Zhao Q, Feng Y, Li N, Gu Y, Sun R, et al. Embryonic germ cell extracts erase imprinted genes and improve the efficiency of induced pluripotent stem cells. Sci Rep. 2018;8(1):10955.PubMedPubMedCentralCrossRef
46.
go back to reference Peng Y, Iwasaki K, Taguchi Y, Umeda M. The extracts of mesenchymal stem cells induce the proliferation of periodontal ligament cells. J Osaka Dent Univ. 2023;57(1):119–24. Peng Y, Iwasaki K, Taguchi Y, Umeda M. The extracts of mesenchymal stem cells induce the proliferation of periodontal ligament cells. J Osaka Dent Univ. 2023;57(1):119–24.
47.
go back to reference Fujiwara K, Doi N. Biochemical preparation of cell extract for cell-free protein synthesis without physical disruption. PLoS ONE. 2016;11(4): e0154614.PubMedPubMedCentralCrossRef Fujiwara K, Doi N. Biochemical preparation of cell extract for cell-free protein synthesis without physical disruption. PLoS ONE. 2016;11(4): e0154614.PubMedPubMedCentralCrossRef
48.
go back to reference Tan HT, Khong NMH, Khaw YS, Ahmad SA, Yusoff FM. Optimization of the freezing-thawing method for extracting phycobiliproteins from Arthrospira sp. Molecules. 2020;25(17):3894.PubMedPubMedCentralCrossRef Tan HT, Khong NMH, Khaw YS, Ahmad SA, Yusoff FM. Optimization of the freezing-thawing method for extracting phycobiliproteins from Arthrospira sp. Molecules. 2020;25(17):3894.PubMedPubMedCentralCrossRef
49.
go back to reference Jun-yi W, Yin-peng J, Hong-chao L, Ling-yu M, Li L, Xiao-jin W, et al. Optimization of repeated freeze-thaw and ultrasonication for collection of lysate of adipose-derived stem cells. Chin J Tissue Eng Res. 2017;21(17):2631–7. Jun-yi W, Yin-peng J, Hong-chao L, Ling-yu M, Li L, Xiao-jin W, et al. Optimization of repeated freeze-thaw and ultrasonication for collection of lysate of adipose-derived stem cells. Chin J Tissue Eng Res. 2017;21(17):2631–7.
50.
go back to reference Post S, Abdallah BM, Bentzon JF, Kassem M. Demonstration of the presence of independent pre-osteoblastic and pre-adipocytic cell populations in bone marrow-derived mesenchymal stem cells. Bone. 2008;43(1):32–9.PubMedCrossRef Post S, Abdallah BM, Bentzon JF, Kassem M. Demonstration of the presence of independent pre-osteoblastic and pre-adipocytic cell populations in bone marrow-derived mesenchymal stem cells. Bone. 2008;43(1):32–9.PubMedCrossRef
51.
go back to reference Seenprachawong K, Tawornsawutruk T, Nantasenamat C, Nuchnoi P, Hongeng S, Supokawej A. miR-130a and miR-27b enhance osteogenesis in human bone marrow mesenchymal stem cells via specific down-regulation of peroxisome proliferator-activated receptor γ. Front Genet. 2018;9. Seenprachawong K, Tawornsawutruk T, Nantasenamat C, Nuchnoi P, Hongeng S, Supokawej A. miR-130a and miR-27b enhance osteogenesis in human bone marrow mesenchymal stem cells via specific down-regulation of peroxisome proliferator-activated receptor γ. Front Genet. 2018;9.
52.
go back to reference Lavery K, Swain P, Falb D, Alaoui-Ismaili MH. BMP-2/4 and BMP-6/7 differentially utilize cell surface receptors to induce osteoblastic differentiation of human bone marrow-derived mesenchymal stem cells. J Biol Chem. 2008;283(30):20948–58.PubMedPubMedCentralCrossRef Lavery K, Swain P, Falb D, Alaoui-Ismaili MH. BMP-2/4 and BMP-6/7 differentially utilize cell surface receptors to induce osteoblastic differentiation of human bone marrow-derived mesenchymal stem cells. J Biol Chem. 2008;283(30):20948–58.PubMedPubMedCentralCrossRef
53.
go back to reference Rivera J, Strohbach C, Wenke J, Rathbone C. Beyond osteogenesis: an in vitro comparison of the potentials of six bone morphogenetic proteins. Front Pharmacol. 2013;4. Rivera J, Strohbach C, Wenke J, Rathbone C. Beyond osteogenesis: an in vitro comparison of the potentials of six bone morphogenetic proteins. Front Pharmacol. 2013;4.
54.
go back to reference Zhang X, Guo J, Zhou Y, Wu G. The roles of bone morphogenetic proteins and their signaling in the osteogenesis of adipose-derived stem cells. Tissue Eng Part B Rev. 2014;20(1):84–92.PubMedCrossRef Zhang X, Guo J, Zhou Y, Wu G. The roles of bone morphogenetic proteins and their signaling in the osteogenesis of adipose-derived stem cells. Tissue Eng Part B Rev. 2014;20(1):84–92.PubMedCrossRef
55.
go back to reference Grafe I, Alexander S, Peterson JR, Snider TN, Levi B, Lee B, Mishina Y. TGF-β family signaling in mesenchymal differentiation. Cold Spring Harb Perspect Biol. 2018;10(5). Grafe I, Alexander S, Peterson JR, Snider TN, Levi B, Lee B, Mishina Y. TGF-β family signaling in mesenchymal differentiation. Cold Spring Harb Perspect Biol. 2018;10(5).
56.
go back to reference Zhao L, Jiang S, Hantash BM. Transforming growth factor β1 induces osteogenic differentiation of murine bone marrow stromal cells. Tissue Eng Part A. 2010;16(2):725–33.PubMedCrossRef Zhao L, Jiang S, Hantash BM. Transforming growth factor β1 induces osteogenic differentiation of murine bone marrow stromal cells. Tissue Eng Part A. 2010;16(2):725–33.PubMedCrossRef
57.
go back to reference Park JW, Han J, Noh Y, Im GI. The osteogenic differentiation ability of human migratory adipose-derived stem cells attracted by TGFB3 (transforming growth factor-beta3) is higher than that of static cells. Osteoarthr Cartil. 2019;27:S150.CrossRef Park JW, Han J, Noh Y, Im GI. The osteogenic differentiation ability of human migratory adipose-derived stem cells attracted by TGFB3 (transforming growth factor-beta3) is higher than that of static cells. Osteoarthr Cartil. 2019;27:S150.CrossRef
58.
go back to reference Du G, Cheng X, Zhang Z, Han L, Wu K, Li Y, Lin X. TGF-beta induced key genes of osteogenic and adipogenic differentiation in human mesenchymal stem cells and MiRNA–mRNA regulatory networks. Front Genet. 2021;12. Du G, Cheng X, Zhang Z, Han L, Wu K, Li Y, Lin X. TGF-beta induced key genes of osteogenic and adipogenic differentiation in human mesenchymal stem cells and MiRNA–mRNA regulatory networks. Front Genet. 2021;12.
59.
go back to reference Kaito T, Johnson J, Ellerman J, Tian H, Aydogan M, Chatsrinopkun M, et al. Synergistic effect of bone morphogenetic proteins 2 and 7 by ex vivo gene therapy in a rat spinal fusion model. J Bone Jt Surg Am. 2013;95(17):1612–9.CrossRef Kaito T, Johnson J, Ellerman J, Tian H, Aydogan M, Chatsrinopkun M, et al. Synergistic effect of bone morphogenetic proteins 2 and 7 by ex vivo gene therapy in a rat spinal fusion model. J Bone Jt Surg Am. 2013;95(17):1612–9.CrossRef
60.
go back to reference Kaito T, Morimoto T, Mori Y, Kanayama S, Makino T, Takenaka S, et al. BMP-2/7 heterodimer strongly induces bone regeneration in the absence of increased soft tissue inflammation. Spine J. 2018;18(1):139–46.PubMedCrossRef Kaito T, Morimoto T, Mori Y, Kanayama S, Makino T, Takenaka S, et al. BMP-2/7 heterodimer strongly induces bone regeneration in the absence of increased soft tissue inflammation. Spine J. 2018;18(1):139–46.PubMedCrossRef
61.
go back to reference Aoki H, Fujii M, Imamura T, Yagi K, Takehara K, Kato M, Miyazono K. Synergistic effects of different bone morphogenetic protein type I receptors on alkaline phosphatase induction. J Cell Sci. 2001;114(8):1483–9.PubMedCrossRef Aoki H, Fujii M, Imamura T, Yagi K, Takehara K, Kato M, Miyazono K. Synergistic effects of different bone morphogenetic protein type I receptors on alkaline phosphatase induction. J Cell Sci. 2001;114(8):1483–9.PubMedCrossRef
62.
go back to reference Wang Y, He T, Liu J, Liu H, Zhou L, Hao W, et al. Synergistic effects of overexpression of BMP-2 and TGF-β3 on osteogenic differentiation of bone marrow mesenchymal stem cells. Mol Med Rep. 2016;14(6):5514–20.PubMedPubMedCentralCrossRef Wang Y, He T, Liu J, Liu H, Zhou L, Hao W, et al. Synergistic effects of overexpression of BMP-2 and TGF-β3 on osteogenic differentiation of bone marrow mesenchymal stem cells. Mol Med Rep. 2016;14(6):5514–20.PubMedPubMedCentralCrossRef
63.
go back to reference Bhattacharjee P, Naskar D, Maiti TK, Bhattacharya D, Kundu SC. Investigating the potential of combined growth factors delivery, from non-mulberry silk fibroin grafted poly(ɛ-caprolactone)/hydroxyapatite nanofibrous scaffold, in bone tissue engineering. Appl Mater Today. 2016;5:52–67.CrossRef Bhattacharjee P, Naskar D, Maiti TK, Bhattacharya D, Kundu SC. Investigating the potential of combined growth factors delivery, from non-mulberry silk fibroin grafted poly(ɛ-caprolactone)/hydroxyapatite nanofibrous scaffold, in bone tissue engineering. Appl Mater Today. 2016;5:52–67.CrossRef
64.
go back to reference Alici-Garipcan A, Korkusuz P, Bilgic E, Askin K, Aydin HM, Ozturk E, et al. Critical-size alveolar defect treatment via TGF-β3 and BMP-2 releasing hybrid constructs. J Biomater Sci Polym Ed. 2019;30(5):415–36.PubMedCrossRef Alici-Garipcan A, Korkusuz P, Bilgic E, Askin K, Aydin HM, Ozturk E, et al. Critical-size alveolar defect treatment via TGF-β3 and BMP-2 releasing hybrid constructs. J Biomater Sci Polym Ed. 2019;30(5):415–36.PubMedCrossRef
65.
go back to reference Wang Z, Sun J, Li Y, Chen C, Xu Y, Zang X, et al. Experimental study of the synergistic effect and network regulation mechanisms of an applied combination of BMP-2, VEGF, and TGF-β1 on osteogenic differentiation. J Cell Biochem. 2020;121(3):2394–405.PubMedCrossRef Wang Z, Sun J, Li Y, Chen C, Xu Y, Zang X, et al. Experimental study of the synergistic effect and network regulation mechanisms of an applied combination of BMP-2, VEGF, and TGF-β1 on osteogenic differentiation. J Cell Biochem. 2020;121(3):2394–405.PubMedCrossRef
66.
go back to reference Dong K, Zhou W-J, Liu Z-H, Hao P-J. The extract of concentrated growth factor enhances osteogenic activity of osteoblast through PI3K/AKT pathway and promotes bone regeneration in vivo. Int J Implant Dent. 2021;7(1):70.PubMedPubMedCentralCrossRef Dong K, Zhou W-J, Liu Z-H, Hao P-J. The extract of concentrated growth factor enhances osteogenic activity of osteoblast through PI3K/AKT pathway and promotes bone regeneration in vivo. Int J Implant Dent. 2021;7(1):70.PubMedPubMedCentralCrossRef
67.
go back to reference Saito A, Nagaishi K, Iba K, Mizue Y, Chikenji T, Otani M, et al. Umbilical cord extracts improve osteoporotic abnormalities of bone marrow-derived mesenchymal stem cells and promote their therapeutic effects on ovariectomised rats. Sci Rep. 2018;8(1):1161.PubMedPubMedCentralCrossRef Saito A, Nagaishi K, Iba K, Mizue Y, Chikenji T, Otani M, et al. Umbilical cord extracts improve osteoporotic abnormalities of bone marrow-derived mesenchymal stem cells and promote their therapeutic effects on ovariectomised rats. Sci Rep. 2018;8(1):1161.PubMedPubMedCentralCrossRef
Metadata
Title
The extracts of osteoblast developed from adipose-derived stem cell and its role in osteogenesis
Authors
Rattanawan Tangporncharoen
Atiruj Silathapanasakul
Patcharapa Tragoonlugkana
Chatchai Pruksapong
Tulyapruek Tawonsawatruk
Aungkura Supokawej
Publication date
01-12-2024
Publisher
BioMed Central
Published in
Journal of Orthopaedic Surgery and Research / Issue 1/2024
Electronic ISSN: 1749-799X
DOI
https://doi.org/10.1186/s13018-024-04747-3

Other articles of this Issue 1/2024

Journal of Orthopaedic Surgery and Research 1/2024 Go to the issue