Skip to main content
Top
Published in: Clinical & Experimental Metastasis 4/2010

01-04-2010 | Research Paper

GPR56 Plays varying roles in endogenous cancer progression

Authors: Lei Xu, Shahinoor Begum, Marc Barry, Denise Crowley, Liquan Yang, Roderick T. Bronson, Richard O. Hynes

Published in: Clinical & Experimental Metastasis | Issue 4/2010

Login to get access

Abstract

GPR56, a non-classical adhesion receptor, was previously reported to suppress tumor growth and metastasis in xenograft models using human melanoma cell lines. To understand whether GPR56 plays similar roles in the development of endogenous tumors, we analyzed cancer progression in Gpr56 −/− mice using a variety of transgenic cancer models. Our results showed that GPR56 suppressed prostate cancer progression in the TRAMP model on a mixed genetic background, similar to its roles in progression of melanoma xenografts. However, its roles in other cancer types appeared to be complex. It had marginal effects on tumor onset of mammary tumors in the MMTV–PyMT model, but had no effects on subsequent tumor progression in either the MMTV–PyMT mice or the melanoma model, Ink4a/Arf −/− tyr-Hras. These results indicate diverse roles of GPR56 in cancer progression and provide the first genetic evidence for the involvement of an adhesion GPCR in endogenous cancer development.
Appendix
Available only for authorised users
Literature
1.
go back to reference Morgan MR, Humphries MJ, Bass MD (2007) Synergistic control of cell adhesion by integrins and syndecans. Nat Rev Mol Cell Biol 8(12):957–969CrossRefPubMed Morgan MR, Humphries MJ, Bass MD (2007) Synergistic control of cell adhesion by integrins and syndecans. Nat Rev Mol Cell Biol 8(12):957–969CrossRefPubMed
2.
3.
go back to reference Miranti CK, Brugge JS (2002) Sensing the environment: a historical perspective on integrin signal transduction. Nat Cell Biol 4(4):E83–E90CrossRefPubMed Miranti CK, Brugge JS (2002) Sensing the environment: a historical perspective on integrin signal transduction. Nat Cell Biol 4(4):E83–E90CrossRefPubMed
4.
go back to reference Streuli CH, Akhtar N (2009) Signal co-operation between integrins and other receptor systems. Biochem J 418(3):491–506CrossRefPubMed Streuli CH, Akhtar N (2009) Signal co-operation between integrins and other receptor systems. Biochem J 418(3):491–506CrossRefPubMed
5.
go back to reference Lagerstrom MC, Schioth HB (2008) Structural diversity of G protein-coupled receptors and significance for drug discovery. Nat Rev Drug Discov 7(4):339–357CrossRefPubMed Lagerstrom MC, Schioth HB (2008) Structural diversity of G protein-coupled receptors and significance for drug discovery. Nat Rev Drug Discov 7(4):339–357CrossRefPubMed
6.
go back to reference Stacey M, Chang GW, Davies JQ et al (2003) The epidermal growth factor-like domains of the human EMR2 receptor mediate cell attachment through chondroitin sulfate glycosaminoglycans. Blood 102(8):2916–2924CrossRefPubMed Stacey M, Chang GW, Davies JQ et al (2003) The epidermal growth factor-like domains of the human EMR2 receptor mediate cell attachment through chondroitin sulfate glycosaminoglycans. Blood 102(8):2916–2924CrossRefPubMed
7.
go back to reference Kwakkenbos MJ, Pouwels W, Matmati M et al (2005) Expression of the largest CD97 and EMR2 isoforms on leukocytes facilitates a specific interaction with chondroitin sulfate on B cells. J Leukoc Biol 77(1):112–119PubMed Kwakkenbos MJ, Pouwels W, Matmati M et al (2005) Expression of the largest CD97 and EMR2 isoforms on leukocytes facilitates a specific interaction with chondroitin sulfate on B cells. J Leukoc Biol 77(1):112–119PubMed
8.
go back to reference Xu L, Begum S, Hearn JD et al (2006) GPR56, an atypical G protein-coupled receptor, binds tissue transglutaminase, TG2, and inhibits melanoma tumor growth and metastasis. Proc Natl Acad Sci USA 103(24):9023–9028CrossRefPubMed Xu L, Begum S, Hearn JD et al (2006) GPR56, an atypical G protein-coupled receptor, binds tissue transglutaminase, TG2, and inhibits melanoma tumor growth and metastasis. Proc Natl Acad Sci USA 103(24):9023–9028CrossRefPubMed
9.
go back to reference Wang T, Ward Y, Tian L et al (2005) CD97, an adhesion receptor on inflammatory cells, stimulates angiogenesis through binding integrin counterreceptors on endothelial cells. Blood 105(7):2836–2844CrossRefPubMed Wang T, Ward Y, Tian L et al (2005) CD97, an adhesion receptor on inflammatory cells, stimulates angiogenesis through binding integrin counterreceptors on endothelial cells. Blood 105(7):2836–2844CrossRefPubMed
10.
go back to reference Vallon M, Essler M (2006) Proteolytically processed soluble tumor endothelial marker (TEM) 5 mediates endothelial cell survival during angiogenesis by linking integrin alpha(v)beta3 to glycosaminoglycans. J Biol Chem 281(45):34179–34188CrossRefPubMed Vallon M, Essler M (2006) Proteolytically processed soluble tumor endothelial marker (TEM) 5 mediates endothelial cell survival during angiogenesis by linking integrin alpha(v)beta3 to glycosaminoglycans. J Biol Chem 281(45):34179–34188CrossRefPubMed
11.
go back to reference Lorand L, Graham RM (2003) Transglutaminases: crosslinking enzymes with pleiotropic functions. Nat Rev Mol Cell Biol 4(2):140–156CrossRefPubMed Lorand L, Graham RM (2003) Transglutaminases: crosslinking enzymes with pleiotropic functions. Nat Rev Mol Cell Biol 4(2):140–156CrossRefPubMed
12.
go back to reference Xu L, Hynes RO (2007) GPR56 and TG2: possible roles in suppression of tumor growth by the microenvironment. Cell Cycle 6(2):160–165PubMed Xu L, Hynes RO (2007) GPR56 and TG2: possible roles in suppression of tumor growth by the microenvironment. Cell Cycle 6(2):160–165PubMed
13.
go back to reference Li S, Jin Z, Koirala S et al (2008) GPR56 regulates pial basement membrane integrity and cortical lamination. J Neurosci 28(22):5817–5826CrossRefPubMed Li S, Jin Z, Koirala S et al (2008) GPR56 regulates pial basement membrane integrity and cortical lamination. J Neurosci 28(22):5817–5826CrossRefPubMed
14.
go back to reference Koirala S, Jin Z, Piao X et al (2009) GPR56-regulated granule cell adhesion is essential for rostral cerebellar development. J Neurosci 29(23):7439–7449CrossRefPubMed Koirala S, Jin Z, Piao X et al (2009) GPR56-regulated granule cell adhesion is essential for rostral cerebellar development. J Neurosci 29(23):7439–7449CrossRefPubMed
15.
go back to reference Zendman AJ, Cornelissen IM, Weidle UH et al (1999) TM7XN1, a novel human EGF-TM7-like cDNA, detected with mRNA differential display using human melanoma cell lines with different metastatic potential. FEBS Lett 446(2–3):292–298CrossRefPubMed Zendman AJ, Cornelissen IM, Weidle UH et al (1999) TM7XN1, a novel human EGF-TM7-like cDNA, detected with mRNA differential display using human melanoma cell lines with different metastatic potential. FEBS Lett 446(2–3):292–298CrossRefPubMed
16.
go back to reference Shashidhar S, Lorente G, Nagavarapu U et al (2005) GPR56 is a GPCR that is overexpressed in gliomas and functions in tumor cell adhesion. Oncogene 24(10):1673–1682CrossRefPubMed Shashidhar S, Lorente G, Nagavarapu U et al (2005) GPR56 is a GPCR that is overexpressed in gliomas and functions in tumor cell adhesion. Oncogene 24(10):1673–1682CrossRefPubMed
17.
go back to reference Sud N, Sharma R, Ray R et al (2006) Differential expression of G-protein coupled receptor 56 in human esophageal squamous cell carcinoma. Cancer Lett 233(2):265–270CrossRefPubMed Sud N, Sharma R, Ray R et al (2006) Differential expression of G-protein coupled receptor 56 in human esophageal squamous cell carcinoma. Cancer Lett 233(2):265–270CrossRefPubMed
18.
19.
go back to reference Greenberg NM, DeMayo F, Finegold MJ et al (1995) Prostate cancer in a transgenic mouse. Proc Natl Acad Sci USA 92(8):3439–3443CrossRefPubMed Greenberg NM, DeMayo F, Finegold MJ et al (1995) Prostate cancer in a transgenic mouse. Proc Natl Acad Sci USA 92(8):3439–3443CrossRefPubMed
20.
go back to reference Lin EY, Jones JG, Li P et al (2003) Progression to malignancy in the polyoma middle T oncoprotein mouse breast cancer model provides a reliable model for human diseases. Am J Pathol 163(5):2113–2126PubMed Lin EY, Jones JG, Li P et al (2003) Progression to malignancy in the polyoma middle T oncoprotein mouse breast cancer model provides a reliable model for human diseases. Am J Pathol 163(5):2113–2126PubMed
21.
go back to reference Chin L, Pomerantz J, Polsky D et al (1997) Cooperative effects of INK4a and ras in melanoma susceptibility in vivo. Genes Dev 11(21):2822–2834CrossRefPubMed Chin L, Pomerantz J, Polsky D et al (1997) Cooperative effects of INK4a and ras in melanoma susceptibility in vivo. Genes Dev 11(21):2822–2834CrossRefPubMed
22.
go back to reference Kaplan-Lefko PJ, Chen TM, Ittmann MM et al (2003) Pathobiology of autochthonous prostate cancer in a pre-clinical transgenic mouse model. Prostate 55(3):219–237CrossRefPubMed Kaplan-Lefko PJ, Chen TM, Ittmann MM et al (2003) Pathobiology of autochthonous prostate cancer in a pre-clinical transgenic mouse model. Prostate 55(3):219–237CrossRefPubMed
23.
go back to reference Wong SY, Haack H, Kissil JL et al (2007) Protein 4.1B suppresses prostate cancer progression and metastasis. Proc Natl Acad Sci USA 104(31):12784–12789CrossRefPubMed Wong SY, Haack H, Kissil JL et al (2007) Protein 4.1B suppresses prostate cancer progression and metastasis. Proc Natl Acad Sci USA 104(31):12784–12789CrossRefPubMed
24.
go back to reference Gingrich JR, Barrios RJ, Morton RA et al (1996) Metastatic prostate cancer in a transgenic mouse. Cancer Res 56(18):4096–4102PubMed Gingrich JR, Barrios RJ, Morton RA et al (1996) Metastatic prostate cancer in a transgenic mouse. Cancer Res 56(18):4096–4102PubMed
25.
go back to reference Hurwitz AA, Foster BA, Allison JP, et al (2001) The TRAMP mouse as a model for prostate cancer. Curr Protoc Immunol, Chap. 20: Unit 20 5 Hurwitz AA, Foster BA, Allison JP, et al (2001) The TRAMP mouse as a model for prostate cancer. Curr Protoc Immunol, Chap. 20: Unit 20 5
26.
27.
go back to reference Galle J, Aust G, Schaller G et al (2006) Individual cell-based models of the spatial-temporal organization of multicellular systems–achievements and limitations. Cytometry A 69(7):704–710PubMed Galle J, Aust G, Schaller G et al (2006) Individual cell-based models of the spatial-temporal organization of multicellular systems–achievements and limitations. Cytometry A 69(7):704–710PubMed
28.
go back to reference Nishimori H, Shiratsuchi T, Urano T et al (1997) A novel brain-specific p53-target gene, BAI1, containing thrombospondin type 1 repeats inhibits experimental angiogenesis. Oncogene 15(18):2145–2150CrossRefPubMed Nishimori H, Shiratsuchi T, Urano T et al (1997) A novel brain-specific p53-target gene, BAI1, containing thrombospondin type 1 repeats inhibits experimental angiogenesis. Oncogene 15(18):2145–2150CrossRefPubMed
29.
go back to reference Terskikh AV, Easterday MC, Li L et al (2001) From hematopoiesis to neuropoiesis: evidence of overlapping genetic programs. Proc Natl Acad Sci USA 98(14):7934–7939CrossRefPubMed Terskikh AV, Easterday MC, Li L et al (2001) From hematopoiesis to neuropoiesis: evidence of overlapping genetic programs. Proc Natl Acad Sci USA 98(14):7934–7939CrossRefPubMed
30.
go back to reference Terskikh AV, Miyamoto T, Chang C et al (2003) Gene expression analysis of purified hematopoietic stem cells and committed progenitors. Blood 102(1):94–101CrossRefPubMed Terskikh AV, Miyamoto T, Chang C et al (2003) Gene expression analysis of purified hematopoietic stem cells and committed progenitors. Blood 102(1):94–101CrossRefPubMed
31.
go back to reference Akimov SS, Krylov D, Fleischman LF et al (2000) Tissue transglutaminase is an integrin-binding adhesion coreceptor for fibronectin. J Cell Biol 148(4):825–838CrossRefPubMed Akimov SS, Krylov D, Fleischman LF et al (2000) Tissue transglutaminase is an integrin-binding adhesion coreceptor for fibronectin. J Cell Biol 148(4):825–838CrossRefPubMed
32.
go back to reference Akimov SS, Belkin AM (2001) Cell surface tissue transglutaminase is involved in adhesion and migration of monocytic cells on fibronectin. Blood 98(5):1567–1576CrossRefPubMed Akimov SS, Belkin AM (2001) Cell surface tissue transglutaminase is involved in adhesion and migration of monocytic cells on fibronectin. Blood 98(5):1567–1576CrossRefPubMed
33.
go back to reference Iguchi T, Sakata K, Yoshizaki K et al (2008) Orphan G protein-coupled receptor GPR56 regulates neural progenitor cell migration via a G alpha 12/13 and Rho pathway. J Biol Chem 283(21):14469–14478CrossRefPubMed Iguchi T, Sakata K, Yoshizaki K et al (2008) Orphan G protein-coupled receptor GPR56 regulates neural progenitor cell migration via a G alpha 12/13 and Rho pathway. J Biol Chem 283(21):14469–14478CrossRefPubMed
Metadata
Title
GPR56 Plays varying roles in endogenous cancer progression
Authors
Lei Xu
Shahinoor Begum
Marc Barry
Denise Crowley
Liquan Yang
Roderick T. Bronson
Richard O. Hynes
Publication date
01-04-2010
Publisher
Springer Netherlands
Published in
Clinical & Experimental Metastasis / Issue 4/2010
Print ISSN: 0262-0898
Electronic ISSN: 1573-7276
DOI
https://doi.org/10.1007/s10585-010-9322-3

Other articles of this Issue 4/2010

Clinical & Experimental Metastasis 4/2010 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine