Skip to main content
Top
Published in: Cardiovascular Diabetology 1/2012

Open Access 01-12-2012 | Original investigation

GLUT4 content decreases along with insulin resistance and high levels of inflammatory markers in rats with metabolic syndrome

Authors: Natalia M Leguisamo, Alexandre M Lehnen, Ubiratan F Machado, Maristela M Okamoto, Melissa M Markoski, Graziela H Pinto, Beatriz D Schaan

Published in: Cardiovascular Diabetology | Issue 1/2012

Login to get access

Abstract

Background

Metabolic syndrome is characterized by insulin resistance, which is closely related to GLUT4 content in insulin-sensitive tissues. Thus, we evaluated the GLUT4 expression, insulin resistance and inflammation, characteristics of the metabolic syndrome, in an experimental model.

Methods

Spontaneously hypertensive neonate rats (18/group) were treated with monosodium glutamate (MetS) during 9 days, and compared with Wistar-Kyoto (C) and saline-treated SHR (H). Blood pressure (BP) and lipid levels, C-reactive protein (CRP), interleukin 6 (IL-6), TNF-α and adiponectin were evaluated. GLUT4 protein was analysed in the heart, white adipose tissue and gastrocnemius. Studies were performed at 3 (3-mo), 6 (6-mo) and 9 (9-mo) months of age.

Results

MetS rats were more insulin resistant (p<0.001, all ages) and had higher BP (3-mo: p<0.001, 6-mo: p = 0.001, 9-mo: p = 0.015) as compared to C. At 6 months, CRP, IL-6 and TNF-α were higher (p<0.001, all comparisons) in MetS rats vs H, but adiponectin was lower in MetS at 9 months (MetS: 32 ± 2, H: 42 ± 2, C: 45 ± 2 pg/mL; p<0.001). GLUT4 protein was reduced in MetS as compared to C rats at 3, 6 and 9-mo, respectively (Heart: 54%, 50% and 57%; Gastrocnemius: 37%, 56% and 50%; Adipose tissue: 69%, 61% and 69%).

Conclusions

MSG-treated SHR presented all metabolic syndrome characteristics, as well as reduced GLUT4 content, which must play a key role in the impaired glycemic homeostasis of the metabolic syndrome.
Appendix
Available only for authorised users
Literature
1.
go back to reference Ford ES, Li C, Zhao G: Prevalence and correlates of metabolic syndrome based on a harmonious definition among adults in the US. J Diabetes. 2010, 2: 180-193. 10.1111/j.1753-0407.2010.00078.x.CrossRefPubMed Ford ES, Li C, Zhao G: Prevalence and correlates of metabolic syndrome based on a harmonious definition among adults in the US. J Diabetes. 2010, 2: 180-193. 10.1111/j.1753-0407.2010.00078.x.CrossRefPubMed
2.
go back to reference Wildman RP, McGinn AP, Lin J, Wang D, Muntner P, Cohen HW, Reynolds K, Fonseca V, Sowers MR: Cardiovascular disease risk of abdominal obesity vs. metabolic abnormalities. Obesity (Silver Spring). 2011, 19: 853-860. 10.1038/oby.2010.168.CrossRef Wildman RP, McGinn AP, Lin J, Wang D, Muntner P, Cohen HW, Reynolds K, Fonseca V, Sowers MR: Cardiovascular disease risk of abdominal obesity vs. metabolic abnormalities. Obesity (Silver Spring). 2011, 19: 853-860. 10.1038/oby.2010.168.CrossRef
3.
go back to reference Aschner P: Metabolic syndrome as a risk factor for diabetes. Expert Rev Cardiovasc Ther. 2010, 8: 407-412. 10.1586/erc.10.13.CrossRefPubMed Aschner P: Metabolic syndrome as a risk factor for diabetes. Expert Rev Cardiovasc Ther. 2010, 8: 407-412. 10.1586/erc.10.13.CrossRefPubMed
4.
go back to reference Reaven GM: Banting lecture 1988. Role of insulin resistance in human disease. Diabetes. 1988, 37: 1595-1607. 10.2337/diabetes.37.12.1595.CrossRefPubMed Reaven GM: Banting lecture 1988. Role of insulin resistance in human disease. Diabetes. 1988, 37: 1595-1607. 10.2337/diabetes.37.12.1595.CrossRefPubMed
5.
go back to reference Choi KM, Ryu OH, Lee KW, Kim HY, Seo JA, Kim SG, Kim NH, Choi DS, Baik SH: Serum adiponectin, interleukin-10 levels and inflammatory markers in the metabolic syndrome. Diabetes Res Clin Pract. 2007, 75: 235-240. 10.1016/j.diabres.2006.06.019.CrossRefPubMed Choi KM, Ryu OH, Lee KW, Kim HY, Seo JA, Kim SG, Kim NH, Choi DS, Baik SH: Serum adiponectin, interleukin-10 levels and inflammatory markers in the metabolic syndrome. Diabetes Res Clin Pract. 2007, 75: 235-240. 10.1016/j.diabres.2006.06.019.CrossRefPubMed
6.
go back to reference Emanuela F, Grazia M, de Marco R, Maria Paola L, Giorgio F, Marco B: Inflammation as a link between obesity and metabolic syndrome. J Nutr Metab. 2012, 2012: 476380.PubMedCentralCrossRefPubMed Emanuela F, Grazia M, de Marco R, Maria Paola L, Giorgio F, Marco B: Inflammation as a link between obesity and metabolic syndrome. J Nutr Metab. 2012, 2012: 476380.PubMedCentralCrossRefPubMed
7.
go back to reference Hotamisligil GS, Arner P, Caro JF, Atkinson RL, Spiegelman BM: Increased adipose tissue expression of tumor necrosis factor-alpha in human obesity and insulin resistance. J Clin Invest. 1995, 95: 2409-2415. 10.1172/JCI117936.PubMedCentralCrossRefPubMed Hotamisligil GS, Arner P, Caro JF, Atkinson RL, Spiegelman BM: Increased adipose tissue expression of tumor necrosis factor-alpha in human obesity and insulin resistance. J Clin Invest. 1995, 95: 2409-2415. 10.1172/JCI117936.PubMedCentralCrossRefPubMed
8.
go back to reference Rotter V, Nagaev I, Smith U: Interleukin-6 (IL-6) induces insulin resistance in 3T3-L1 adipocytes and is, like IL-8 and tumor necrosis factor-alpha, overexpressed in human fat cells from insulin-resistant subjects. J Biol Chem. 2003, 278: 45777-45784. 10.1074/jbc.M301977200.CrossRefPubMed Rotter V, Nagaev I, Smith U: Interleukin-6 (IL-6) induces insulin resistance in 3T3-L1 adipocytes and is, like IL-8 and tumor necrosis factor-alpha, overexpressed in human fat cells from insulin-resistant subjects. J Biol Chem. 2003, 278: 45777-45784. 10.1074/jbc.M301977200.CrossRefPubMed
9.
go back to reference Stephens JM, Lee J, Pilch PF: Tumor necrosis factor-alpha-induced insulin resistance in 3T3-L1 adipocytes is accompanied by a loss of insulin receptor substrate-1 and GLUT4 expression without a loss of insulin receptor-mediated signal transduction. J Biol Chem. 1997, 272: 971-976. 10.1074/jbc.272.2.971.CrossRefPubMed Stephens JM, Lee J, Pilch PF: Tumor necrosis factor-alpha-induced insulin resistance in 3T3-L1 adipocytes is accompanied by a loss of insulin receptor substrate-1 and GLUT4 expression without a loss of insulin receptor-mediated signal transduction. J Biol Chem. 1997, 272: 971-976. 10.1074/jbc.272.2.971.CrossRefPubMed
10.
go back to reference Shehata MF: Important genetic checkpoints for insulin resistance in salt-sensitive (S) Dahl rats. Cardiovasc Diabetol. 2008, 7: 19-10.1186/1475-2840-7-19.PubMedCentralCrossRefPubMed Shehata MF: Important genetic checkpoints for insulin resistance in salt-sensitive (S) Dahl rats. Cardiovasc Diabetol. 2008, 7: 19-10.1186/1475-2840-7-19.PubMedCentralCrossRefPubMed
11.
go back to reference Pfeffer J, Pfeffer M, Fishbein M, Frohlich E: Cardiac function and morphology with aging in the spontaneously hypertensive rat. Am J Physiol. 1979, 237: H461-H468.PubMed Pfeffer J, Pfeffer M, Fishbein M, Frohlich E: Cardiac function and morphology with aging in the spontaneously hypertensive rat. Am J Physiol. 1979, 237: H461-H468.PubMed
12.
go back to reference Lehnen AM, Leguisamo NM, Pinto GH, Markoski MM, De Angelis K, Machado UF, Schaan B: The beneficial effects of exercise in rodents are preserved after detraining: a phenomenon unrelated to GLUT4 expression. Cardiovasc Diabetol. 2010, 9: 67-10.1186/1475-2840-9-67.PubMedCentralCrossRefPubMed Lehnen AM, Leguisamo NM, Pinto GH, Markoski MM, De Angelis K, Machado UF, Schaan B: The beneficial effects of exercise in rodents are preserved after detraining: a phenomenon unrelated to GLUT4 expression. Cardiovasc Diabetol. 2010, 9: 67-10.1186/1475-2840-9-67.PubMedCentralCrossRefPubMed
13.
go back to reference Carvalho E, Kotani K, Peroni OD, Kahn BB: Adipose-specific overexpression of GLUT4 reverses insulin resistance and diabetes in mice lacking GLUT4 selectively in muscle. Am J Physiol Endocrinol Metab. 2005, 289: E551-E561. 10.1152/ajpendo.00116.2005.CrossRefPubMed Carvalho E, Kotani K, Peroni OD, Kahn BB: Adipose-specific overexpression of GLUT4 reverses insulin resistance and diabetes in mice lacking GLUT4 selectively in muscle. Am J Physiol Endocrinol Metab. 2005, 289: E551-E561. 10.1152/ajpendo.00116.2005.CrossRefPubMed
14.
go back to reference Garvey W, Malanu L, Zhu J, Brechtel-Hook G, Wallace P, Baron A: Evidence of the defects in trafficking and translocation of GLUT4 glucose transporter in skeletal muscle as a cause of human insulin resistance. J Clin Invest. 1998, 101: 2377-2386. 10.1172/JCI1557.PubMedCentralCrossRefPubMed Garvey W, Malanu L, Zhu J, Brechtel-Hook G, Wallace P, Baron A: Evidence of the defects in trafficking and translocation of GLUT4 glucose transporter in skeletal muscle as a cause of human insulin resistance. J Clin Invest. 1998, 101: 2377-2386. 10.1172/JCI1557.PubMedCentralCrossRefPubMed
15.
go back to reference Razny U, Kiec-Wilk B, Wator L, Polus A, Dyduch G, Solnica B, Malecki M, Tomaszewska R, Cooke JP, Dembinska-Kiec A: Increased nitric oxide availability attenuates high fat diet metabolic alterations and gene expression associated with insulin resistance. Cardiovasc Diabetol. 2011, 10: 68-10.1186/1475-2840-10-68.PubMedCentralCrossRefPubMed Razny U, Kiec-Wilk B, Wator L, Polus A, Dyduch G, Solnica B, Malecki M, Tomaszewska R, Cooke JP, Dembinska-Kiec A: Increased nitric oxide availability attenuates high fat diet metabolic alterations and gene expression associated with insulin resistance. Cardiovasc Diabetol. 2011, 10: 68-10.1186/1475-2840-10-68.PubMedCentralCrossRefPubMed
16.
go back to reference Gray S, Feinberg MW, Hull S, Kuo CT, Watanabe M, Sen-Banerjee S, DePina A, Haspel R, Jain MK: The Kruppel-like factor KLF15 regulates the insulin-sensitive glucose transporter GLUT4. J Biol Chem. 2002, 277: 34322-34328. 10.1074/jbc.M201304200.CrossRefPubMed Gray S, Feinberg MW, Hull S, Kuo CT, Watanabe M, Sen-Banerjee S, DePina A, Haspel R, Jain MK: The Kruppel-like factor KLF15 regulates the insulin-sensitive glucose transporter GLUT4. J Biol Chem. 2002, 277: 34322-34328. 10.1074/jbc.M201304200.CrossRefPubMed
17.
go back to reference Hirata AE, Andrade IS, Vaskevicius P, Dolnikoff MS: Monosodium glutamate (MSG)-obese rats develop glucose intolerance and insulin resistance to peripheral glucose uptake. Braz J Med Biol Res. 1997, 30: 671-674.CrossRefPubMed Hirata AE, Andrade IS, Vaskevicius P, Dolnikoff MS: Monosodium glutamate (MSG)-obese rats develop glucose intolerance and insulin resistance to peripheral glucose uptake. Braz J Med Biol Res. 1997, 30: 671-674.CrossRefPubMed
18.
go back to reference Papa PC, Seraphim PM, Machado UF: Loss of weight restores GLUT 4 content in insulin-sensitive tissues of monosodium glutamate-treated obese mice. Int J Obes Relat Metab Disord. 1997, 21: 1065-1070. 10.1038/sj.ijo.0800517.CrossRefPubMed Papa PC, Seraphim PM, Machado UF: Loss of weight restores GLUT 4 content in insulin-sensitive tissues of monosodium glutamate-treated obese mice. Int J Obes Relat Metab Disord. 1997, 21: 1065-1070. 10.1038/sj.ijo.0800517.CrossRefPubMed
19.
go back to reference Nemeroff CB, Konkol RJ, Bissette G, Youngblood W, Martin JB, Brazeau P, Rone MS, Prange AJ, Breese GR, Kizer JS: Analysis of the disruption in hypothalamic-pituitary regulation in rats treated neonatally with monosodium L-glutamate (MSG): evidence for the involvement of tuberoinfundibular cholinergic and dopaminergic systems in neuroendocrine regulation. Endocrinology. 1977, 101: 613-622. 10.1210/endo-101-2-613.CrossRefPubMed Nemeroff CB, Konkol RJ, Bissette G, Youngblood W, Martin JB, Brazeau P, Rone MS, Prange AJ, Breese GR, Kizer JS: Analysis of the disruption in hypothalamic-pituitary regulation in rats treated neonatally with monosodium L-glutamate (MSG): evidence for the involvement of tuberoinfundibular cholinergic and dopaminergic systems in neuroendocrine regulation. Endocrinology. 1977, 101: 613-622. 10.1210/endo-101-2-613.CrossRefPubMed
20.
go back to reference Nemeroff CB, Grant LD, Bissette G, Ervin GN, Harrell LE, Prange AJ: Growth, endocrinological and behavioral deficits after monosodium L-glutamate in the neonatal rat: possible involvement of arcuate dopamine neuron damage. Psychoneuroendocrinology. 1977, 2: 179-196. 10.1016/0306-4530(77)90023-3.CrossRefPubMed Nemeroff CB, Grant LD, Bissette G, Ervin GN, Harrell LE, Prange AJ: Growth, endocrinological and behavioral deficits after monosodium L-glutamate in the neonatal rat: possible involvement of arcuate dopamine neuron damage. Psychoneuroendocrinology. 1977, 2: 179-196. 10.1016/0306-4530(77)90023-3.CrossRefPubMed
21.
go back to reference Nemeroff CB, Lipton MA, Kizer JS: Models of neuroendocrine regulation: use of monosodium glutamate as an investigational tool. Dev Neurosci. 1978, 1: 102-109. 10.1159/000112561.CrossRefPubMed Nemeroff CB, Lipton MA, Kizer JS: Models of neuroendocrine regulation: use of monosodium glutamate as an investigational tool. Dev Neurosci. 1978, 1: 102-109. 10.1159/000112561.CrossRefPubMed
22.
go back to reference Kizer JS, Nemeroff CB, Youngblood WW: Neurotoxic amino acids and structurally related analogs. Pharmacol Rev. 1977, 29: 301-318.PubMed Kizer JS, Nemeroff CB, Youngblood WW: Neurotoxic amino acids and structurally related analogs. Pharmacol Rev. 1977, 29: 301-318.PubMed
23.
go back to reference Lorden JF, Caudle A: Behavioral and endocrinological effects of single injections of monosodium glutamate in the mouse. Neurobehav Toxicol Teratol. 1986, 8: 509-519.PubMed Lorden JF, Caudle A: Behavioral and endocrinological effects of single injections of monosodium glutamate in the mouse. Neurobehav Toxicol Teratol. 1986, 8: 509-519.PubMed
24.
go back to reference Olney JW: Brain lesions, obesity, and other disturbances in mice treated with monosodium glutamate. Science. 1969, 164: 719-721. 10.1126/science.164.3880.719.CrossRefPubMed Olney JW: Brain lesions, obesity, and other disturbances in mice treated with monosodium glutamate. Science. 1969, 164: 719-721. 10.1126/science.164.3880.719.CrossRefPubMed
25.
go back to reference Caputo FA, Scallet AC: Postnatal MSG treatment attenuates angiotensin II (AII) induced drinking in rats. Physiol Behav. 1995, 58: 25-29. 10.1016/0031-9384(95)00031-D.CrossRefPubMed Caputo FA, Scallet AC: Postnatal MSG treatment attenuates angiotensin II (AII) induced drinking in rats. Physiol Behav. 1995, 58: 25-29. 10.1016/0031-9384(95)00031-D.CrossRefPubMed
26.
go back to reference Djazayery A, Miller DS, Stock MJ: Energy balances in obese mice. Nutr Metab. 1979, 23: 357-367. 10.1159/000176281.CrossRefPubMed Djazayery A, Miller DS, Stock MJ: Energy balances in obese mice. Nutr Metab. 1979, 23: 357-367. 10.1159/000176281.CrossRefPubMed
27.
go back to reference Duloo AG, Miller DS: Unimpaired thermogenic response to noradrenaline in genetic (ob/ob) and hypothalamic (MSG) obese mice. Biosci Rep. 1984, 4: 343-349. 10.1007/BF01140498.CrossRefPubMed Duloo AG, Miller DS: Unimpaired thermogenic response to noradrenaline in genetic (ob/ob) and hypothalamic (MSG) obese mice. Biosci Rep. 1984, 4: 343-349. 10.1007/BF01140498.CrossRefPubMed
28.
go back to reference Yoshida T, Nishioka H, Nakamura Y, Kanatsuna T, Kondo M: Reduced norepinephrine turnover in brown adipose tissue of pre-obese mice treated with monosodium-L-glutamate. Life Sci. 1985, 36: 931-938. 10.1016/0024-3205(85)90388-1.CrossRefPubMed Yoshida T, Nishioka H, Nakamura Y, Kanatsuna T, Kondo M: Reduced norepinephrine turnover in brown adipose tissue of pre-obese mice treated with monosodium-L-glutamate. Life Sci. 1985, 36: 931-938. 10.1016/0024-3205(85)90388-1.CrossRefPubMed
29.
go back to reference Machado U, Shimizu I, Saito M: Reduced content and preserved translocation of glucose transporter (GLUT 4) in white adipose tissue of obese mice. Physiol Behav. 1994, 55: 621-625. 10.1016/0031-9384(94)90035-3.CrossRefPubMed Machado U, Shimizu I, Saito M: Reduced content and preserved translocation of glucose transporter (GLUT 4) in white adipose tissue of obese mice. Physiol Behav. 1994, 55: 621-625. 10.1016/0031-9384(94)90035-3.CrossRefPubMed
30.
go back to reference Machado U, Shimizu Y, Saito M: Decreased glucose transporter (GLUT 4) content in insulin-sensitive tissues of obese aurothioglucose- and monosodium glutamatetreated mice. Horm Metab Res. 1993, 25: 462-465. 10.1055/s-2007-1002149.CrossRefPubMed Machado U, Shimizu Y, Saito M: Decreased glucose transporter (GLUT 4) content in insulin-sensitive tissues of obese aurothioglucose- and monosodium glutamatetreated mice. Horm Metab Res. 1993, 25: 462-465. 10.1055/s-2007-1002149.CrossRefPubMed
31.
go back to reference Mori RC, Hirabara SM, Hirata AE, Okamoto MM, Machado UF: Glimepiride as insulin sensitizer: increased liver and muscle responses to insulin. Diabetes Obes Metab. 2008, 10: 596-600. 10.1111/j.1463-1326.2008.00870.x.CrossRefPubMed Mori RC, Hirabara SM, Hirata AE, Okamoto MM, Machado UF: Glimepiride as insulin sensitizer: increased liver and muscle responses to insulin. Diabetes Obes Metab. 2008, 10: 596-600. 10.1111/j.1463-1326.2008.00870.x.CrossRefPubMed
32.
go back to reference van den Buuse M, Versteeg DH, de Jong W: Effects of neonatal treatment with monosodium-glutamate in spontaneously hypertensive rats. Brain Res. 1985, 351: 135-138.CrossRefPubMed van den Buuse M, Versteeg DH, de Jong W: Effects of neonatal treatment with monosodium-glutamate in spontaneously hypertensive rats. Brain Res. 1985, 351: 135-138.CrossRefPubMed
33.
go back to reference Bradford MM: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976, 72: 248-254. 10.1016/0003-2697(76)90527-3.CrossRefPubMed Bradford MM: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976, 72: 248-254. 10.1016/0003-2697(76)90527-3.CrossRefPubMed
34.
go back to reference Ferguson RE, Carroll HP, Harris A, Maher ER, Selby PJ, Banks RE: Housekeeping proteins: a preliminary study illustrating some limitations as useful references in protein expression studies. Proteomics. 2005, 5: 566-571. 10.1002/pmic.200400941.CrossRefPubMed Ferguson RE, Carroll HP, Harris A, Maher ER, Selby PJ, Banks RE: Housekeeping proteins: a preliminary study illustrating some limitations as useful references in protein expression studies. Proteomics. 2005, 5: 566-571. 10.1002/pmic.200400941.CrossRefPubMed
35.
go back to reference Chung S, Park CW, Shin SJ, Lim JH, Chung HW, Youn DY, Kim HW, Kim BS, Lee JH, Kim GH, Chang YS: Tempol or candesartan prevents high-fat diet-induced hypertension and renal damage in spontaneously hypertensive rats. Nephrol Dial Transplant. 2010, 25: 389-399. 10.1093/ndt/gfp472.CrossRefPubMed Chung S, Park CW, Shin SJ, Lim JH, Chung HW, Youn DY, Kim HW, Kim BS, Lee JH, Kim GH, Chang YS: Tempol or candesartan prevents high-fat diet-induced hypertension and renal damage in spontaneously hypertensive rats. Nephrol Dial Transplant. 2010, 25: 389-399. 10.1093/ndt/gfp472.CrossRefPubMed
36.
go back to reference Murase T, Mizuno T, Omachi T, Onizawa K, Komine Y, Kondo H, Hase T, Tokimitsu I: Dietary diacylglycerol suppresses high fat and high sucrose diet-induced body fat accumulation in C57BL/6J mice. J Lipid Res. 2001, 42: 372-378.PubMed Murase T, Mizuno T, Omachi T, Onizawa K, Komine Y, Kondo H, Hase T, Tokimitsu I: Dietary diacylglycerol suppresses high fat and high sucrose diet-induced body fat accumulation in C57BL/6J mice. J Lipid Res. 2001, 42: 372-378.PubMed
37.
go back to reference Parekh PI, Petro AE, Tiller JM, Feinglos MN, Surwit RS: Reversal of diet-induced obesity and diabetes in C57BL/6J mice. Metabolism. 1998, 47: 1089-1096. 10.1016/S0026-0495(98)90283-9.CrossRefPubMed Parekh PI, Petro AE, Tiller JM, Feinglos MN, Surwit RS: Reversal of diet-induced obesity and diabetes in C57BL/6J mice. Metabolism. 1998, 47: 1089-1096. 10.1016/S0026-0495(98)90283-9.CrossRefPubMed
38.
go back to reference Sampey BP, Vanhoose AM, Winfield HM, Freemerman AJ, Muehlbauer MJ, Fueger PT, Newgard CB, Makowski L: Cafeteria diet is a robust model of human metabolic syndrome with liver and adipose inflammation: comparison to high-fat diet. Obesity (Silver Spring). 2011, 19: 1109-1117. 10.1038/oby.2011.18.CrossRef Sampey BP, Vanhoose AM, Winfield HM, Freemerman AJ, Muehlbauer MJ, Fueger PT, Newgard CB, Makowski L: Cafeteria diet is a robust model of human metabolic syndrome with liver and adipose inflammation: comparison to high-fat diet. Obesity (Silver Spring). 2011, 19: 1109-1117. 10.1038/oby.2011.18.CrossRef
39.
go back to reference Iwase M, Yamamoto M, Iino K, Ichikawa K, Shinohara N, Yoshinari M, Fujishima M: Obesity induced by neonatal monosodium glutamate treatment in spontaneously hypertensive rats: an animal model of multiple risk factors. Hypertens Res. 1998, 21: 1-6. 10.1291/hypres.21.1.CrossRefPubMed Iwase M, Yamamoto M, Iino K, Ichikawa K, Shinohara N, Yoshinari M, Fujishima M: Obesity induced by neonatal monosodium glutamate treatment in spontaneously hypertensive rats: an animal model of multiple risk factors. Hypertens Res. 1998, 21: 1-6. 10.1291/hypres.21.1.CrossRefPubMed
40.
go back to reference Gong SL, Xia FQ, Wei J, Li XY, Sun TH, Lu Z, Liu SZ: Harmful effects of MSG on function of hypothalamus-pituitary-target gland system. Biomed Environ Sci. 1995, 8: 310-317.PubMed Gong SL, Xia FQ, Wei J, Li XY, Sun TH, Lu Z, Liu SZ: Harmful effects of MSG on function of hypothalamus-pituitary-target gland system. Biomed Environ Sci. 1995, 8: 310-317.PubMed
41.
go back to reference de Carvalho Papa P, Vargas AM, da Silva JL, Nunes MT, Machado UF: GLUT4 protein is differently modulated during development of obesity in monosodium glutamate-treated mice. Life Sci. 2002, 71: 1917-1928. 10.1016/S0024-3205(02)01948-3.CrossRefPubMed de Carvalho Papa P, Vargas AM, da Silva JL, Nunes MT, Machado UF: GLUT4 protein is differently modulated during development of obesity in monosodium glutamate-treated mice. Life Sci. 2002, 71: 1917-1928. 10.1016/S0024-3205(02)01948-3.CrossRefPubMed
42.
go back to reference Dolnikoff MS, Kater CE, Egami M, de Andrade IS, Marmo MR: Neonatal treatment with monosodium glutamate increases plasma corticosterone in the rat. Neuroendocrinology. 1988, 48: 645-649. 10.1159/000125076.CrossRefPubMed Dolnikoff MS, Kater CE, Egami M, de Andrade IS, Marmo MR: Neonatal treatment with monosodium glutamate increases plasma corticosterone in the rat. Neuroendocrinology. 1988, 48: 645-649. 10.1159/000125076.CrossRefPubMed
43.
go back to reference Haber RS, Weinstein SP: Role of glucose transporters in glucocorticoid-induced insulin resistance. GLUT4 isoform in rat skeletal muscle is not decreased by dexamethasone. Diabetes. 1992, 41: 728-735. 10.2337/diabetes.41.6.728.CrossRefPubMed Haber RS, Weinstein SP: Role of glucose transporters in glucocorticoid-induced insulin resistance. GLUT4 isoform in rat skeletal muscle is not decreased by dexamethasone. Diabetes. 1992, 41: 728-735. 10.2337/diabetes.41.6.728.CrossRefPubMed
44.
go back to reference Kondoh T, Torii K: MSG intake suppresses weight gain, fat deposition, and plasma leptin levels in male Sprague–Dawley rats. Physiol Behav. 2008, 95: 135-144. 10.1016/j.physbeh.2008.05.010.CrossRefPubMed Kondoh T, Torii K: MSG intake suppresses weight gain, fat deposition, and plasma leptin levels in male Sprague–Dawley rats. Physiol Behav. 2008, 95: 135-144. 10.1016/j.physbeh.2008.05.010.CrossRefPubMed
45.
go back to reference Lobato NS, Filgueira FP, Akamine EH, Davel AP, Rossoni LV, Tostes RC, Carvalho MH, Fortes ZB: Obesity induced by neonatal treatment with monosodium glutamate impairs microvascular reactivity in adult rats: role of NO and prostanoids. Nutr Metab Cardiovasc Dis. 2011, 21: 808-816. 10.1016/j.numecd.2010.02.006.CrossRefPubMed Lobato NS, Filgueira FP, Akamine EH, Davel AP, Rossoni LV, Tostes RC, Carvalho MH, Fortes ZB: Obesity induced by neonatal treatment with monosodium glutamate impairs microvascular reactivity in adult rats: role of NO and prostanoids. Nutr Metab Cardiovasc Dis. 2011, 21: 808-816. 10.1016/j.numecd.2010.02.006.CrossRefPubMed
46.
go back to reference Glazier AM, Scott J, Aitman TJ: Molecular basis of the Cd36 chromosomal deletion underlying SHR defects in insulin action and fatty acid metabolism. Mamm Genome. 2002, 13: 108-113. 10.1007/s00335-001-2132-9.CrossRefPubMed Glazier AM, Scott J, Aitman TJ: Molecular basis of the Cd36 chromosomal deletion underlying SHR defects in insulin action and fatty acid metabolism. Mamm Genome. 2002, 13: 108-113. 10.1007/s00335-001-2132-9.CrossRefPubMed
47.
go back to reference Chiappe De Cingolani GE, Caldiz CI: Insulin resistance and GLUT-4 glucose transporter in adipocytes from hypertensive rats. Metabolism. 2004, 53: 382-387. 10.1016/j.metabol.2003.10.017.CrossRefPubMed Chiappe De Cingolani GE, Caldiz CI: Insulin resistance and GLUT-4 glucose transporter in adipocytes from hypertensive rats. Metabolism. 2004, 53: 382-387. 10.1016/j.metabol.2003.10.017.CrossRefPubMed
48.
go back to reference Han XX, Bonen A: Epinephrine translocates GLUT-4 but inhibits insulin-stimulated glucose transport in rat muscle. Am J Physiol. 1998, 274: E700-E707.PubMed Han XX, Bonen A: Epinephrine translocates GLUT-4 but inhibits insulin-stimulated glucose transport in rat muscle. Am J Physiol. 1998, 274: E700-E707.PubMed
49.
go back to reference Exton JH: Mechanisms of hormonal regulation of hepatic glucose metabolism. Diabetes Metab Rev. 1987, 3: 163-183. 10.1002/dmr.5610030108.CrossRefPubMed Exton JH: Mechanisms of hormonal regulation of hepatic glucose metabolism. Diabetes Metab Rev. 1987, 3: 163-183. 10.1002/dmr.5610030108.CrossRefPubMed
50.
go back to reference Iwase M, Ichikawa K, Tashiro K, Iino K, Shinohara N, Ibayashi S, Yoshinari M, Fujishima M: Effects of monosodium glutamate-induced obesity in spontaneously hypertensive rats vs. Wistar Kyoto rats: serum leptin and blood flow to brown adipose tissue. Hypertens Res. 2000, 23: 503-510.PubMed Iwase M, Ichikawa K, Tashiro K, Iino K, Shinohara N, Ibayashi S, Yoshinari M, Fujishima M: Effects of monosodium glutamate-induced obesity in spontaneously hypertensive rats vs. Wistar Kyoto rats: serum leptin and blood flow to brown adipose tissue. Hypertens Res. 2000, 23: 503-510.PubMed
51.
go back to reference Dandona P, Aljada A, Mohanty P, Ghanim H, Hamouda W, Assian E, Ahmad S: Insulin inhibits intranuclear nuclear factor kappaB and stimulates IkappaB in mononuclear cells in obese subjects: evidence for an anti-inflammatory effect?. J Clin Endocrinol Metab. 2001, 86: 3257-3265. 10.1210/jc.86.7.3257.PubMed Dandona P, Aljada A, Mohanty P, Ghanim H, Hamouda W, Assian E, Ahmad S: Insulin inhibits intranuclear nuclear factor kappaB and stimulates IkappaB in mononuclear cells in obese subjects: evidence for an anti-inflammatory effect?. J Clin Endocrinol Metab. 2001, 86: 3257-3265. 10.1210/jc.86.7.3257.PubMed
52.
go back to reference Furuya DT, Poletto AC, Favaro RR, Martins JO, Zorn TM, Machado UF: Anti-inflammatory effect of atorvastatin ameliorates insulin resistance in monosodium glutamate-treated obese mice. Metabolism. 2010, 59: 395-399. 10.1016/j.metabol.2009.08.011.CrossRefPubMed Furuya DT, Poletto AC, Favaro RR, Martins JO, Zorn TM, Machado UF: Anti-inflammatory effect of atorvastatin ameliorates insulin resistance in monosodium glutamate-treated obese mice. Metabolism. 2010, 59: 395-399. 10.1016/j.metabol.2009.08.011.CrossRefPubMed
53.
go back to reference Hontecillas R, O’Shea M, Einerhand A, Diguardo M, Bassaganya-Riera J: Activation of PPAR gamma and alpha by punicic acid ameliorates glucose tolerance and suppresses obesity-related inflammation. J Am Coll Nutr. 2009, 28: 184-195.CrossRefPubMed Hontecillas R, O’Shea M, Einerhand A, Diguardo M, Bassaganya-Riera J: Activation of PPAR gamma and alpha by punicic acid ameliorates glucose tolerance and suppresses obesity-related inflammation. J Am Coll Nutr. 2009, 28: 184-195.CrossRefPubMed
54.
go back to reference Gomez Rosso L, Merono T, Benitez MB, Lopez G, Giunta G, D’Ambrosio ML, Wikinski R, Cuniberti L, Brites F: Low adiponectin levels in primary hypertriglyceridemic male patients. Nutr Metab Cardiovasc Dis. 2009, 19: 135-139. 10.1016/j.numecd.2008.02.008.CrossRefPubMed Gomez Rosso L, Merono T, Benitez MB, Lopez G, Giunta G, D’Ambrosio ML, Wikinski R, Cuniberti L, Brites F: Low adiponectin levels in primary hypertriglyceridemic male patients. Nutr Metab Cardiovasc Dis. 2009, 19: 135-139. 10.1016/j.numecd.2008.02.008.CrossRefPubMed
55.
go back to reference Cassidy A, Skidmore P, Rimm EB, Welch A, Fairweather-Tait S, Skinner J, Burling K, Richards JB, Spector TD, MacGregor AJ: Plasma adiponectin concentrations are associated with body composition and plant-based dietary factors in female twins. J Nutr. 2009, 139: 353-358.CrossRefPubMed Cassidy A, Skidmore P, Rimm EB, Welch A, Fairweather-Tait S, Skinner J, Burling K, Richards JB, Spector TD, MacGregor AJ: Plasma adiponectin concentrations are associated with body composition and plant-based dietary factors in female twins. J Nutr. 2009, 139: 353-358.CrossRefPubMed
56.
go back to reference Kouidhi S, Berrhouma R, Rouissi K, Jarboui S, Clerget-Froidevaux MS, Seugnet I, Bchir F, Demeneix B, Guissouma H, Elgaaied AB: Human subcutaneous adipose tissue Glut 4 mRNA expression in obesity and type 2 diabetes. Acta Diabetol. 2011, Epub ahead of print Kouidhi S, Berrhouma R, Rouissi K, Jarboui S, Clerget-Froidevaux MS, Seugnet I, Bchir F, Demeneix B, Guissouma H, Elgaaied AB: Human subcutaneous adipose tissue Glut 4 mRNA expression in obesity and type 2 diabetes. Acta Diabetol. 2011, Epub ahead of print
57.
go back to reference Katayama S, Inaba M, Maruno Y, Morita T, Awata T, Oka Y: Glucose intolerance in spontaneously hypertensive and wistar-kyoto rats: enhanced gene expression and synthesis of skeletal muscle glucose transporter 4. Hypertens Res. 1997, 20: 279-286. 10.1291/hypres.20.279.CrossRefPubMed Katayama S, Inaba M, Maruno Y, Morita T, Awata T, Oka Y: Glucose intolerance in spontaneously hypertensive and wistar-kyoto rats: enhanced gene expression and synthesis of skeletal muscle glucose transporter 4. Hypertens Res. 1997, 20: 279-286. 10.1291/hypres.20.279.CrossRefPubMed
58.
go back to reference Miyata T, Taguchi T, Uehara M, Isami S, Kishikawa H, Kaneko K, Araki E, Shichiri M: Bradykinin potentiates insulin-stimulated glucose uptake and enhances insulin signal through the bradykinin B2 receptor in dog skeletal muscle and rat L6 myoblasts. Eur J Endocrinol. 1998, 138: 344-352. 10.1530/eje.0.1380344.CrossRefPubMed Miyata T, Taguchi T, Uehara M, Isami S, Kishikawa H, Kaneko K, Araki E, Shichiri M: Bradykinin potentiates insulin-stimulated glucose uptake and enhances insulin signal through the bradykinin B2 receptor in dog skeletal muscle and rat L6 myoblasts. Eur J Endocrinol. 1998, 138: 344-352. 10.1530/eje.0.1380344.CrossRefPubMed
59.
go back to reference Carvalho CR, Thirone AC, Gontijo JA, Velloso LA, Saad MJ: Effect of captopril, losartan, and bradykinin on early steps of insulin action. Diabetes. 1997, 46: 1950-1957. 10.2337/diabetes.46.12.1950.CrossRefPubMed Carvalho CR, Thirone AC, Gontijo JA, Velloso LA, Saad MJ: Effect of captopril, losartan, and bradykinin on early steps of insulin action. Diabetes. 1997, 46: 1950-1957. 10.2337/diabetes.46.12.1950.CrossRefPubMed
60.
go back to reference Shepherd P, Kahn B: Glucose transporters and insulin action ¬ implications for insulin resistance and diabetes mellitus. N Engl J Med. 1999, 341: 248-257. 10.1056/NEJM199907223410406.CrossRefPubMed Shepherd P, Kahn B: Glucose transporters and insulin action ¬ implications for insulin resistance and diabetes mellitus. N Engl J Med. 1999, 341: 248-257. 10.1056/NEJM199907223410406.CrossRefPubMed
61.
go back to reference Lopaschuk GD, Belke DD, Gamble J, Itoi T, Schonekess BO: Regulation of fatty acid oxidation in the mammalian heart in health and disease. Biochim Biophys Acta. 1994, 1213: 263-276. 10.1016/0005-2760(94)00082-4.CrossRefPubMed Lopaschuk GD, Belke DD, Gamble J, Itoi T, Schonekess BO: Regulation of fatty acid oxidation in the mammalian heart in health and disease. Biochim Biophys Acta. 1994, 1213: 263-276. 10.1016/0005-2760(94)00082-4.CrossRefPubMed
62.
go back to reference Thackeray JT, Radziuk J, Harper ME, Suuronen EJ, Ascah KJ, Beanlands RS, Dasilva JN: Sympathetic nervous dysregulation in the absence of systolic left ventricular dysfunction in a rat model of insulin resistance with hyperglycemia. Cardiovasc Diabetol. 2011, 10: 75-10.1186/1475-2840-10-75.PubMedCentralCrossRefPubMed Thackeray JT, Radziuk J, Harper ME, Suuronen EJ, Ascah KJ, Beanlands RS, Dasilva JN: Sympathetic nervous dysregulation in the absence of systolic left ventricular dysfunction in a rat model of insulin resistance with hyperglycemia. Cardiovasc Diabetol. 2011, 10: 75-10.1186/1475-2840-10-75.PubMedCentralCrossRefPubMed
63.
go back to reference Luiken JJ, Coort SL, Koonen DP, Bonen A, Glatz JF: Signalling components involved in contraction-inducible substrate uptake into cardiac myocytes. Proc Nutr Soc. 2004, 63: 251-258. 10.1079/PNS2004333.CrossRefPubMed Luiken JJ, Coort SL, Koonen DP, Bonen A, Glatz JF: Signalling components involved in contraction-inducible substrate uptake into cardiac myocytes. Proc Nutr Soc. 2004, 63: 251-258. 10.1079/PNS2004333.CrossRefPubMed
64.
go back to reference Vettor R, Fabris R, Serra R, Lombardi AM, Tonello C, Granzotto M, Marzolo MO, Carruba MO, Ricquier D, Federspil G, Nisoli E: Changes in FAT/CD36, UCP2, UCP3 and GLUT4 gene expression during lipid infusion in rat skeletal and heart muscle. Int J Obes Relat Metab Disord. 2002, 26: 838-847.CrossRefPubMed Vettor R, Fabris R, Serra R, Lombardi AM, Tonello C, Granzotto M, Marzolo MO, Carruba MO, Ricquier D, Federspil G, Nisoli E: Changes in FAT/CD36, UCP2, UCP3 and GLUT4 gene expression during lipid infusion in rat skeletal and heart muscle. Int J Obes Relat Metab Disord. 2002, 26: 838-847.CrossRefPubMed
65.
go back to reference Morel S, Berthonneche C, Tanguy S, Toufektsian MC, Perret P, Ghezzi C, de Leiris J, Boucher F: Early pre-diabetic state alters adaptation of myocardial glucose metabolism during ischemia in rats. Mol Cell Biochem. 2005, 272: 9-17. 10.1007/s11010-005-4778-1.CrossRefPubMed Morel S, Berthonneche C, Tanguy S, Toufektsian MC, Perret P, Ghezzi C, de Leiris J, Boucher F: Early pre-diabetic state alters adaptation of myocardial glucose metabolism during ischemia in rats. Mol Cell Biochem. 2005, 272: 9-17. 10.1007/s11010-005-4778-1.CrossRefPubMed
Metadata
Title
GLUT4 content decreases along with insulin resistance and high levels of inflammatory markers in rats with metabolic syndrome
Authors
Natalia M Leguisamo
Alexandre M Lehnen
Ubiratan F Machado
Maristela M Okamoto
Melissa M Markoski
Graziela H Pinto
Beatriz D Schaan
Publication date
01-12-2012
Publisher
BioMed Central
Published in
Cardiovascular Diabetology / Issue 1/2012
Electronic ISSN: 1475-2840
DOI
https://doi.org/10.1186/1475-2840-11-100

Other articles of this Issue 1/2012

Cardiovascular Diabetology 1/2012 Go to the issue
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discuss last year's major advances in heart failure and cardiomyopathies.