Skip to main content
Top
Published in: Calcified Tissue International 6/2009

01-12-2009

Glucocorticoid-Induced Osteoporosis in Growing Mice Is Not Prevented by Simultaneous Intermittent PTH Treatment

Authors: Andrei Postnov, Tineke De Schutter, Jan Sijbers, Marcel Karperien, Nora De Clerck

Published in: Calcified Tissue International | Issue 6/2009

Login to get access

Abstract

Glucocorticoids (GCs) are widely used in medicine for treatment of chronic diseases. Especially in children, prolonged treatment causes growth retardation and early onset of osteoporosis. Human parathyroid hormone (PTH) has an anabolic effect on bone when administrated intermittently. The aim of the present study was to examine whether a combined therapy of dexamethasone (DEX) and PTH could prevent the detrimental effects of GC on cortical and trabecular bone in the femur and vertebrae of growing mice. Three-week-old female FVB mice were treated with control, DEX, PTH, or a combination of DEX and PTH by daily subcutaneous injections. After 4 weeks, animals were killed and the femur and L5 vertebra were isolated. Cortical and trabecular bone parameters and relative calcium density were measured by high-resolution X-ray micro-computed tomography (micro-CT). In the femur, PTH can reverse the effects of DEX on bone volume to control. However, it cannot reverse the undermineralization, which most likely is a strong contributor to bone fragility. In the vertebra, PTH improves bone volume to some extent but does not restore the values to normal. It augments the negative effect of DEX on mineralization. We conclude that the detrimental effects of DEX in the growing skeleton cannot be prevented by simultaneous PTH treatment.
Literature
1.
go back to reference Chrysis D, Ritzen EM, Savendahl L (2003) Growth retardation induced by dexamethasone is associated with increased apoptosis of the growth plate chondrocytes. J Endocrinol 176:331–337CrossRefPubMed Chrysis D, Ritzen EM, Savendahl L (2003) Growth retardation induced by dexamethasone is associated with increased apoptosis of the growth plate chondrocytes. J Endocrinol 176:331–337CrossRefPubMed
2.
go back to reference Silvestrini G, Ballanti P, Patacchioli FR, Mocetti P, Di GR, Wedard BM, Angelucci L, Bonucci E (2000) Evaluation of apoptosis and the glucocorticoid receptor in the cartilage growth plate and metaphyseal bone cells of rats after high-dose treatment with corticosterone. Bone 26:33–42CrossRefPubMed Silvestrini G, Ballanti P, Patacchioli FR, Mocetti P, Di GR, Wedard BM, Angelucci L, Bonucci E (2000) Evaluation of apoptosis and the glucocorticoid receptor in the cartilage growth plate and metaphyseal bone cells of rats after high-dose treatment with corticosterone. Bone 26:33–42CrossRefPubMed
3.
go back to reference van der Eerden BC, Karperien M, Wit JM (2003) Systemic and local regulation of the growth plate. Endocr Rev 24:782–801CrossRefPubMed van der Eerden BC, Karperien M, Wit JM (2003) Systemic and local regulation of the growth plate. Endocr Rev 24:782–801CrossRefPubMed
4.
go back to reference Lane NE, Sanchez S, Modin GW, Genant HK, Pierini E, Arnaud CD (1998) Parathyroid hormone treatment can reverse corticosteroid-induced osteoporosis. Results of a randomized controlled clinical trial. J Clin Invest 102:1627–1633CrossRefPubMed Lane NE, Sanchez S, Modin GW, Genant HK, Pierini E, Arnaud CD (1998) Parathyroid hormone treatment can reverse corticosteroid-induced osteoporosis. Results of a randomized controlled clinical trial. J Clin Invest 102:1627–1633CrossRefPubMed
5.
go back to reference Weinstein RS, Jilka RL, Parfitt AM, Manolagas SC (1998) Inhibition of osteoblastogenesis and promotion of apoptosis of osteoblasts and osteocytes by glucocorticoids. Potential mechanisms of their deleterious effects on bone. J Clin Invest 102:274–282CrossRefPubMed Weinstein RS, Jilka RL, Parfitt AM, Manolagas SC (1998) Inhibition of osteoblastogenesis and promotion of apoptosis of osteoblasts and osteocytes by glucocorticoids. Potential mechanisms of their deleterious effects on bone. J Clin Invest 102:274–282CrossRefPubMed
6.
go back to reference O’Brien CA, Jia D, Plotkin LI, Bellido T, Powers CC, Stewart SA, Manolagas SC, Weinstein RS (2004) Glucocorticoids act directly on osteoblasts and osteocytes to induce their apoptosis and reduce bone formation and strength. Endocrinology 145:1835–1841CrossRefPubMed O’Brien CA, Jia D, Plotkin LI, Bellido T, Powers CC, Stewart SA, Manolagas SC, Weinstein RS (2004) Glucocorticoids act directly on osteoblasts and osteocytes to induce their apoptosis and reduce bone formation and strength. Endocrinology 145:1835–1841CrossRefPubMed
7.
go back to reference Canalis E, Mazziotti G, Giustina A, Bilezikian JP (2007) Glucocorticoid-induced osteoporosis: pathophysiology and therapy. Osteoporos Int 18:1319–1328CrossRefPubMed Canalis E, Mazziotti G, Giustina A, Bilezikian JP (2007) Glucocorticoid-induced osteoporosis: pathophysiology and therapy. Osteoporos Int 18:1319–1328CrossRefPubMed
8.
go back to reference Weinstein RS, Chen JR, Powers CC, Stewart SA, Landes RD, Bellido T, Jilka RL, Parfitt AM, Manolagas SC (2002) Promotion of osteoclast survival and antagonism of bisphosphonate-induced osteoclast apoptosis by glucocorticoids. J Clin Invest 109:1041–1048PubMed Weinstein RS, Chen JR, Powers CC, Stewart SA, Landes RD, Bellido T, Jilka RL, Parfitt AM, Manolagas SC (2002) Promotion of osteoclast survival and antagonism of bisphosphonate-induced osteoclast apoptosis by glucocorticoids. J Clin Invest 109:1041–1048PubMed
9.
go back to reference Canalis E, Delany AM (2002) Mechanisms of glucocorticoid action in bone. Ann NY Acad Sci 966:73–81CrossRefPubMed Canalis E, Delany AM (2002) Mechanisms of glucocorticoid action in bone. Ann NY Acad Sci 966:73–81CrossRefPubMed
10.
go back to reference Van Staa TP (2006) The pathogenesis, epidemiology and management of glucocorticoid-induced osteoporosis. Calcif Tissue Int 79:129–137CrossRefPubMed Van Staa TP (2006) The pathogenesis, epidemiology and management of glucocorticoid-induced osteoporosis. Calcif Tissue Int 79:129–137CrossRefPubMed
11.
go back to reference Balooch G, Yao W, Ager JW, Balooch M, Nalla RK, Porter AE, Ritchie RO, Lane NE (2007) The aminobisphosphonate risedronate preserves localized mineral and material properties of bone in the presence of clucocorticoids. Arthritis Rheum 56:3726–3737CrossRefPubMed Balooch G, Yao W, Ager JW, Balooch M, Nalla RK, Porter AE, Ritchie RO, Lane NE (2007) The aminobisphosphonate risedronate preserves localized mineral and material properties of bone in the presence of clucocorticoids. Arthritis Rheum 56:3726–3737CrossRefPubMed
12.
go back to reference Alexander JM, Bab I, Fish S, Muller R, Uchiyama T, Gronowicz G, Nahounou M, Zhao Q, White DW, Chorev M, Gazit D, Rosenblatt M (2001) Human parathyroid hormone 1–34 reverses bone loss in ovariectomized mice. J Bone Miner Res 16:1665–1673CrossRefPubMed Alexander JM, Bab I, Fish S, Muller R, Uchiyama T, Gronowicz G, Nahounou M, Zhao Q, White DW, Chorev M, Gazit D, Rosenblatt M (2001) Human parathyroid hormone 1–34 reverses bone loss in ovariectomized mice. J Bone Miner Res 16:1665–1673CrossRefPubMed
13.
go back to reference Gittens SA, Wohl GR, Zernicke RF, Matyas JR, Morley P, Uludag H (2004) Systemic bone formation with weekly PTH administration in ovariectomized rats. J Pharm Pharm Sci 7:27–37PubMed Gittens SA, Wohl GR, Zernicke RF, Matyas JR, Morley P, Uludag H (2004) Systemic bone formation with weekly PTH administration in ovariectomized rats. J Pharm Pharm Sci 7:27–37PubMed
14.
go back to reference Yao W, Cheng Z, Pham A, Busse C, Zimmerman EA, Ritchie RO, Lane NE (2008) Glucocorticoid-induced bone loss in mice can be reversed by the actions of parathyroid hormone and risedronate on different pathways for bone formation and mineralization. Arthritis Rheum 58:3485–3497CrossRefPubMed Yao W, Cheng Z, Pham A, Busse C, Zimmerman EA, Ritchie RO, Lane NE (2008) Glucocorticoid-induced bone loss in mice can be reversed by the actions of parathyroid hormone and risedronate on different pathways for bone formation and mineralization. Arthritis Rheum 58:3485–3497CrossRefPubMed
15.
go back to reference Saag KG, Shane E, Boonen S, Marin F, Donley DW, Taylor KA, Dalsky GP, Marcus R (2007) Teriparatide or alendronate in glucocorticoid-induced osteoporosis. N Engl J Med 357:2028–2039CrossRefPubMed Saag KG, Shane E, Boonen S, Marin F, Donley DW, Taylor KA, Dalsky GP, Marcus R (2007) Teriparatide or alendronate in glucocorticoid-induced osteoporosis. N Engl J Med 357:2028–2039CrossRefPubMed
16.
go back to reference van Buul-Offers SC, Smink JJ, Gresnigt R, Hamers N, Koedam J, Karperien M (2005) Thyroid hormone, but not parathyroid hormone, partially restores glucocorticoid-induced growth retardation. Pediatr Nephrol 20:335–341CrossRefPubMed van Buul-Offers SC, Smink JJ, Gresnigt R, Hamers N, Koedam J, Karperien M (2005) Thyroid hormone, but not parathyroid hormone, partially restores glucocorticoid-induced growth retardation. Pediatr Nephrol 20:335–341CrossRefPubMed
17.
go back to reference Waarsing JH, Day JS, van der Linden JC, Ederveen AG, Spanjers C, De Clerck N, Sasov A, Verhaar JA, Weinans H (2004) Detecting and tracking local changes in the tibiae of individual rats: a novel method to analyse longitudinal in vivo micro-CT data. Bone 34:163–169CrossRefPubMed Waarsing JH, Day JS, van der Linden JC, Ederveen AG, Spanjers C, De Clerck N, Sasov A, Verhaar JA, Weinans H (2004) Detecting and tracking local changes in the tibiae of individual rats: a novel method to analyse longitudinal in vivo micro-CT data. Bone 34:163–169CrossRefPubMed
18.
go back to reference De Clerck N, Postnov A (2007) High resolution X-ray microtomography: applications in biomedical research. In: Tavitian B, Leroy-Willig A, Ntziachristos V (eds) International textbook of in vivo imaging in vertebrates. Wiley, London, pp 57–77 De Clerck N, Postnov A (2007) High resolution X-ray microtomography: applications in biomedical research. In: Tavitian B, Leroy-Willig A, Ntziachristos V (eds) International textbook of in vivo imaging in vertebrates. Wiley, London, pp 57–77
19.
go back to reference Rooman R, Koster G, Bloemen R, Gresnigt R, van Buul-Offers SC (1999) The effect of dexamethasone on body and organ growth of normal and IGF-II transgenic mice. J Endocrinol 163:543–552CrossRefPubMed Rooman R, Koster G, Bloemen R, Gresnigt R, van Buul-Offers SC (1999) The effect of dexamethasone on body and organ growth of normal and IGF-II transgenic mice. J Endocrinol 163:543–552CrossRefPubMed
20.
go back to reference Smink JJ, Gresnigt MG, Hamers N, Koedam JA, Berger R, Van Buul-Offers SC (2003) Short-term glucocorticoid treatment of prepubertal mice decreases growth and IGF-I expression in the growth plate. J Endocrinol 177:381–388CrossRefPubMed Smink JJ, Gresnigt MG, Hamers N, Koedam JA, Berger R, Van Buul-Offers SC (2003) Short-term glucocorticoid treatment of prepubertal mice decreases growth and IGF-I expression in the growth plate. J Endocrinol 177:381–388CrossRefPubMed
21.
go back to reference Mohan S, Kutilek S, Zhang C, Shen HG, Kodama Y, Srivastava AK, Wergedal JE, Beamer WG, Baylink DJ (2000) Comparison of bone formation responses to parathyroid hormone (1–34), (1–31), and (2–34) in mice. Bone 27:471–478 Mohan S, Kutilek S, Zhang C, Shen HG, Kodama Y, Srivastava AK, Wergedal JE, Beamer WG, Baylink DJ (2000) Comparison of bone formation responses to parathyroid hormone (1–34), (1–31), and (2–34) in mice. Bone 27:471–478
22.
go back to reference Miyakoshi N, Kasukawa Y, Linkhart TA, Baylink DJ, Mohan S (2001) Evidence that anabolic effects of PTH on bone require IGF-I in growing mice. Endocrinology 142:4349–4356CrossRefPubMed Miyakoshi N, Kasukawa Y, Linkhart TA, Baylink DJ, Mohan S (2001) Evidence that anabolic effects of PTH on bone require IGF-I in growing mice. Endocrinology 142:4349–4356CrossRefPubMed
23.
go back to reference Feldkamp LA, Davis LC, Kress JW (1984) Practical cone-beam algorithm. J Opt Soc Am A1:612–619CrossRef Feldkamp LA, Davis LC, Kress JW (1984) Practical cone-beam algorithm. J Opt Soc Am A1:612–619CrossRef
24.
go back to reference Postnov A, Vinogradov A, Van Dyck D, Saveliev SV, De Clerck NM (2003) Quantitative analysis of bone mineral content by X-ray microtomography. Physiol Meas 24:165–178CrossRefPubMed Postnov A, Vinogradov A, Van Dyck D, Saveliev SV, De Clerck NM (2003) Quantitative analysis of bone mineral content by X-ray microtomography. Physiol Meas 24:165–178CrossRefPubMed
25.
go back to reference Iwamoto J, Matsumoto H, Takeda T, Sato Y, Liu X, Yeh JK (2008) Effects of vitamin K2 and risedronate on bone formation and resorption, osteocyte lacunar system, and porosity in the cortical bone of glucocorticoid-treated rats. Calcif Tissue Int 83:121–128CrossRefPubMed Iwamoto J, Matsumoto H, Takeda T, Sato Y, Liu X, Yeh JK (2008) Effects of vitamin K2 and risedronate on bone formation and resorption, osteocyte lacunar system, and porosity in the cortical bone of glucocorticoid-treated rats. Calcif Tissue Int 83:121–128CrossRefPubMed
26.
go back to reference McLaughlin F, Mackintosh J, Hayes BP, McLaren A, Uings IJ, Salmon P, Humphreys J, Meldrum E, Farrow SN (2002) Glucocorticoid-induced osteopenia in the mouse as assessed by histomorphometry, microcomputed tomography, and biochemical markers. Bone 30:924–930CrossRefPubMed McLaughlin F, Mackintosh J, Hayes BP, McLaren A, Uings IJ, Salmon P, Humphreys J, Meldrum E, Farrow SN (2002) Glucocorticoid-induced osteopenia in the mouse as assessed by histomorphometry, microcomputed tomography, and biochemical markers. Bone 30:924–930CrossRefPubMed
27.
go back to reference Ikeda S, Morishita Y, Tsutsumi H, Ito M, Shiraishi A, Arita S, Akahoshi S, Narusawa K, Nakamura T (2003) Reductions in bone turnover, mineral, and structure associated with mechanical properties of lumbar vertebra and femur in glucocorticoid-treated growing minipigs. Bone 33:779–787CrossRefPubMed Ikeda S, Morishita Y, Tsutsumi H, Ito M, Shiraishi A, Arita S, Akahoshi S, Narusawa K, Nakamura T (2003) Reductions in bone turnover, mineral, and structure associated with mechanical properties of lumbar vertebra and femur in glucocorticoid-treated growing minipigs. Bone 33:779–787CrossRefPubMed
28.
go back to reference Jilka RL (2007) Molecular and cellular mechanisms of the anabolic effect of intermittent PTH. Bone 40:1434–1446CrossRefPubMed Jilka RL (2007) Molecular and cellular mechanisms of the anabolic effect of intermittent PTH. Bone 40:1434–1446CrossRefPubMed
29.
go back to reference Fox J, Miller MA, Newman MK, Metcalfe AF, Turner CH, Recker RR, Smith SY (2006) Daily treatment of aged ovariectomized rats with human parathyroid hormone (1–84) for 12 months reverses bone loss and enhances trabecular and cortical bone strength. Calcif Tissue Int 79:262–272CrossRefPubMed Fox J, Miller MA, Newman MK, Metcalfe AF, Turner CH, Recker RR, Smith SY (2006) Daily treatment of aged ovariectomized rats with human parathyroid hormone (1–84) for 12 months reverses bone loss and enhances trabecular and cortical bone strength. Calcif Tissue Int 79:262–272CrossRefPubMed
30.
go back to reference Oxlund H, Ortoft G, Thomsen JS, Danielsen CC, Ejersted C, Andreassen TT (2006) The anabolic effect of PTH on bone is attenuated by simultaneous glucocorticoid treatment. Bone 39:244–252CrossRefPubMed Oxlund H, Ortoft G, Thomsen JS, Danielsen CC, Ejersted C, Andreassen TT (2006) The anabolic effect of PTH on bone is attenuated by simultaneous glucocorticoid treatment. Bone 39:244–252CrossRefPubMed
31.
go back to reference Knopp E, Troiano N, Bouxsein M, Sun BH, Lostritto K, Gundberg C, Dziura J, Insogna K (2005) The effect of aging on the skeletal response to intermittent treatment with parathyroid hormone. Endocrinology 146:1983–1990CrossRefPubMed Knopp E, Troiano N, Bouxsein M, Sun BH, Lostritto K, Gundberg C, Dziura J, Insogna K (2005) The effect of aging on the skeletal response to intermittent treatment with parathyroid hormone. Endocrinology 146:1983–1990CrossRefPubMed
Metadata
Title
Glucocorticoid-Induced Osteoporosis in Growing Mice Is Not Prevented by Simultaneous Intermittent PTH Treatment
Authors
Andrei Postnov
Tineke De Schutter
Jan Sijbers
Marcel Karperien
Nora De Clerck
Publication date
01-12-2009
Publisher
Springer-Verlag
Published in
Calcified Tissue International / Issue 6/2009
Print ISSN: 0171-967X
Electronic ISSN: 1432-0827
DOI
https://doi.org/10.1007/s00223-009-9301-3

Other articles of this Issue 6/2009

Calcified Tissue International 6/2009 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.