Skip to main content
Top
Published in: Arthritis Research & Therapy 2/2014

Open Access 01-04-2014 | Research article

Growth differentiation factor 6 and transforming growth factor-beta differentially mediate mesenchymal stem cell differentiation, composition, and micromechanical properties of nucleus pulposus constructs

Authors: Louise E Clarke, James C McConnell, Michael J Sherratt, Brian Derby, Stephen M Richardson, Judith A Hoyland

Published in: Arthritis Research & Therapy | Issue 2/2014

Login to get access

Abstract

Introduction

Currently, there is huge research focus on the development of novel cell-based regeneration and tissue-engineering therapies for the treatment of intervertebral disc degeneration and the associated back pain. Both bone marrow-derived (BM) mesenchymal stem cells (MSCs) and adipose-derived MSCs (AD-MSCs) are proposed as suitable cells for such therapies. However, currently no consensus exists as to the optimum growth factor needed to drive differentiation to a nucleus pulposus (NP)-like phenotype. The aim of this study was to investigate the effect of growth differentiation factor-6 (GDF6), compared with other transforming growth factor (TGF) superfamily members, on discogenic differentiation of MSCs, the matrix composition, and micromechanics of engineered NP tissue constructs.

Methods

Patient-matched human AD-MSCs and BM-MSCs were seeded into type I collagen hydrogels and cultured in differentiating media supplemented with TGF-β3, GDF5, or GDF6. After 14 days, quantitative polymerase chain reaction analysis of chondrogenic and novel NP marker genes and sulfated glycosaminoglycan (sGAG) content of the construct and media components were measured. Additionally, construct micromechanics were analyzed by using scanning acoustic microscopy (SAM).

Results

GDF6 stimulation of BM-MSCs and AD-MSCs resulted in a significant increase in expression of novel NP marker genes, a higher aggrecan-to-type II collagen gene expression ratio, and higher sGAG production compared with TGF-β or GDF5 stimulation. These effects were greater in AD-MSCs than in BM-MSCs. Furthermore, the acoustic-wave speed measured by using SAM, and therefore tissue stiffness, was lowest in GDF6-stiumlated AD-MSC constructs.

Conclusions

The data suggest that GDF6 stimulation of AD-MSCs induces differentiation to an NP-like phenotype and results in a more proteoglycan-rich matrix. Micromechanical analysis shows that the GDF6-treated AD-MSCs have a less-stiff matrix composition, suggesting that the growth factor is inducing a matrix that is more akin to the native NP-like tissue. Thus, this cell and growth-factor combination may be the ideal choice for cell-based intervertebral disc (IVD)-regeneration therapies.
Appendix
Available only for authorised users
Literature
1.
go back to reference Cheung KM, Karppinen J, Chan D, Ho DW, Song YQ, Sham P, Cheah KS, Leong JC, Luk KD: Prevalence and pattern of lumbar magnetic resonance imaging changes in a population study of one thousand forty-three individuals. Spine (Phila). 2009, 34: 934-940. 10.1097/BRS.0b013e3181a01b3f.CrossRef Cheung KM, Karppinen J, Chan D, Ho DW, Song YQ, Sham P, Cheah KS, Leong JC, Luk KD: Prevalence and pattern of lumbar magnetic resonance imaging changes in a population study of one thousand forty-three individuals. Spine (Phila). 2009, 34: 934-940. 10.1097/BRS.0b013e3181a01b3f.CrossRef
2.
go back to reference Roughley PJ: Biology of intervertebral disc aging and degeneration: involvement of the extracellular matrix. Spine (Phila). 2004, 29: 2691-2699. 10.1097/01.brs.0000146101.53784.b1.CrossRef Roughley PJ: Biology of intervertebral disc aging and degeneration: involvement of the extracellular matrix. Spine (Phila). 2004, 29: 2691-2699. 10.1097/01.brs.0000146101.53784.b1.CrossRef
3.
go back to reference Adams MA, Roughley PJ: What is intervertebral disc degeneration, and what causes it?. Spine (Phila). 2006, 31: 2151-2161. 10.1097/01.brs.0000231761.73859.2c.CrossRef Adams MA, Roughley PJ: What is intervertebral disc degeneration, and what causes it?. Spine (Phila). 2006, 31: 2151-2161. 10.1097/01.brs.0000231761.73859.2c.CrossRef
4.
go back to reference Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR: Multilineage potential of adult human mesenchymal stem cells. Science. 1999, 284: 143-147. 10.1126/science.284.5411.143.CrossRefPubMed Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR: Multilineage potential of adult human mesenchymal stem cells. Science. 1999, 284: 143-147. 10.1126/science.284.5411.143.CrossRefPubMed
5.
go back to reference Richardson SM, Curran JM, Chen R, Vaughan-Thomas A, Hunt JA, Freemont AJ, Hoyland JA: The differentiation of bone marrow mesenchymal stem cells into chondrocyte-like cells on poly-L-lactic acid (PLLA) scaffolds. Biomaterials. 2006, 27: 4069-4078. 10.1016/j.biomaterials.2006.03.017.CrossRefPubMed Richardson SM, Curran JM, Chen R, Vaughan-Thomas A, Hunt JA, Freemont AJ, Hoyland JA: The differentiation of bone marrow mesenchymal stem cells into chondrocyte-like cells on poly-L-lactic acid (PLLA) scaffolds. Biomaterials. 2006, 27: 4069-4078. 10.1016/j.biomaterials.2006.03.017.CrossRefPubMed
6.
go back to reference Minogue BM, Richardson SM, Zeef LA, Freemont AJ, Hoyland JA: Characterization of the human nucleus pulposus cell phenotype and evaluation of novel marker gene expression to define adult stem cell differentiation. Arthritis Rheum. 2010, 62: 3695-3705. 10.1002/art.27710.CrossRefPubMed Minogue BM, Richardson SM, Zeef LA, Freemont AJ, Hoyland JA: Characterization of the human nucleus pulposus cell phenotype and evaluation of novel marker gene expression to define adult stem cell differentiation. Arthritis Rheum. 2010, 62: 3695-3705. 10.1002/art.27710.CrossRefPubMed
7.
go back to reference Sive JI, Baird P, Jeziorsk M, Watkins A, Hoyland JA, Freemont AJ: Expression of chondrocyte markers by cells of normal and degenerate intervertebral discs. Mol Pathol. 2002, 55: 91-97. 10.1136/mp.55.2.91.PubMedCentralCrossRefPubMed Sive JI, Baird P, Jeziorsk M, Watkins A, Hoyland JA, Freemont AJ: Expression of chondrocyte markers by cells of normal and degenerate intervertebral discs. Mol Pathol. 2002, 55: 91-97. 10.1136/mp.55.2.91.PubMedCentralCrossRefPubMed
8.
go back to reference Mwale F, Roughley P, Antoniou J: Distinction between the extracellular matrix of the nucleus pulposus and hyaline cartilage: a requisite for tissue engineering of intervertebral disc. Eur Cell Mater. 2004, 8: 58-64.PubMed Mwale F, Roughley P, Antoniou J: Distinction between the extracellular matrix of the nucleus pulposus and hyaline cartilage: a requisite for tissue engineering of intervertebral disc. Eur Cell Mater. 2004, 8: 58-64.PubMed
9.
go back to reference Minouge BM, Richardson SM, Zeef LA, Freemont AJ, Hoyland JA: Transcriptional profiling of bovine intervertebral disc cells: implications for identification of normal and degenerate human intervertebral disc cell phenotypes. Arthritis Res Ther. 2010, 12: R22-10.1186/ar2929.CrossRef Minouge BM, Richardson SM, Zeef LA, Freemont AJ, Hoyland JA: Transcriptional profiling of bovine intervertebral disc cells: implications for identification of normal and degenerate human intervertebral disc cell phenotypes. Arthritis Res Ther. 2010, 12: R22-10.1186/ar2929.CrossRef
10.
go back to reference Bailey AJ: Molecular mechanisms of ageing in connective tissues. Mech Ageing Dev. 2001, 122: 735-755. 10.1016/S0047-6374(01)00225-1.CrossRefPubMed Bailey AJ: Molecular mechanisms of ageing in connective tissues. Mech Ageing Dev. 2001, 122: 735-755. 10.1016/S0047-6374(01)00225-1.CrossRefPubMed
11.
go back to reference Akhtar R, Sherratt MJ, Cruickshank JK, Derby B: Characterizing the elastic properties of tissues. Mater Today (Kidlington). 2011, 14: 96-105. 10.1016/S1369-7021(11)70059-1.CrossRef Akhtar R, Sherratt MJ, Cruickshank JK, Derby B: Characterizing the elastic properties of tissues. Mater Today (Kidlington). 2011, 14: 96-105. 10.1016/S1369-7021(11)70059-1.CrossRef
12.
go back to reference Sherratt MJ: Tissue elasticity and the ageing elastic fibre. Age (Dordr). 2009, 31: 305-325. 10.1007/s11357-009-9103-6.CrossRef Sherratt MJ: Tissue elasticity and the ageing elastic fibre. Age (Dordr). 2009, 31: 305-325. 10.1007/s11357-009-9103-6.CrossRef
13.
go back to reference Karsenty G, Wagner EF: Reaching a genetic and molecular understanding of skeletal development. Dev Cell. 2002, 2: 389-406. 10.1016/S1534-5807(02)00157-0.CrossRefPubMed Karsenty G, Wagner EF: Reaching a genetic and molecular understanding of skeletal development. Dev Cell. 2002, 2: 389-406. 10.1016/S1534-5807(02)00157-0.CrossRefPubMed
14.
go back to reference Settle SH, Rountree RB, Sinha A, Thacker A, Higgins K, Kingsley DM: Multiple joint and skeletal patterning defects caused by single and double mutations in the mouse Gdf6 and Gdf5 genes. Dev Biol. 2003, 254: 116-130. 10.1016/S0012-1606(02)00022-2.CrossRefPubMed Settle SH, Rountree RB, Sinha A, Thacker A, Higgins K, Kingsley DM: Multiple joint and skeletal patterning defects caused by single and double mutations in the mouse Gdf6 and Gdf5 genes. Dev Biol. 2003, 254: 116-130. 10.1016/S0012-1606(02)00022-2.CrossRefPubMed
15.
go back to reference Asai-Coakwell M, French CR, Ye M, Garcha K, Bigot K, Perera AG, Staehling-Hampton K, Mema SC, Chanda B, Mushegian A, Bamforth S, Doschak MR, Li G, Dobbs MB, Giampietro PF, Brooks BP, Vijayalakshmi P, Sauvé Y, Abitbol M, Sundaresan P, van Heyningen V, Pourquié O, Underhill TM, Waskiewicz AJ, Lehmann OJ: Incomplete penetrance and phenotypic variability characterize Gdf6-attributable oculo-skeletal phenotypes. Hum Mol Genet. 2009, 18: 1110-1121. 10.1093/hmg/ddp008.CrossRefPubMed Asai-Coakwell M, French CR, Ye M, Garcha K, Bigot K, Perera AG, Staehling-Hampton K, Mema SC, Chanda B, Mushegian A, Bamforth S, Doschak MR, Li G, Dobbs MB, Giampietro PF, Brooks BP, Vijayalakshmi P, Sauvé Y, Abitbol M, Sundaresan P, van Heyningen V, Pourquié O, Underhill TM, Waskiewicz AJ, Lehmann OJ: Incomplete penetrance and phenotypic variability characterize Gdf6-attributable oculo-skeletal phenotypes. Hum Mol Genet. 2009, 18: 1110-1121. 10.1093/hmg/ddp008.CrossRefPubMed
16.
go back to reference Le Maitre CL, Freemont AJ, Hoyland JA: Expression of cartilage-derived morphogenetic protein in human intervertebral discs and its effect on matrix synthesis in degenerate human nucleus pulposus cells. Arthritis Res Ther. 2009, 11: R137-10.1186/ar2808.PubMedCentralCrossRefPubMed Le Maitre CL, Freemont AJ, Hoyland JA: Expression of cartilage-derived morphogenetic protein in human intervertebral discs and its effect on matrix synthesis in degenerate human nucleus pulposus cells. Arthritis Res Ther. 2009, 11: R137-10.1186/ar2808.PubMedCentralCrossRefPubMed
17.
go back to reference Gantenbein-Ritter B, Benneker LM, Alini M, Grad S: Differential response of human bone marrow stromal cells to either TGF-β (1) or rhGDF-5. Eur Spine J. 2011, 20: 962-971. 10.1007/s00586-010-1619-z.PubMedCentralCrossRefPubMed Gantenbein-Ritter B, Benneker LM, Alini M, Grad S: Differential response of human bone marrow stromal cells to either TGF-β (1) or rhGDF-5. Eur Spine J. 2011, 20: 962-971. 10.1007/s00586-010-1619-z.PubMedCentralCrossRefPubMed
18.
go back to reference Stoyanov JV, Gantenbein-Ritter B, Bertolo A, Aebli N, Baur M, Alini M, Grad S: Role of hypoxia and growth differentiation factor-5 on differentiation of human mesenchymal stem cells toward intervertebral nucleus pulposus like cells. Eur Cell Mater. 2011, 21: 533-547.PubMed Stoyanov JV, Gantenbein-Ritter B, Bertolo A, Aebli N, Baur M, Alini M, Grad S: Role of hypoxia and growth differentiation factor-5 on differentiation of human mesenchymal stem cells toward intervertebral nucleus pulposus like cells. Eur Cell Mater. 2011, 21: 533-547.PubMed
19.
go back to reference Peroglio M, Eglin D, Benneker LM, Alini M, Grad S: Thermoreversible hyaluronan-based hydrogel supports in vitro and ex vivo disc-like differentiation of human mesenchymal stem cells. Spine J. 2013, (in press) Peroglio M, Eglin D, Benneker LM, Alini M, Grad S: Thermoreversible hyaluronan-based hydrogel supports in vitro and ex vivo disc-like differentiation of human mesenchymal stem cells. Spine J. 2013, (in press)
20.
go back to reference Feng G, Wan Y, Balian G, Laurencin CT, Li X: Adenovirus-mediated expression of growth and differentiation factor-5 promotes chondrogenesis of adipose stem cells. Growth Factors. 2008, 26: 132-142. 10.1080/08977190802105917.PubMedCentralCrossRefPubMed Feng G, Wan Y, Balian G, Laurencin CT, Li X: Adenovirus-mediated expression of growth and differentiation factor-5 promotes chondrogenesis of adipose stem cells. Growth Factors. 2008, 26: 132-142. 10.1080/08977190802105917.PubMedCentralCrossRefPubMed
21.
go back to reference Tassabehji M, Fang ZM, Hilton EN, McGaughran J, Zhao Z, de Bock CE, Howard E, Malass M, Donnai D, Diwan A, Manson FD, Murrell D, Clarke RA: Mutations in GDF6 are associated with vertebral segmentation defects in Klippel-Feil syndrome. Hum Mutat. 2008, 29: 1017-1027. 10.1002/humu.20741.CrossRefPubMed Tassabehji M, Fang ZM, Hilton EN, McGaughran J, Zhao Z, de Bock CE, Howard E, Malass M, Donnai D, Diwan A, Manson FD, Murrell D, Clarke RA: Mutations in GDF6 are associated with vertebral segmentation defects in Klippel-Feil syndrome. Hum Mutat. 2008, 29: 1017-1027. 10.1002/humu.20741.CrossRefPubMed
22.
go back to reference Wei A, Williams LA, Bhargav D, Shen B, Kishen T, Duffy N, Diwan AD: BMP13 prevents the effects of annular injury in an ovine model. Int J Biol Sci. 2009, 5: 388-396.PubMedCentralCrossRefPubMed Wei A, Williams LA, Bhargav D, Shen B, Kishen T, Duffy N, Diwan AD: BMP13 prevents the effects of annular injury in an ovine model. Int J Biol Sci. 2009, 5: 388-396.PubMedCentralCrossRefPubMed
23.
go back to reference Zhao X, Akhtar R, Nijenhuis N, Wilkinson SJ, Murphy L, Ballestrem C, Sherratt MJ, Watson RE, Derby B: Multi-layer phase analysis: quantifying the elastic properties of soft tissue and live cells with ultra-high-frequency scanning acoustic microscopy. IEEE Trans Ultrason Ferroelectr Freq Control. 2012, 59: 610-620.PubMedCentralCrossRefPubMed Zhao X, Akhtar R, Nijenhuis N, Wilkinson SJ, Murphy L, Ballestrem C, Sherratt MJ, Watson RE, Derby B: Multi-layer phase analysis: quantifying the elastic properties of soft tissue and live cells with ultra-high-frequency scanning acoustic microscopy. IEEE Trans Ultrason Ferroelectr Freq Control. 2012, 59: 610-620.PubMedCentralCrossRefPubMed
24.
go back to reference Graham HK, Akhtar R, Kridiotis C, Derby B, Kundu T, Trafford AW, Sherratt MJ: Localised micro-mechanical stiffening in the ageing aorta. Mech Ageing Dev. 2011, 132: 459-467. 10.1016/j.mad.2011.07.003.PubMedCentralCrossRefPubMed Graham HK, Akhtar R, Kridiotis C, Derby B, Kundu T, Trafford AW, Sherratt MJ: Localised micro-mechanical stiffening in the ageing aorta. Mech Ageing Dev. 2011, 132: 459-467. 10.1016/j.mad.2011.07.003.PubMedCentralCrossRefPubMed
25.
go back to reference Strassburg S, Richardson SM, Freemont AJ, Hoyland JA: Co-culture induces mesenchymal stem cell differentiation and modulation of the degenerate human nucleus pulposus cell phenotype. Regen Med. 2010, 5: 701-711. 10.2217/rme.10.59.CrossRefPubMed Strassburg S, Richardson SM, Freemont AJ, Hoyland JA: Co-culture induces mesenchymal stem cell differentiation and modulation of the degenerate human nucleus pulposus cell phenotype. Regen Med. 2010, 5: 701-711. 10.2217/rme.10.59.CrossRefPubMed
26.
go back to reference Purmessur D, Schek RM, Abbott RD, Ballif BA, Godburn KE, Iatridis JC: Notochordal conditioned media from tissue increases proteoglycan accumulation and promotes a healthy nucleus pulposus phenotype in human mesenchymal stem cells. Arthritis Res Ther. 2011, 13: R81-10.1186/ar3344.PubMedCentralCrossRefPubMed Purmessur D, Schek RM, Abbott RD, Ballif BA, Godburn KE, Iatridis JC: Notochordal conditioned media from tissue increases proteoglycan accumulation and promotes a healthy nucleus pulposus phenotype in human mesenchymal stem cells. Arthritis Res Ther. 2011, 13: R81-10.1186/ar3344.PubMedCentralCrossRefPubMed
27.
go back to reference Shen B, Bhargav D, Wei A, Williams LA, Tao H, Ma DD, Diwan AD: BMP-13 emerges as a potential inhibitor of bone formation. Int J Biol Sci. 2009, 5: 192-200.PubMedCentralCrossRefPubMed Shen B, Bhargav D, Wei A, Williams LA, Tao H, Ma DD, Diwan AD: BMP-13 emerges as a potential inhibitor of bone formation. Int J Biol Sci. 2009, 5: 192-200.PubMedCentralCrossRefPubMed
28.
go back to reference Livak KJ, Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods. 2001, 25: 402-408. 10.1006/meth.2001.1262.CrossRefPubMed Livak KJ, Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods. 2001, 25: 402-408. 10.1006/meth.2001.1262.CrossRefPubMed
29.
go back to reference Farndale RW, Buttle DJ, Barrett AJ: Improved quantitation and discrimination of sulphated glycosaminoglycans by use of dimethylene blue. Biochim Biophys Acta. 1986, 883: 173-177. 10.1016/0304-4165(86)90306-5.CrossRefPubMed Farndale RW, Buttle DJ, Barrett AJ: Improved quantitation and discrimination of sulphated glycosaminoglycans by use of dimethylene blue. Biochim Biophys Acta. 1986, 883: 173-177. 10.1016/0304-4165(86)90306-5.CrossRefPubMed
30.
go back to reference Richardson SM, Hughes N, Hunt JA, Freemont AJ, Hoyland JA: Human mesenchymal stem cell differentiation to NP-like cells in chitosan-glycerophosphate hydrogels. Biomaterials. 2008, 29: 85-93. 10.1016/j.biomaterials.2007.09.018.CrossRefPubMed Richardson SM, Hughes N, Hunt JA, Freemont AJ, Hoyland JA: Human mesenchymal stem cell differentiation to NP-like cells in chitosan-glycerophosphate hydrogels. Biomaterials. 2008, 29: 85-93. 10.1016/j.biomaterials.2007.09.018.CrossRefPubMed
31.
go back to reference Graham HK, Trafford AW: Spatial disruption and enhanced degradation of collagen with the transition from compensated ventricular hypertrophy to symptomatic congestive heart failure. Am J Physiol Heart Circ Physiol. 2007, 292: H1364-H1372.CrossRefPubMed Graham HK, Trafford AW: Spatial disruption and enhanced degradation of collagen with the transition from compensated ventricular hypertrophy to symptomatic congestive heart failure. Am J Physiol Heart Circ Physiol. 2007, 292: H1364-H1372.CrossRefPubMed
32.
go back to reference Li Z, Kupcsik L, Yao SJ, Alini M, Stoddart MJ: Chondrogenesis of human bone marrow mesenchymal stem cells in fibrin-polyurethane composites. Tissue Eng Part A. 2009, 15: 1729-1737. 10.1089/ten.tea.2008.0247.CrossRefPubMed Li Z, Kupcsik L, Yao SJ, Alini M, Stoddart MJ: Chondrogenesis of human bone marrow mesenchymal stem cells in fibrin-polyurethane composites. Tissue Eng Part A. 2009, 15: 1729-1737. 10.1089/ten.tea.2008.0247.CrossRefPubMed
33.
go back to reference Clouet J, Grimandi G, Pot-Vaucel M, Masson M, Fellah HB, Guigand L, Cherel Y, Bord E, Rannou F, Weiss P, Guicheux J, Vinatier C: Identification of phenotypic discriminating markers for intervertebral disc cells and articular chondrocytes. Rheumatology. 2009, 48: 1447-1450. 10.1093/rheumatology/kep262.CrossRefPubMed Clouet J, Grimandi G, Pot-Vaucel M, Masson M, Fellah HB, Guigand L, Cherel Y, Bord E, Rannou F, Weiss P, Guicheux J, Vinatier C: Identification of phenotypic discriminating markers for intervertebral disc cells and articular chondrocytes. Rheumatology. 2009, 48: 1447-1450. 10.1093/rheumatology/kep262.CrossRefPubMed
34.
go back to reference Buckley CT, Kelly DJ: Expansion in the presence of FGF-2 enhances the functional development of cartilaginous tissues engineered using infrapatellar fat pad derived MSCs. J Mech Behav Biomed Mater. 2012, 11: 102-111.CrossRefPubMed Buckley CT, Kelly DJ: Expansion in the presence of FGF-2 enhances the functional development of cartilaginous tissues engineered using infrapatellar fat pad derived MSCs. J Mech Behav Biomed Mater. 2012, 11: 102-111.CrossRefPubMed
35.
go back to reference Turner CH: The elastic properties of trabecular and cortical bone tissues are similar: results from two microscopic measurement techniques. J Biomech. 1999, 32: 437-441. 10.1016/S0021-9290(98)00177-8.CrossRefPubMed Turner CH: The elastic properties of trabecular and cortical bone tissues are similar: results from two microscopic measurement techniques. J Biomech. 1999, 32: 437-441. 10.1016/S0021-9290(98)00177-8.CrossRefPubMed
36.
go back to reference Hennig T, Lorenz H, Thiel A, Goetzke K, Dickhut A, Geiger F, Richter W: Reduced chondrogenic potential of adipose tissue derived stromal cells correlates with an altered TGF beta receptor and BMP profile and is overcome by BMP-6. J Cell Physiol. 2007, 211: 682-691. 10.1002/jcp.20977.CrossRefPubMed Hennig T, Lorenz H, Thiel A, Goetzke K, Dickhut A, Geiger F, Richter W: Reduced chondrogenic potential of adipose tissue derived stromal cells correlates with an altered TGF beta receptor and BMP profile and is overcome by BMP-6. J Cell Physiol. 2007, 211: 682-691. 10.1002/jcp.20977.CrossRefPubMed
37.
go back to reference Mazerbourg S, Sangkuhl K, Luo CW, Sudo S, Klein C, Hsueh AJ: Identification of receptors and signalling pathways for orphan bone morphogenetic protein/growth differentiation factor ligands based on genomic analyses. J Biol Chem. 2005, 280: 32122-32132. 10.1074/jbc.M504629200.CrossRefPubMed Mazerbourg S, Sangkuhl K, Luo CW, Sudo S, Klein C, Hsueh AJ: Identification of receptors and signalling pathways for orphan bone morphogenetic protein/growth differentiation factor ligands based on genomic analyses. J Biol Chem. 2005, 280: 32122-32132. 10.1074/jbc.M504629200.CrossRefPubMed
38.
39.
go back to reference Clendenning DE, Mortlock DP: The BMP ligand Gdf6 prevents differentiation of coronal suture mesenchyme in early cranial development. PLoS One. 2012, 7: e36789-10.1371/journal.pone.0036789.PubMedCentralCrossRefPubMed Clendenning DE, Mortlock DP: The BMP ligand Gdf6 prevents differentiation of coronal suture mesenchyme in early cranial development. PLoS One. 2012, 7: e36789-10.1371/journal.pone.0036789.PubMedCentralCrossRefPubMed
Metadata
Title
Growth differentiation factor 6 and transforming growth factor-beta differentially mediate mesenchymal stem cell differentiation, composition, and micromechanical properties of nucleus pulposus constructs
Authors
Louise E Clarke
James C McConnell
Michael J Sherratt
Brian Derby
Stephen M Richardson
Judith A Hoyland
Publication date
01-04-2014
Publisher
BioMed Central
Published in
Arthritis Research & Therapy / Issue 2/2014
Electronic ISSN: 1478-6362
DOI
https://doi.org/10.1186/ar4505

Other articles of this Issue 2/2014

Arthritis Research & Therapy 2/2014 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.