Skip to main content
Top
Published in: Malaria Journal 1/2009

Open Access 01-12-2009 | Research

Glycerol: An unexpected major metabolite of energy metabolism by the human malaria parasite

Authors: Lu-Yun Lian, Mohammed Al-Helal, Abd Majid Roslaini, Nicholas Fisher, Patrick G Bray, Stephen A Ward, Giancarlo A Biagini

Published in: Malaria Journal | Issue 1/2009

Login to get access

Abstract

Background

Malaria is a global health emergency, and yet our understanding of the energy metabolism of the principle causative agent of this devastating disease, Plasmodium falciparum, remains rather basic. Glucose was shown to be an essential nutritional requirement nearly 100 years ago and since this original observation, much of the current knowledge of Plasmodium energy metabolism is based on early biochemical work, performed using basic analytical techniques (e.g. paper chromatography), carried out almost exclusively on avian and rodent malaria. Data derived from malaria parasite genome and transcriptome studies suggest that the energy metabolism of the parasite may be more complex than hitherto anticipated. This study was undertaken in order to further characterize the fate of glucose catabolism in the human malaria parasite, P. falciparum.

Methods

Products of glucose catabolism were determined by incubating erythrocyte-freed parasites with D-[1-13C] glucose under controlled conditions and metabolites were identified using 13C-NMR spectroscopy.

Results

Following a 2 h incubation of freed-P. falciparum parasites with 25 mM D-[1-13C] glucose (n = 4), the major metabolites identified included; [3-13C] lactate, [1,3-13C] glycerol, [3-13C] pyruvate, [3-13C] alanine and [3-13C] glycerol-3-phosphate. Control experiments performed with uninfected erythrocytes incubated under identical conditions did not show any metabolism of D-[1-13C] glucose to glycerol or glycerol-3-phosphate.

Discussion

The identification of glycerol as a major glucose metabolite confirms the view that energy metabolism in this parasite is more complex than previously proposed. It is hypothesized here that glycerol production by the malaria parasite is the result of a metabolic adaptation to growth in O2-limited (and CO2 elevated) conditions by the operation of a glycerol-3-phosphate shuttle for the re-oxidation of assimilatory NADH. Similar metabolic adaptations have been reported previously for other microaerobic/anaerobic organisms, such as yeast, rumen protozoa and human parasitic protozoa.

Conclusion

These data highlight the need to re-evaluate the carbon and redox balance of this important human pathogen, ultimately leading to a better understanding of how the parasite is able to adapt to the variable environments encountered during parasite development and disease progression.
Appendix
Available only for authorised users
Literature
3.
go back to reference Gardner MJ, Hall N, Fung E, White O, Berriman M, Hyman RW, Carlton JM, Pain A, Nelson KE, Bowman S: Genome sequence of the human malaria parasite Plasmodium falciparum. Nature. 2002, 419: 498-511.CrossRefPubMed Gardner MJ, Hall N, Fung E, White O, Berriman M, Hyman RW, Carlton JM, Pain A, Nelson KE, Bowman S: Genome sequence of the human malaria parasite Plasmodium falciparum. Nature. 2002, 419: 498-511.CrossRefPubMed
4.
go back to reference Vaidya AB, Mather MW: A post-genomic view of the mitochondrion in malaria parasites. Curr Top Microbiol Immunol. 2005, 295: 233-250.PubMed Vaidya AB, Mather MW: A post-genomic view of the mitochondrion in malaria parasites. Curr Top Microbiol Immunol. 2005, 295: 233-250.PubMed
5.
go back to reference van Dooren GG, Stimmler LM, McFadden GI: Metabolic maps and functions of the Plasmodium mitochondrion. FEMS Microbiol Rev. 2006, 30 (4): 596-630.CrossRefPubMed van Dooren GG, Stimmler LM, McFadden GI: Metabolic maps and functions of the Plasmodium mitochondrion. FEMS Microbiol Rev. 2006, 30 (4): 596-630.CrossRefPubMed
6.
go back to reference Le Roch KG, Zhou Y, Blair PL, Grainger M, Moch JK, Haynes JD, De La Vega P, Holder AA, Batalov S, Carucci DJ: Discovery of gene function by expression profiling of the malaria parasite life cycle. Science. 2003, 301: 1503-1508.CrossRefPubMed Le Roch KG, Zhou Y, Blair PL, Grainger M, Moch JK, Haynes JD, De La Vega P, Holder AA, Batalov S, Carucci DJ: Discovery of gene function by expression profiling of the malaria parasite life cycle. Science. 2003, 301: 1503-1508.CrossRefPubMed
7.
go back to reference Bozdech Z, Llinas M, Pulliam BL, Wong ED, Zhu J, DeRisi JL: The transcriptome of the intraerythrocytic developmental cycle of Plasmodium falciparum. PLoS Biol. 2003, 1 (1): E5-PubMedCentralCrossRefPubMed Bozdech Z, Llinas M, Pulliam BL, Wong ED, Zhu J, DeRisi JL: The transcriptome of the intraerythrocytic developmental cycle of Plasmodium falciparum. PLoS Biol. 2003, 1 (1): E5-PubMedCentralCrossRefPubMed
8.
go back to reference Young JA, Fivelman QL, Blair PL, de la Vega P, Le Roch KG, Zhou Y, Carucci DJ, Baker DA, Winzeler EA: The Plasmodium falciparum sexual development transcriptome: a microarray analysis using ontology-based pattern identification. Mol Biochem Parasitol. 2005, 143: 67-79.CrossRefPubMed Young JA, Fivelman QL, Blair PL, de la Vega P, Le Roch KG, Zhou Y, Carucci DJ, Baker DA, Winzeler EA: The Plasmodium falciparum sexual development transcriptome: a microarray analysis using ontology-based pattern identification. Mol Biochem Parasitol. 2005, 143: 67-79.CrossRefPubMed
9.
go back to reference Daily JP, Scanfeld D, Pochet N, Le Roch K, Plouffe D, Kamal M, Sarr O, Mboup S, Ndir O, Wypij D: Distinct physiological states of Plasmodium falciparum in malaria-infected patients. Nature. 2007, 450: 955-956.CrossRef Daily JP, Scanfeld D, Pochet N, Le Roch K, Plouffe D, Kamal M, Sarr O, Mboup S, Ndir O, Wypij D: Distinct physiological states of Plasmodium falciparum in malaria-infected patients. Nature. 2007, 450: 955-956.CrossRef
10.
11.
go back to reference Allen RJ, Kirk K: The membrane potential of the intraerythrocytic malaria parasite Plasmodium falciparum. J Biol Chem. 2004, 279: 11264-11272.CrossRefPubMed Allen RJ, Kirk K: The membrane potential of the intraerythrocytic malaria parasite Plasmodium falciparum. J Biol Chem. 2004, 279: 11264-11272.CrossRefPubMed
12.
go back to reference Saliba KJ, Kirk K: pH regulation in the intracellular malaria parasite, Plasmodium falciparum. H(+) extrusion via a v-type h(+)-atpase. J Biol Chem. 1999, 274: 33213-33219.CrossRefPubMed Saliba KJ, Kirk K: pH regulation in the intracellular malaria parasite, Plasmodium falciparum. H(+) extrusion via a v-type h(+)-atpase. J Biol Chem. 1999, 274: 33213-33219.CrossRefPubMed
13.
go back to reference Biagini GA, Pasini EM, Hughes R, De Koning HP, Vial HJ, O'Neill PM, Ward SA, Bray PG: Characterization of the choline carrier of Plasmodium falciparum: a route for the selective delivery of novel antimalarial drugs. Blood. 2004, 104: 3372-3377.CrossRefPubMed Biagini GA, Pasini EM, Hughes R, De Koning HP, Vial HJ, O'Neill PM, Ward SA, Bray PG: Characterization of the choline carrier of Plasmodium falciparum: a route for the selective delivery of novel antimalarial drugs. Blood. 2004, 104: 3372-3377.CrossRefPubMed
14.
go back to reference Saliba KJ, Martin RE, Broer A, Henry RI, McCarthy CS, Downie MJ, Allen RJ, Mullin KA, McFadden GI, Broer S: Sodium-dependent uptake of inorganic phosphate by the intracellular malaria parasite. Nature. 2006, 443: 582-585.PubMed Saliba KJ, Martin RE, Broer A, Henry RI, McCarthy CS, Downie MJ, Allen RJ, Mullin KA, McFadden GI, Broer S: Sodium-dependent uptake of inorganic phosphate by the intracellular malaria parasite. Nature. 2006, 443: 582-585.PubMed
15.
go back to reference Saliba KJ, Kirk K: H+-coupled pantothenate transport in the intracellular malaria parasite. J Biol Chem. 2001, 276: 18115-18121.CrossRefPubMed Saliba KJ, Kirk K: H+-coupled pantothenate transport in the intracellular malaria parasite. J Biol Chem. 2001, 276: 18115-18121.CrossRefPubMed
16.
go back to reference London RE: 13C labelling studies of metabolic regulation. Prog NuclMagnetic Resonance Spectroscopy. 1988, 20: 337-383.CrossRef London RE: 13C labelling studies of metabolic regulation. Prog NuclMagnetic Resonance Spectroscopy. 1988, 20: 337-383.CrossRef
17.
go back to reference Newby ZE, O'Connell J, Robles-Colmenares Y, Khademi S, Miercke LJ, Stroud RM: Crystal structure of the aquaglyceroporin PfAQP from the malarial parasite Plasmodium falciparum. Nat Struct Mol Biol. 2008, 15 (6): 619-625.PubMedCentralCrossRefPubMed Newby ZE, O'Connell J, Robles-Colmenares Y, Khademi S, Miercke LJ, Stroud RM: Crystal structure of the aquaglyceroporin PfAQP from the malarial parasite Plasmodium falciparum. Nat Struct Mol Biol. 2008, 15 (6): 619-625.PubMedCentralCrossRefPubMed
18.
go back to reference Brown FF, Campbell ID: N.m.r. studies of red cells. Philos Trans R Soc Lond B Biol Sci. 1980, 289: 395-406.CrossRefPubMed Brown FF, Campbell ID: N.m.r. studies of red cells. Philos Trans R Soc Lond B Biol Sci. 1980, 289: 395-406.CrossRefPubMed
19.
go back to reference Bakker BM, Overkamp KM, van Maris AJ, Kotter P, Luttik MA, van Dijken JP, Pronk JT: Stoichiometry and compartmentation of NADH metabolism in Saccharomyces cerevisiae. FEMS Microbiol Rev. 2001, 25: 15-37.CrossRefPubMed Bakker BM, Overkamp KM, van Maris AJ, Kotter P, Luttik MA, van Dijken JP, Pronk JT: Stoichiometry and compartmentation of NADH metabolism in Saccharomyces cerevisiae. FEMS Microbiol Rev. 2001, 25: 15-37.CrossRefPubMed
20.
go back to reference Chapman A, Linstead DJ, Lloyd D, Williams J: 13C-NMR reveals glycerol as an unexpected major metabolite of the protozoan parasite Trichomonas vaginalis. FEBS Lett. 1985, 191: 287-292.CrossRefPubMed Chapman A, Linstead DJ, Lloyd D, Williams J: 13C-NMR reveals glycerol as an unexpected major metabolite of the protozoan parasite Trichomonas vaginalis. FEBS Lett. 1985, 191: 287-292.CrossRefPubMed
21.
go back to reference Darling TN, Davis DG, London RE, Blum JJ: Products of Leishmania braziliensis glucose catabolism: release of D-lactate and, under anaerobic conditions, glycerol. Proc Natl Acad Sci USA. 1987, 84: 7129-7133.PubMedCentralCrossRefPubMed Darling TN, Davis DG, London RE, Blum JJ: Products of Leishmania braziliensis glucose catabolism: release of D-lactate and, under anaerobic conditions, glycerol. Proc Natl Acad Sci USA. 1987, 84: 7129-7133.PubMedCentralCrossRefPubMed
22.
go back to reference Mackenzie NE, Hall JE, Flynn IW, Scott AI: 13C nuclear magnetic resonance studies of anaerobic glycolysis in Trypanosoma brucei spp. Biosci Rep. 1983, 3: 141-151.CrossRefPubMed Mackenzie NE, Hall JE, Flynn IW, Scott AI: 13C nuclear magnetic resonance studies of anaerobic glycolysis in Trypanosoma brucei spp. Biosci Rep. 1983, 3: 141-151.CrossRefPubMed
23.
go back to reference Ellis JE, McIntyre PS, Saleh M, Williams AG, Lloyd D: Influence of CO2 and low concentrations of O2 on fermentative metabolism of the rumen ciliate Dasytricha ruminantium. J Gen Microbiol. 1991, 137: 1409-1417.CrossRefPubMed Ellis JE, McIntyre PS, Saleh M, Williams AG, Lloyd D: Influence of CO2 and low concentrations of O2 on fermentative metabolism of the rumen ciliate Dasytricha ruminantium. J Gen Microbiol. 1991, 137: 1409-1417.CrossRefPubMed
24.
go back to reference Ellis JEMPS, Saleh M, Williams AG, Lloyd D: Influence of ruminal concentrations of O2 and CO2 on fermentative metabolism of the rumen entodiniomorphid ciliate Eudiplodinium maggii. Curr Microbiol. 1991, 23: 245-251.CrossRef Ellis JEMPS, Saleh M, Williams AG, Lloyd D: Influence of ruminal concentrations of O2 and CO2 on fermentative metabolism of the rumen entodiniomorphid ciliate Eudiplodinium maggii. Curr Microbiol. 1991, 23: 245-251.CrossRef
25.
go back to reference Ellis JE, McIntyre PS, Saleh M, Williams AG, Lloyd D: Influence of CO2 and low concentrations of O2 on fermentative metabolism of the ruminal ciliate Polyplastron multivesiculatum. Appl Environ Microbiol. 1991, 57: 1400-1407.PubMedCentralPubMed Ellis JE, McIntyre PS, Saleh M, Williams AG, Lloyd D: Influence of CO2 and low concentrations of O2 on fermentative metabolism of the ruminal ciliate Polyplastron multivesiculatum. Appl Environ Microbiol. 1991, 57: 1400-1407.PubMedCentralPubMed
26.
go back to reference McIntosh TS, Davis HM, Matthews DE: A liquid chromatography-mass spectrometry method to measure stable isotopic tracer enrichments of glycerol and glucose in human serum. Anal Biochem. 2002, 300: 163-169.CrossRefPubMed McIntosh TS, Davis HM, Matthews DE: A liquid chromatography-mass spectrometry method to measure stable isotopic tracer enrichments of glycerol and glucose in human serum. Anal Biochem. 2002, 300: 163-169.CrossRefPubMed
27.
go back to reference Biagini GA, Viriyavejakul P, O'Neill PM, Bray PG, Ward SA: Functional characterization and target validation of alternative complex I of Plasmodium falciparum mitochondria. Antimicrob Agents Chemother. 2006, 50 (5): 1841-1851.PubMedCentralCrossRefPubMed Biagini GA, Viriyavejakul P, O'Neill PM, Bray PG, Ward SA: Functional characterization and target validation of alternative complex I of Plasmodium falciparum mitochondria. Antimicrob Agents Chemother. 2006, 50 (5): 1841-1851.PubMedCentralCrossRefPubMed
28.
go back to reference Fisher N, Bray PG, Ward SA, Biagini GA: The malaria parasite type II NADH:quinone oxidoreductase: an alternative enzyme for an alternative lifestyle. Trends Parasitol. 2007, 23: 305-310.CrossRefPubMed Fisher N, Bray PG, Ward SA, Biagini GA: The malaria parasite type II NADH:quinone oxidoreductase: an alternative enzyme for an alternative lifestyle. Trends Parasitol. 2007, 23: 305-310.CrossRefPubMed
29.
go back to reference Norbeck J, Pahlman AK, Akhtar N, Blomberg A, Adler L: Purification and characterization of two isoenzymes of DL-glycerol-3-phosphatase from Saccharomyces cerevisiae. Identification of the corresponding GPP1 and GPP2 genes and evidence for osmotic regulation of Gpp2p expression by the osmosensing mitogen-activated protein kinase signal transduction pathway. J Biol Chem. 1996, 271: 13875-13881.CrossRefPubMed Norbeck J, Pahlman AK, Akhtar N, Blomberg A, Adler L: Purification and characterization of two isoenzymes of DL-glycerol-3-phosphatase from Saccharomyces cerevisiae. Identification of the corresponding GPP1 and GPP2 genes and evidence for osmotic regulation of Gpp2p expression by the osmosensing mitogen-activated protein kinase signal transduction pathway. J Biol Chem. 1996, 271: 13875-13881.CrossRefPubMed
30.
go back to reference Hammond DJ, Bowman IB: Trypanosoma brucei: the effect of glycerol on the anaerobic metabolism of glucose. Mol Biochem Parasitol. 1980, 2: 63-75.CrossRefPubMed Hammond DJ, Bowman IB: Trypanosoma brucei: the effect of glycerol on the anaerobic metabolism of glucose. Mol Biochem Parasitol. 1980, 2: 63-75.CrossRefPubMed
31.
go back to reference Hammond DJ, Bowman IB: Studies on glycerol kinase and its role in ATP synthesis in Trypanosoma brucei. Mol Biochem Parasitol. 1980, 2: 77-91.CrossRefPubMed Hammond DJ, Bowman IB: Studies on glycerol kinase and its role in ATP synthesis in Trypanosoma brucei. Mol Biochem Parasitol. 1980, 2: 77-91.CrossRefPubMed
32.
go back to reference Hellemond JJ, Bakker BM, Tielens AG: Energy metabolism and its compartmentation in Trypanosoma brucei. Adv Microb Physiol. 2005, 50: 199-226.CrossRefPubMed Hellemond JJ, Bakker BM, Tielens AG: Energy metabolism and its compartmentation in Trypanosoma brucei. Adv Microb Physiol. 2005, 50: 199-226.CrossRefPubMed
33.
go back to reference Fisher N, Bray PG, Ward SA, Biagini GA: Malaria-parasite mitochondrial dehydrogenases as drug targets: too early to write the obituary. Trends Parasitol. 2008, 24: 9-10.CrossRefPubMed Fisher N, Bray PG, Ward SA, Biagini GA: Malaria-parasite mitochondrial dehydrogenases as drug targets: too early to write the obituary. Trends Parasitol. 2008, 24: 9-10.CrossRefPubMed
34.
go back to reference Painter HJ, Morrisey JM, Mather MW, Vaidya AB: Specific role of mitochondrial electron transport in blood-stage Plasmodium falciparum. Nature. 2007, 446: 88-91.CrossRefPubMed Painter HJ, Morrisey JM, Mather MW, Vaidya AB: Specific role of mitochondrial electron transport in blood-stage Plasmodium falciparum. Nature. 2007, 446: 88-91.CrossRefPubMed
Metadata
Title
Glycerol: An unexpected major metabolite of energy metabolism by the human malaria parasite
Authors
Lu-Yun Lian
Mohammed Al-Helal
Abd Majid Roslaini
Nicholas Fisher
Patrick G Bray
Stephen A Ward
Giancarlo A Biagini
Publication date
01-12-2009
Publisher
BioMed Central
Published in
Malaria Journal / Issue 1/2009
Electronic ISSN: 1475-2875
DOI
https://doi.org/10.1186/1475-2875-8-38

Other articles of this Issue 1/2009

Malaria Journal 1/2009 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.