Skip to main content
Top
Published in: Malaria Journal 1/2018

Open Access 01-12-2018 | Research

Glucose-6-phosphate dehydrogenase activity measured by spectrophotometry and associated genetic variants from the Oromiya zone, Ethiopia

Authors: Nora Kießling, Joaquin Brintrup, Ahmed Zeynudin, Nuredin Abduselam, Sylvia Götz, Margith Mack, Michael Pritsch, Andreas Wieser, Elisabeth Kohne, Nicole Berens-Riha

Published in: Malaria Journal | Issue 1/2018

Login to get access

Abstract

Background

The study aimed to gain first data on the prevalence of G6PD enzyme deficiency measured by spectrophotometry and associated genetic variants in Jimma and surroundings, Ethiopia. The area is a Plasmodium vivax endemic region, but 8-aminoquinolines such as primaquine are not recommended as G6PD testing is not available.

Methods

Healthy volunteers were recruited at Jimma University, Ethiopia. Enzyme activity was tested by spectrophotometry at the University of Ulm, Germany. A G6PD RDT (Binax NOW® G6PD, Alere, USA) was additionally performed. The G6PD gene was analysed for polymorphisms in a sub-population. Tests for haemoglobinopathies and the presence of malaria parasites were conducted.

Results

No severe or moderate (cut-off 60%) G6PD deficiency was found in 206 volunteers. Median male activity was 6.1 U/g Hb. Eleven participants (5.4%) showed activities between 70 and 80%. No haemoglobinopathy was detected. None of the subjects showed asymptomatic parasitaemia. One G6PD-A+ variant (A376G) and one new non-synonymous mutation (G445A) were found.

Conclusions

As the prevalence of G6PD deficiency seems low in this area, the use of 8-aminoquinolines should be encouraged. However, reliable G6PD testing methods have to be implemented and safe cut-off levels need to be defined.
Appendix
Available only for authorised users
Literature
1.
go back to reference Eshetu T, Abdo N, Bedru KH, Fekadu S, Wieser A, Pritsch M, et al. Open-label trial with artemether–lumefantrine against uncomplicated Plasmodium falciparum malaria three years after its broad introduction in Jimma Zone, Ethiopia. Malar J. 2012;11:240.CrossRef Eshetu T, Abdo N, Bedru KH, Fekadu S, Wieser A, Pritsch M, et al. Open-label trial with artemether–lumefantrine against uncomplicated Plasmodium falciparum malaria three years after its broad introduction in Jimma Zone, Ethiopia. Malar J. 2012;11:240.CrossRef
2.
go back to reference Bousema T, Drakeley C. Epidemiology and infectivity of Plasmodium falciparum and Plasmodium vivax gametocytes in relation to malaria control and elimination. Clin Microbiol Rev. 2011;24:377–410.CrossRef Bousema T, Drakeley C. Epidemiology and infectivity of Plasmodium falciparum and Plasmodium vivax gametocytes in relation to malaria control and elimination. Clin Microbiol Rev. 2011;24:377–410.CrossRef
3.
go back to reference Hay SI, Guerra CA, Tatem AJ, Noor AM, Snow RW. The global distribution and population at risk of malaria: past, present, and future. Lancet Infect Dis. 2004;4:327–36.CrossRef Hay SI, Guerra CA, Tatem AJ, Noor AM, Snow RW. The global distribution and population at risk of malaria: past, present, and future. Lancet Infect Dis. 2004;4:327–36.CrossRef
4.
go back to reference Naing C, Whittaker MA, Wai VN, Mak JW. Is Plasmodium vivax malaria a severe malaria?: a systematic review and meta-analysis. PLoS Negl Trop Dis. 2014;8:e3071.CrossRef Naing C, Whittaker MA, Wai VN, Mak JW. Is Plasmodium vivax malaria a severe malaria?: a systematic review and meta-analysis. PLoS Negl Trop Dis. 2014;8:e3071.CrossRef
7.
go back to reference Ley B, Bancone G, von Seidlein L, Thriemer K, Richards JS, Domingo GJ, et al. Methods for the field evaluation of quantitative G6PD diagnostics: a review. Malar J. 2017;16:361.CrossRef Ley B, Bancone G, von Seidlein L, Thriemer K, Richards JS, Domingo GJ, et al. Methods for the field evaluation of quantitative G6PD diagnostics: a review. Malar J. 2017;16:361.CrossRef
8.
go back to reference Luzzatto L, Seneca E. G6PD deficiency: a classic example of pharmacogenetics with on-going clinical implications. Br J Haematol. 2014;164:469–80.CrossRef Luzzatto L, Seneca E. G6PD deficiency: a classic example of pharmacogenetics with on-going clinical implications. Br J Haematol. 2014;164:469–80.CrossRef
9.
go back to reference Gómez-Manzo S, Marcial-Quino J, Vanoye-Carlo A, Serrano-Posada H, Ortega-Cuellar D, González-Valdez A, et al. Glucose-6-phosphate dehydrogenase: update and analysis of new mutations around the world. Int J Mol Sci. 2016;17:e2069.CrossRef Gómez-Manzo S, Marcial-Quino J, Vanoye-Carlo A, Serrano-Posada H, Ortega-Cuellar D, González-Valdez A, et al. Glucose-6-phosphate dehydrogenase: update and analysis of new mutations around the world. Int J Mol Sci. 2016;17:e2069.CrossRef
10.
go back to reference Minucci A, Moradkhani K, Hwang MJ, Zuppi C, Giardina B, Capoluongo E. Glucose-6-phosphate dehydrogenase (G6PD) mutations database: review of the “old” and update of the new mutations. Blood Cells Mol Dis. 2012;48:154–65.CrossRef Minucci A, Moradkhani K, Hwang MJ, Zuppi C, Giardina B, Capoluongo E. Glucose-6-phosphate dehydrogenase (G6PD) mutations database: review of the “old” and update of the new mutations. Blood Cells Mol Dis. 2012;48:154–65.CrossRef
11.
go back to reference Cappellini MD, Fiorelli G. Glucose-6-phosphate dehydrogenase deficiency. Lancet. 2008;371:64–74.CrossRef Cappellini MD, Fiorelli G. Glucose-6-phosphate dehydrogenase deficiency. Lancet. 2008;371:64–74.CrossRef
12.
go back to reference WHO. Glucose-6-phosphate dehydrogenase deficiency. WHO Working Group. Bull World Health Organ. 1989;67:601–11. WHO. Glucose-6-phosphate dehydrogenase deficiency. WHO Working Group. Bull World Health Organ. 1989;67:601–11.
13.
go back to reference Howes RE, Piel FB, Patil AP, Nyangiri OA, Gething PW, Dewi M, et al. G6PD deficiency prevalence and estimates of affected populations in malaria endemic countries: a geostatistical model-based map. PLoS Med. 2012;9:e1001339.CrossRef Howes RE, Piel FB, Patil AP, Nyangiri OA, Gething PW, Dewi M, et al. G6PD deficiency prevalence and estimates of affected populations in malaria endemic countries: a geostatistical model-based map. PLoS Med. 2012;9:e1001339.CrossRef
14.
go back to reference Tsegaye A, Golassa L, Mamo H, Erko B. Glucose-6-phosphate dehydrogenase deficiency among malaria suspects attending Gambella hospital, southwest Ethiopia. Malar J. 2014;13:438.CrossRef Tsegaye A, Golassa L, Mamo H, Erko B. Glucose-6-phosphate dehydrogenase deficiency among malaria suspects attending Gambella hospital, southwest Ethiopia. Malar J. 2014;13:438.CrossRef
15.
go back to reference Carter TE, Mekonnen SK, Lopez K, Bonnell V, Damodaran L, Aseffa A, et al. Glucose-6-phosphate dehydrogenase deficiency genetic variants in malaria patients in Southwestern Ethiopia. Am J Trop Med Hyg. 2018;98:83–7.CrossRef Carter TE, Mekonnen SK, Lopez K, Bonnell V, Damodaran L, Aseffa A, et al. Glucose-6-phosphate dehydrogenase deficiency genetic variants in malaria patients in Southwestern Ethiopia. Am J Trop Med Hyg. 2018;98:83–7.CrossRef
17.
go back to reference Löhr GW, Waller HD. Glucose-6-phosphat-dehydrogenase (Zwischenferment). In: Bergmeyer HU, editor. Methoden der enzymatischen Analyse. Weinheim: Chemie-Verlag; 1962. p. 744–51. Löhr GW, Waller HD. Glucose-6-phosphat-dehydrogenase (Zwischenferment). In: Bergmeyer HU, editor. Methoden der enzymatischen Analyse. Weinheim: Chemie-Verlag; 1962. p. 744–51.
18.
go back to reference Kahn M, LaRue N, Zhu C, Pal S, Mo JS, Barrett LK, et al. Recombinant human G6PD for quality control and quality assurance of novel point-of-care diagnostics for G6PD deficiency. PLoS ONE. 2017;12:e0177885.CrossRef Kahn M, LaRue N, Zhu C, Pal S, Mo JS, Barrett LK, et al. Recombinant human G6PD for quality control and quality assurance of novel point-of-care diagnostics for G6PD deficiency. PLoS ONE. 2017;12:e0177885.CrossRef
19.
go back to reference LaRue N, Kahn M, Murray M, Leader BT, Bansil P, McGray S, et al. Comparison of quantitative and qualitative tests for glucose-6-phosphate dehydrogenase deficiency. Am J Trop Med Hyg. 2014;91:854–61.CrossRef LaRue N, Kahn M, Murray M, Leader BT, Bansil P, McGray S, et al. Comparison of quantitative and qualitative tests for glucose-6-phosphate dehydrogenase deficiency. Am J Trop Med Hyg. 2014;91:854–61.CrossRef
20.
go back to reference Tartaglia M, Scano G, De Stefano GF. An anthropogenetic study on the Oromo and Amhara of central Ethiopia. Am J Hum Biol. 1996;8:505–16.CrossRef Tartaglia M, Scano G, De Stefano GF. An anthropogenetic study on the Oromo and Amhara of central Ethiopia. Am J Hum Biol. 1996;8:505–16.CrossRef
21.
go back to reference Ley B, Alam MS, O’Donnell JJ, Hossain MS, Kibria MG, Jahan N, et al. A comparison of three quantitative methods to estimate G6PD activity in the Chittagong Hill Tracts, Bangladesh. PLoS ONE. 2017;12:e0169930.CrossRef Ley B, Alam MS, O’Donnell JJ, Hossain MS, Kibria MG, Jahan N, et al. A comparison of three quantitative methods to estimate G6PD activity in the Chittagong Hill Tracts, Bangladesh. PLoS ONE. 2017;12:e0169930.CrossRef
22.
go back to reference Kahn M, Ward WH, LaRue N, Kalnoky M, Pal S, Domingo GJ. Maintaining specimen integrity for G6PD screening by cytofluorometric assays. J Histochem Cytochem. 2015;63:454–8.CrossRef Kahn M, Ward WH, LaRue N, Kalnoky M, Pal S, Domingo GJ. Maintaining specimen integrity for G6PD screening by cytofluorometric assays. J Histochem Cytochem. 2015;63:454–8.CrossRef
23.
go back to reference Kahn M, LaRue N, Bansil P, Kalnoky M, McGray S, Domingo GJ. Cryopreservation of glucose-6-phosphate dehydrogenase activity inside red blood cells: developing a specimen repository in support of development and evaluation of glucose-6-phosphate dehydrogenase deficiency tests. Malar J. 2013;12:286.CrossRef Kahn M, LaRue N, Bansil P, Kalnoky M, McGray S, Domingo GJ. Cryopreservation of glucose-6-phosphate dehydrogenase activity inside red blood cells: developing a specimen repository in support of development and evaluation of glucose-6-phosphate dehydrogenase deficiency tests. Malar J. 2013;12:286.CrossRef
24.
go back to reference Tadesse FG, Pett H, Baidjoe A, Lanke K, Grignard L, Sutherland C, et al. Submicroscopic carriage of Plasmodium falciparum and Plasmodium vivax in a low endemic area in Ethiopia where no parasitaemia was detected by microscopy or rapid diagnostic test. Malar J. 2015;14:303.CrossRef Tadesse FG, Pett H, Baidjoe A, Lanke K, Grignard L, Sutherland C, et al. Submicroscopic carriage of Plasmodium falciparum and Plasmodium vivax in a low endemic area in Ethiopia where no parasitaemia was detected by microscopy or rapid diagnostic test. Malar J. 2015;14:303.CrossRef
25.
go back to reference Pamba A, Richardson ND, Carter N, Duparc S, Premji Z, Tiono AB, et al. Clinical spectrum and severity of hemolytic anemia in glucose 6-phosphate dehydrogenase-deficient children receiving dapsone. Blood. 2012;120:4123–33.CrossRef Pamba A, Richardson ND, Carter N, Duparc S, Premji Z, Tiono AB, et al. Clinical spectrum and severity of hemolytic anemia in glucose 6-phosphate dehydrogenase-deficient children receiving dapsone. Blood. 2012;120:4123–33.CrossRef
26.
go back to reference Shekalaghe SA, ter Braak R, Daou M, Kavishe R, van den Bijllaardt W, van den Bosch S, et al. In Tanzania, hemolysis after a single dose of primaquine coadministered with an artemisinin is not restricted to glucose-6-phosphate dehydrogenase-deficient (G6PD A−) individuals. Antimicrob Agents Chemother. 2010;54:1762–8.CrossRef Shekalaghe SA, ter Braak R, Daou M, Kavishe R, van den Bijllaardt W, van den Bosch S, et al. In Tanzania, hemolysis after a single dose of primaquine coadministered with an artemisinin is not restricted to glucose-6-phosphate dehydrogenase-deficient (G6PD A−) individuals. Antimicrob Agents Chemother. 2010;54:1762–8.CrossRef
27.
go back to reference von Seidlein L, Auburn S, Espino F, Shanks D, Cheng Q, McCarthy J, et al. Review of key knowledge gaps in glucose-6-phosphate dehydrogenase deficiency detection with regard to the safe clinical deployment of 8-aminoquinoline treatment regimens: a workshop report. Malar J. 2013;12:112.CrossRef von Seidlein L, Auburn S, Espino F, Shanks D, Cheng Q, McCarthy J, et al. Review of key knowledge gaps in glucose-6-phosphate dehydrogenase deficiency detection with regard to the safe clinical deployment of 8-aminoquinoline treatment regimens: a workshop report. Malar J. 2013;12:112.CrossRef
Metadata
Title
Glucose-6-phosphate dehydrogenase activity measured by spectrophotometry and associated genetic variants from the Oromiya zone, Ethiopia
Authors
Nora Kießling
Joaquin Brintrup
Ahmed Zeynudin
Nuredin Abduselam
Sylvia Götz
Margith Mack
Michael Pritsch
Andreas Wieser
Elisabeth Kohne
Nicole Berens-Riha
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Malaria Journal / Issue 1/2018
Electronic ISSN: 1475-2875
DOI
https://doi.org/10.1186/s12936-018-2510-3

Other articles of this Issue 1/2018

Malaria Journal 1/2018 Go to the issue
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discuss last year's major advances in heart failure and cardiomyopathies.