Skip to main content
Top
Published in: Reproductive Biology and Endocrinology 1/2021

Open Access 01-12-2021 | GnRH Agonists | Research

Down-regulation of S100P induces apoptosis in endometrial epithelial cell during GnRH antagonist protocol

Authors: Dan Zhang, Mi Han, Mingjuan Zhou, Mengyu Liu, Yan Li, Bufang Xu, Aijun Zhang

Published in: Reproductive Biology and Endocrinology | Issue 1/2021

Login to get access

Abstract

Background

The gonadotropin-releasing hormone (GnRH) antagonist protocol for in vitro fertilization (IVF) often leads to lower pregnancy rates compared to the GnRH agonist protocol. Decreased endometrial receptivity is one reason for the lower success rate, but the mechanisms underlying this phenomenon remain poorly understood. The S100 calcium protein P (S100P) is a biomarker for endometrial receptivity. Both GnRH antagonist and S100P are involved in mediating cell apoptosis. However, the involvement of S100P in reduced endometrial receptivity during the GnRH antagonist protocol remains unclear.

Methods

Endometrial tissue was collected at the time of implantation window from patients undergoing the GnRH agonist (GnRH-a) or GnRH antagonist (GnRH-ant) protocols, as well as from patients on their natural cycles. Endometrial cell apoptosis and expression levels of S100P, HOXA10, Bax, and Bcl-2 were assessed. Ishikawa cells were cultured to evaluate the effects that GnRH antagonist exposure or S100P up- or down- regulation had on apoptosis.

Results

Endometrial tissue from patients in the GnRH-ant group showed elevated apoptosis and decreased expression of the anti-apoptotic marker Bcl-2. In addition, endometrial expression of S100P was significantly reduced in the GnRH-ant group, and expression of HOXA10 was lower. Immunofluorescence colocalization analysis revealed that S100P was mainly distributed in the epithelium. In vitro experiments showed that knockdown of S100P in Ishikawa cells induced apoptosis, decreased expression of Bcl-2, while overexpression of S100P caused the opposite effects and decreased expression of Bax. Furthermore, endometrial epithelial cells exposed to GnRH antagonist expressed lower levels of S100P and Bcl-2, increased expression of Bax, and had higher rates of apoptosis. The increased apoptosis induced by GnRH antagonist treatment could be rescued by overexpression of S100P.

Conclusions

We found that GnRH antagonist treatment induced endometrial epithelial cell apoptosis by down-regulating S100P, which was detrimental to endometrial receptivity. These results further define a mechanistic role for S100P in contributing to endometrial apoptosis during GnRH antagonist treatment, and suggest that S100P is a potential clinical target to improve the success of IVF using the GnRH antagonist protocol.
Literature
1.
go back to reference Lambalk CB. FR Banga, JA Huirne, M Toftager, a Pinborg, R Homburg, et al. GnRH antagonist versus long agonist protocols in IVF: a systematic review and meta-analysis accounting for patient type. Hum Reprod Update. 2017;23:560–79.CrossRef Lambalk CB. FR Banga, JA Huirne, M Toftager, a Pinborg, R Homburg, et al. GnRH antagonist versus long agonist protocols in IVF: a systematic review and meta-analysis accounting for patient type. Hum Reprod Update. 2017;23:560–79.CrossRef
2.
go back to reference Xu Y, Zhang YS, Zhu DY, Zhai XH, Wu FX, Wang AC. Influence of GnRH antagonist in reproductive women on in vitro fertilization and embryo transfer in fresh cycles. Biomed Rep. 2019;10:113–8.PubMed Xu Y, Zhang YS, Zhu DY, Zhai XH, Wu FX, Wang AC. Influence of GnRH antagonist in reproductive women on in vitro fertilization and embryo transfer in fresh cycles. Biomed Rep. 2019;10:113–8.PubMed
3.
go back to reference Zhang D, Xia L, Xu H, Chen Q, Jin B, Zhang A, et al. Flexible Low-Dose GnRH Antagonist Protocol Is Effective in Patients With Sufficient Ovarian Reserve in IVF. Front Endocrinol (Lausanne). 2018;9:767.CrossRef Zhang D, Xia L, Xu H, Chen Q, Jin B, Zhang A, et al. Flexible Low-Dose GnRH Antagonist Protocol Is Effective in Patients With Sufficient Ovarian Reserve in IVF. Front Endocrinol (Lausanne). 2018;9:767.CrossRef
4.
go back to reference Toftager M, Bogstad J, Lossl K, Praetorius L, Zedeler A, Bryndorf T, et al. Cumulative live birth rates after one ART cycle including all subsequent frozen-thaw cycles in 1050 women: secondary outcome of an RCT comparing GnRH-antagonist and GnRH-agonist protocols. Hum Reprod. 2017;32:556–67.PubMed Toftager M, Bogstad J, Lossl K, Praetorius L, Zedeler A, Bryndorf T, et al. Cumulative live birth rates after one ART cycle including all subsequent frozen-thaw cycles in 1050 women: secondary outcome of an RCT comparing GnRH-antagonist and GnRH-agonist protocols. Hum Reprod. 2017;32:556–67.PubMed
5.
go back to reference Shemesh M. Actions of gonadotrophins on the uterus. Reproduction. 2001;121:835–42.CrossRef Shemesh M. Actions of gonadotrophins on the uterus. Reproduction. 2001;121:835–42.CrossRef
6.
go back to reference Raga F, Casan EM, Kruessel JS, Wen Y, Huang HY, Nezhat C, et al. Quantitative gonadotropin-releasing hormone gene expression and immunohistochemical localization in human endometrium throughout the menstrual cycle. Biol Reprod. 1998;59:661–9.CrossRef Raga F, Casan EM, Kruessel JS, Wen Y, Huang HY, Nezhat C, et al. Quantitative gonadotropin-releasing hormone gene expression and immunohistochemical localization in human endometrium throughout the menstrual cycle. Biol Reprod. 1998;59:661–9.CrossRef
7.
go back to reference Tan O, Bukulmez O. Biochemistry, molecular biology and cell biology of gonadotropin-releasing hormone antagonists. Curr Opin Obstet Gynecol. 2011;23:238–44.CrossRef Tan O, Bukulmez O. Biochemistry, molecular biology and cell biology of gonadotropin-releasing hormone antagonists. Curr Opin Obstet Gynecol. 2011;23:238–44.CrossRef
8.
go back to reference Chen Q, Fan Y, Zhou X, Yan Z, Kuang Y, Zhang A, et al. GnRH antagonist alters the migration of endometrial epithelial cells by reducing CKB. Reproduction. 2020;159:733–43.CrossRef Chen Q, Fan Y, Zhou X, Yan Z, Kuang Y, Zhang A, et al. GnRH antagonist alters the migration of endometrial epithelial cells by reducing CKB. Reproduction. 2020;159:733–43.CrossRef
9.
go back to reference Xu B, Wang J, Xia L, Zhang D, Wu X, Zhang A. Increased Uterine NK cell numbers and perforin expression during the implantation phase in IVF Cycles with GnRH Antagonist Protocol. Sci Rep. 2017;7:39912.CrossRef Xu B, Wang J, Xia L, Zhang D, Wu X, Zhang A. Increased Uterine NK cell numbers and perforin expression during the implantation phase in IVF Cycles with GnRH Antagonist Protocol. Sci Rep. 2017;7:39912.CrossRef
10.
go back to reference Maudsley S, Davidson L, Pawson AJ, Chan R, de Maturana RL, Millar RP. Gonadotropin-releasing hormone (GnRH) antagonists promote proapoptotic signaling in peripheral reproductive tumor cells by activating a Galphai-coupling state of the type I GnRH receptor. Cancer Res. 2004;64:7533–44.CrossRef Maudsley S, Davidson L, Pawson AJ, Chan R, de Maturana RL, Millar RP. Gonadotropin-releasing hormone (GnRH) antagonists promote proapoptotic signaling in peripheral reproductive tumor cells by activating a Galphai-coupling state of the type I GnRH receptor. Cancer Res. 2004;64:7533–44.CrossRef
11.
go back to reference Saatli B, Kizildag S, Posaci C, Dogan E, Koyuncuoglu M, Ulukus EC, et al. Long-term effects of GnRH agonist, GnRH antagonist, and estrogen plus progesterone treatment on apoptosis related genes in rat ovary. Fertil Steril. 2009;91:2006–11.CrossRef Saatli B, Kizildag S, Posaci C, Dogan E, Koyuncuoglu M, Ulukus EC, et al. Long-term effects of GnRH agonist, GnRH antagonist, and estrogen plus progesterone treatment on apoptosis related genes in rat ovary. Fertil Steril. 2009;91:2006–11.CrossRef
12.
go back to reference Fister S, Gunthert AR, Aicher B, Paulini KW, Emons G, Grundker C. GnRH-II antagonists induce apoptosis in human endometrial, ovarian, and breast cancer cells via activation of stress-induced MAPKs p38 and JNK and proapoptotic protein Bax. Cancer Res. 2009;69:6473–81.CrossRef Fister S, Gunthert AR, Aicher B, Paulini KW, Emons G, Grundker C. GnRH-II antagonists induce apoptosis in human endometrial, ovarian, and breast cancer cells via activation of stress-induced MAPKs p38 and JNK and proapoptotic protein Bax. Cancer Res. 2009;69:6473–81.CrossRef
13.
go back to reference Zhang D, Sun C, Ma C, Dai H, Zhang W. Data mining of spatial-temporal expression of genes in the human endometrium during the window of implantation. Reprod Sci. 2012;19:1085–98.CrossRef Zhang D, Sun C, Ma C, Dai H, Zhang W. Data mining of spatial-temporal expression of genes in the human endometrium during the window of implantation. Reprod Sci. 2012;19:1085–98.CrossRef
14.
go back to reference Zhang Q, Hu H, Shi X, Tang W. Knockdown of S100P by lentiviral-mediated RNAi promotes apoptosis and suppresses the colony-formation ability of gastric cancer cells. Oncol Rep. 2014;31:2344–50.CrossRef Zhang Q, Hu H, Shi X, Tang W. Knockdown of S100P by lentiviral-mediated RNAi promotes apoptosis and suppresses the colony-formation ability of gastric cancer cells. Oncol Rep. 2014;31:2344–50.CrossRef
15.
go back to reference Xu B, Zhou M, Wang J, Zhang D, Guo F, Si C, et al. Increased AIF-1-mediated TNF-alpha expression during implantation phase in IVF cycles with GnRH antagonist protocol. Hum Reprod. 2018;33:1270–80.CrossRef Xu B, Zhou M, Wang J, Zhang D, Guo F, Si C, et al. Increased AIF-1-mediated TNF-alpha expression during implantation phase in IVF cycles with GnRH antagonist protocol. Hum Reprod. 2018;33:1270–80.CrossRef
16.
go back to reference Zhang D, Chen X, Xia H, Wang L, Zhao H, Xu B, et al. Promotion of the occurrence of endometrioid carcinoma by S100 calcium binding protein P. BMC Cancer. 2020;20:845.CrossRef Zhang D, Chen X, Xia H, Wang L, Zhao H, Xu B, et al. Promotion of the occurrence of endometrioid carcinoma by S100 calcium binding protein P. BMC Cancer. 2020;20:845.CrossRef
17.
go back to reference Cui J, Liu X, Yang L, Che S, Guo H, Han J, et al. MiR-184 Combined with STC2 Promotes Endometrial Epithelial Cell Apoptosis in Dairy Goats via RAS/RAF/MEK/ERK Pathway. Genes (Basel). 2020;11:1052. Cui J, Liu X, Yang L, Che S, Guo H, Han J, et al. MiR-184 Combined with STC2 Promotes Endometrial Epithelial Cell Apoptosis in Dairy Goats via RAS/RAF/MEK/ERK Pathway. Genes (Basel). 2020;11:1052.
18.
go back to reference Tong XM, Lin XN, Song T, Liu L, Zhang SY. Calcium-binding protein S100P is highly expressed during the implantation window in human endometrium. Fertil Steril. 2010;94:1510–8.CrossRef Tong XM, Lin XN, Song T, Liu L, Zhang SY. Calcium-binding protein S100P is highly expressed during the implantation window in human endometrium. Fertil Steril. 2010;94:1510–8.CrossRef
19.
go back to reference Zhang D, Ma C, Sun X, Xia H, Zhang W. S100P expression in response to sex steroids during the implantation window in human endometrium. Reprod Biol Endocrinol. 2012;10:106.CrossRef Zhang D, Ma C, Sun X, Xia H, Zhang W. S100P expression in response to sex steroids during the implantation window in human endometrium. Reprod Biol Endocrinol. 2012;10:106.CrossRef
20.
go back to reference Zhu HY, Wang JX, Tong XM, Xue YM, Zhang SY. S100P regulates trophoblast-like cell proliferation via P38 MAPK pathway. Gynecol Endocrinol. 2015;31:796–800.CrossRef Zhu HY, Wang JX, Tong XM, Xue YM, Zhang SY. S100P regulates trophoblast-like cell proliferation via P38 MAPK pathway. Gynecol Endocrinol. 2015;31:796–800.CrossRef
21.
go back to reference Tabrizi MEA, Lancaster TL, Ismail TM, Georgiadou A, Ganguly A, Mistry JJ, et al. S100P enhances the motility and invasion of human trophoblast cell lines. Sci Rep. 2018;8:11488.CrossRef Tabrizi MEA, Lancaster TL, Ismail TM, Georgiadou A, Ganguly A, Mistry JJ, et al. S100P enhances the motility and invasion of human trophoblast cell lines. Sci Rep. 2018;8:11488.CrossRef
22.
go back to reference Popovici RM. NK Betzler, MS Krause, M Luo, J Jauckus, a Germeyer, et al. gene expression profiling of human endometrial-trophoblast interaction in a coculture model. Endocrinology. 2006;147:5662–75.CrossRef Popovici RM. NK Betzler, MS Krause, M Luo, J Jauckus, a Germeyer, et al. gene expression profiling of human endometrial-trophoblast interaction in a coculture model. Endocrinology. 2006;147:5662–75.CrossRef
23.
go back to reference Yeh JS, Steward RG, Dude AM, Shah AA, Goldfarb JM, Muasher SJ. Pregnancy rates in donor oocyte cycles compared to similar autologous in vitro fertilization cycles: an analysis of 26,457 fresh cycles from the Society for Assisted Reproductive Technology. Fertil Steril. 2014;102:399–404.CrossRef Yeh JS, Steward RG, Dude AM, Shah AA, Goldfarb JM, Muasher SJ. Pregnancy rates in donor oocyte cycles compared to similar autologous in vitro fertilization cycles: an analysis of 26,457 fresh cycles from the Society for Assisted Reproductive Technology. Fertil Steril. 2014;102:399–404.CrossRef
24.
go back to reference Orvieto R, Meltzer S, Rabinson J, Zohav E, Anteby EY, Nahum R. GnRH agonist versus GnRH antagonist in ovarian stimulation: the role of endometrial receptivity. Fertil Steril. 2008;90:1294–6.CrossRef Orvieto R, Meltzer S, Rabinson J, Zohav E, Anteby EY, Nahum R. GnRH agonist versus GnRH antagonist in ovarian stimulation: the role of endometrial receptivity. Fertil Steril. 2008;90:1294–6.CrossRef
25.
go back to reference Prica F, Radon T, Cheng Y, Crnogorac-Jurcevic T. The life and works of S100P - from conception to cancer. Am J Cancer Res. 2016;6:562–76.PubMedPubMedCentral Prica F, Radon T, Cheng Y, Crnogorac-Jurcevic T. The life and works of S100P - from conception to cancer. Am J Cancer Res. 2016;6:562–76.PubMedPubMedCentral
26.
go back to reference Wu Z, Boonmars T, Nagano I, Boonjaraspinyo S, Srinontong P, Ratasuwan P, et al. Significance of S100P as a biomarker in diagnosis, prognosis and therapy of opisthorchiasis-associated cholangiocarcinoma. Int J Cancer. 2016;138:396–408.CrossRef Wu Z, Boonmars T, Nagano I, Boonjaraspinyo S, Srinontong P, Ratasuwan P, et al. Significance of S100P as a biomarker in diagnosis, prognosis and therapy of opisthorchiasis-associated cholangiocarcinoma. Int J Cancer. 2016;138:396–408.CrossRef
27.
go back to reference Hannan NJ. P Paiva, E Dimitriadis, and LA Salamonsen. Models for study of human embryo implantation: choice of cell lines? Biol Reprod. 2010;82:235–45.CrossRef Hannan NJ. P Paiva, E Dimitriadis, and LA Salamonsen. Models for study of human embryo implantation: choice of cell lines? Biol Reprod. 2010;82:235–45.CrossRef
28.
go back to reference Jiang H, Hu H, Lin F, Lim YP, Hua Y, Tong X, et al. S100P is overexpressed in squamous cell and adenosquamous carcinoma subtypes of endometrial cancer and promotes cancer cell proliferation and invasion. Cancer Invest. 2016;34:477–88.CrossRef Jiang H, Hu H, Lin F, Lim YP, Hua Y, Tong X, et al. S100P is overexpressed in squamous cell and adenosquamous carcinoma subtypes of endometrial cancer and promotes cancer cell proliferation and invasion. Cancer Invest. 2016;34:477–88.CrossRef
29.
go back to reference Shimamoto S, Tsuchiya M, Yamaguchi F, Kubota Y, Tokumitsu H, Kobayashi R. Ca2+/S100 proteins inhibit the interaction of FKBP38 with Bcl-2 and Hsp90. Biochem J. 2014;458:141–52.CrossRef Shimamoto S, Tsuchiya M, Yamaguchi F, Kubota Y, Tokumitsu H, Kobayashi R. Ca2+/S100 proteins inhibit the interaction of FKBP38 with Bcl-2 and Hsp90. Biochem J. 2014;458:141–52.CrossRef
30.
go back to reference Abd El All H. Smooth muscle actin and s100p on non germinal centre diffuse large B cell lymphoma are adverse prognostic factors: pilot study. Diagn Pathol. 2007;2:9. Abd El All H. Smooth muscle actin and s100p on non germinal centre diffuse large B cell lymphoma are adverse prognostic factors: pilot study. Diagn Pathol. 2007;2:9.
31.
go back to reference Wen J, Feng Y, Bjorklund CC, Wang M, Orlowski RZ, Shi ZZ, et al. Luteinizing hormone-releasing hormone (LHRH)-I antagonist cetrorelix inhibits myeloma cell growth in vitro and in vivo. Mol Cancer Ther. 2011;10:148–58.CrossRef Wen J, Feng Y, Bjorklund CC, Wang M, Orlowski RZ, Shi ZZ, et al. Luteinizing hormone-releasing hormone (LHRH)-I antagonist cetrorelix inhibits myeloma cell growth in vitro and in vivo. Mol Cancer Ther. 2011;10:148–58.CrossRef
32.
go back to reference Zhao XJ, Huang YH, Yu YC, Xin XY. GnRH antagonist cetrorelix inhibits mitochondria-dependent apoptosis triggered by chemotherapy in granulosa cells of rats. Gynecol Oncol. 2010;118:69–75.CrossRef Zhao XJ, Huang YH, Yu YC, Xin XY. GnRH antagonist cetrorelix inhibits mitochondria-dependent apoptosis triggered by chemotherapy in granulosa cells of rats. Gynecol Oncol. 2010;118:69–75.CrossRef
Metadata
Title
Down-regulation of S100P induces apoptosis in endometrial epithelial cell during GnRH antagonist protocol
Authors
Dan Zhang
Mi Han
Mingjuan Zhou
Mengyu Liu
Yan Li
Bufang Xu
Aijun Zhang
Publication date
01-12-2021
Publisher
BioMed Central
Keyword
GnRH Agonists
Published in
Reproductive Biology and Endocrinology / Issue 1/2021
Electronic ISSN: 1477-7827
DOI
https://doi.org/10.1186/s12958-021-00787-0

Other articles of this Issue 1/2021

Reproductive Biology and Endocrinology 1/2021 Go to the issue