Skip to main content
Top
Published in: Discover Oncology 5-6/2016

01-12-2016 | Original Paper

Global or Granulosa Cell-Specific Pten Mutations in Combination with Elevated FSH Levels Fail to Cause Ovarian Tumours in Mice

Authors: Dannielle H. Upton, Kirsty A. Walters, Rachel E. Allavena, Mark Jimenez, Reena Desai, David J. Handelsman, Charles M. Allan

Published in: Discover Oncology | Issue 5-6/2016

Login to get access

Abstract

Phosphatase and tensin homologue (PTEN) is a known tumour suppressor. To explore the role of Pten in ovarian tumorigenesis, we used transgenic (Tg) SOX2. Cre and AMH. Cre mouse models to direct global Pten haploinsufficiency (Pten +/−) or ovary-specific granulosa cell (GC) Pten disruption (Pten GC ). Pten mutant models were combined with progressively rising Tg-follicle-stimulating hormone (TgFSH) levels to study the tumorigenic potential of combined genetic/endocrine modification in vivo. Global Pten +/− mice exhibited grossly detectable tumours in multiple organs including uterine and mammary tissue and displayed reduced survival. Despite extra-ovarian tumorigenesis, Pten +/− females had no detectable ovarian tumours, although elevated corpus luteum numbers increased ovary size and estrous cycling was altered. Combined TgFSH/Pten +/− mice also had no ovarian tumours, but early survival was reduced in the presence of TgFSH. Ovary-specific Pten GC  ± TgFSH females exhibited no detectable ovarian or uterine tumours, and corpus luteum numbers and estrous cycling remained unchanged. The non-tumorigenic ovarian phenotypes in Pten +/− and Pten GC  ± TgFSH mice support the proposal that multi-hit genetic mutations (including ovarian and extra-ovarian tissue) initiate ovarian tumours. Our findings suggest that elevated FSH may reduce early cancer survival; however, the ovary remains remarkably resistant to Pten-induced tumorigenic changes even in the presence of uterine and reproductive cancers.
Literature
1.
go back to reference Obata K et al. (1998) Frequent PTEN/MMAC mutations in Endometrioid but not serous or mucinous epithelial ovarian tumors. Cancer Res 58(10):2095–2097PubMed Obata K et al. (1998) Frequent PTEN/MMAC mutations in Endometrioid but not serous or mucinous epithelial ovarian tumors. Cancer Res 58(10):2095–2097PubMed
2.
go back to reference Cantley LC, Neel BG (1999) New insights into tumor suppression: PTEN suppresses tumor formation by restraining the phosphoinositide 3-kinase/AKT pathway. Proc Natl Acad Sci 96(8):4240–4245CrossRefPubMedPubMedCentral Cantley LC, Neel BG (1999) New insights into tumor suppression: PTEN suppresses tumor formation by restraining the phosphoinositide 3-kinase/AKT pathway. Proc Natl Acad Sci 96(8):4240–4245CrossRefPubMedPubMedCentral
3.
go back to reference Suzuki A et al. (1998) High cancer susceptibility and embryonic lethality associated with mutation of the PTEN tumor suppressor gene in mice. Curr Biol 8(21):1169–1178CrossRefPubMed Suzuki A et al. (1998) High cancer susceptibility and embryonic lethality associated with mutation of the PTEN tumor suppressor gene in mice. Curr Biol 8(21):1169–1178CrossRefPubMed
4.
go back to reference Stambolic V et al. (1998) Negative regulation of PKB/Akt-dependent cell survival by the tumor suppressor PTEN. Cell 95(1):29–39CrossRefPubMed Stambolic V et al. (1998) Negative regulation of PKB/Akt-dependent cell survival by the tumor suppressor PTEN. Cell 95(1):29–39CrossRefPubMed
5.
go back to reference Sansal I, Sellers WR (2004) The biology and clinical relevance of the PTEN tumor suppressor pathway. J Clin Oncol 22(14):2954–2963CrossRefPubMed Sansal I, Sellers WR (2004) The biology and clinical relevance of the PTEN tumor suppressor pathway. J Clin Oncol 22(14):2954–2963CrossRefPubMed
6.
go back to reference Lee JH et al. (1989) Allele loss at the c-Ha-ras1 locus in human ovarian cancer. Cancer Res 49(5):1220–1222PubMed Lee JH et al. (1989) Allele loss at the c-Ha-ras1 locus in human ovarian cancer. Cancer Res 49(5):1220–1222PubMed
7.
go back to reference Ehlen T, Dubeau L (1990) Loss of heterozygosity on chromosomal segments 3p, 6q and 11p in human ovarian carcinomas. Oncogene 5(2):219–223PubMed Ehlen T, Dubeau L (1990) Loss of heterozygosity on chromosomal segments 3p, 6q and 11p in human ovarian carcinomas. Oncogene 5(2):219–223PubMed
8.
go back to reference Lee JH et al. (1990) Frequent loss of heterozygosity on chromosomes 6q, 11, and 17 in human ovarian carcinomas. Cancer Res 50(9):2724–2728PubMed Lee JH et al. (1990) Frequent loss of heterozygosity on chromosomes 6q, 11, and 17 in human ovarian carcinomas. Cancer Res 50(9):2724–2728PubMed
9.
go back to reference Russell S et al. (1990) Allele loss from chromosome 17 in ovarian cancer. Oncogene 5(10):1581–1583PubMed Russell S et al. (1990) Allele loss from chromosome 17 in ovarian cancer. Oncogene 5(10):1581–1583PubMed
10.
go back to reference Eccles D et al. (1990) Allele losses on chromosome 17 in human epithelial ovarian carcinoma. Oncogene 5(10):1599–1601PubMed Eccles D et al. (1990) Allele losses on chromosome 17 in human epithelial ovarian carcinoma. Oncogene 5(10):1599–1601PubMed
11.
go back to reference Carroll RS et al. (1991) In vivo regulation of FSH synthesis by inhibin and activin. Endocrinology 129(6):3299–3304CrossRefPubMed Carroll RS et al. (1991) In vivo regulation of FSH synthesis by inhibin and activin. Endocrinology 129(6):3299–3304CrossRefPubMed
12.
go back to reference Zheng W et al. (1996) Follicle-stimulating hormone receptor is expressed in human ovarian surface epithelium and fallopian tube. Am J Pathol 148(1):47PubMedPubMedCentral Zheng W et al. (1996) Follicle-stimulating hormone receptor is expressed in human ovarian surface epithelium and fallopian tube. Am J Pathol 148(1):47PubMedPubMedCentral
13.
go back to reference Chun SY et al. (1996) Hormonal regulation of apoptosis in early antral follicles: follicle-stimulating hormone as a major survival factor. Endocrinology 137(4):1447–1456PubMed Chun SY et al. (1996) Hormonal regulation of apoptosis in early antral follicles: follicle-stimulating hormone as a major survival factor. Endocrinology 137(4):1447–1456PubMed
14.
go back to reference Monniaux D, Pisselet C (1992) Control of proliferation and differentiation of ovine granulosa cells by insulin-like growth factor-I and follicle-stimulating hormone in vitro. Biol Reprod 46(1):109–119CrossRefPubMed Monniaux D, Pisselet C (1992) Control of proliferation and differentiation of ovine granulosa cells by insulin-like growth factor-I and follicle-stimulating hormone in vitro. Biol Reprod 46(1):109–119CrossRefPubMed
15.
go back to reference Rao MC, Midgley AR, Richards JS (1978) Hormonal regulation of ovarian cellular proliferation. Cell 14(1):71–78CrossRefPubMed Rao MC, Midgley AR, Richards JS (1978) Hormonal regulation of ovarian cellular proliferation. Cell 14(1):71–78CrossRefPubMed
16.
go back to reference Richards J et al. (1994) Ovarian cell differentiation: a cascade of multiple hormones, cellular signals, and regulated genes. Recent Prog Horm Res 50:223–254 Richards J et al. (1994) Ovarian cell differentiation: a cascade of multiple hormones, cellular signals, and regulated genes. Recent Prog Horm Res 50:223–254
17.
go back to reference UI M et al. (1989) An insulin-like growth factor-binding protein in ovarian follicular fluid blocks follicle-stimulating hormone-stimulated steroid production by ovarian granulosa cells*. Endocrinology 125(2):912–916CrossRefPubMed UI M et al. (1989) An insulin-like growth factor-binding protein in ovarian follicular fluid blocks follicle-stimulating hormone-stimulated steroid production by ovarian granulosa cells*. Endocrinology 125(2):912–916CrossRefPubMed
18.
go back to reference Broekmans FJ, Soules MR, Fauser BC (2009) Ovarian aging: mechanisms and clinical consequences. Endocr Rev 30(5):465–493CrossRefPubMed Broekmans FJ, Soules MR, Fauser BC (2009) Ovarian aging: mechanisms and clinical consequences. Endocr Rev 30(5):465–493CrossRefPubMed
19.
go back to reference McTavish KJ et al. (2007) Rising follicle-stimulating hormone levels with age accelerate female reproductive failure. Endocrinology 148(9):4432–4439CrossRefPubMed McTavish KJ et al. (2007) Rising follicle-stimulating hormone levels with age accelerate female reproductive failure. Endocrinology 148(9):4432–4439CrossRefPubMed
20.
go back to reference Fathalla MF (1971) Incessant ovulation? A factor in ovarian neoplasia? Lancet 298(7716):163CrossRef Fathalla MF (1971) Incessant ovulation? A factor in ovarian neoplasia? Lancet 298(7716):163CrossRef
21.
go back to reference Cramer D, Welch WR (1983) Determinants of ovarian cancer rsik II. Inferences regarding pathogenesis. J Natl Cancer Inst 71:717–721PubMed Cramer D, Welch WR (1983) Determinants of ovarian cancer rsik II. Inferences regarding pathogenesis. J Natl Cancer Inst 71:717–721PubMed
22.
go back to reference Hunzicker-Dunn M, Maizels ET (2006) FSH signaling pathways in immature granulosa cells that regulate target gene expression: branching out from protein kinase a. Cell Signal 18(9):1351–1359CrossRefPubMedPubMedCentral Hunzicker-Dunn M, Maizels ET (2006) FSH signaling pathways in immature granulosa cells that regulate target gene expression: branching out from protein kinase a. Cell Signal 18(9):1351–1359CrossRefPubMedPubMedCentral
23.
go back to reference Hunzicker-Dunn ME et al. (2012) PKA and GAB2 play central roles in the FSH signaling pathway to PI3K and AKT in ovarian granulosa cells. Proc Natl Acad Sci U S A 109(44):8CrossRef Hunzicker-Dunn ME et al. (2012) PKA and GAB2 play central roles in the FSH signaling pathway to PI3K and AKT in ovarian granulosa cells. Proc Natl Acad Sci U S A 109(44):8CrossRef
24.
go back to reference Rodriguez-Viciana P et al. (1996) Activation of phosphoinositide 3-kinase by interaction with ras and by point mutation. EMBO J 15(10):2442PubMedPubMedCentral Rodriguez-Viciana P et al. (1996) Activation of phosphoinositide 3-kinase by interaction with ras and by point mutation. EMBO J 15(10):2442PubMedPubMedCentral
25.
go back to reference Gupta S et al. (2007) Binding of ras to phosphoinositide 3-kinase p110α is required for ras-driven tumorigenesis in mice. Cell 129(5):957–968CrossRefPubMed Gupta S et al. (2007) Binding of ras to phosphoinositide 3-kinase p110α is required for ras-driven tumorigenesis in mice. Cell 129(5):957–968CrossRefPubMed
26.
27.
go back to reference Lague M-N et al. (2008) Synergistic effects of Pten loss and WNT/CTNNB1 signaling pathway activation in ovarian granulosa cell tumor development and progression. Carcinogenesis 29(11):2062–2072CrossRefPubMedPubMedCentral Lague M-N et al. (2008) Synergistic effects of Pten loss and WNT/CTNNB1 signaling pathway activation in ovarian granulosa cell tumor development and progression. Carcinogenesis 29(11):2062–2072CrossRefPubMedPubMedCentral
28.
go back to reference Fan H-Y et al. (2008) Targeted disruption of Pten in ovarian granulosa cells enhances ovulation and extends the life span of luteal cells. Mol Endocrinol 22(9):2128–2140CrossRefPubMedPubMedCentral Fan H-Y et al. (2008) Targeted disruption of Pten in ovarian granulosa cells enhances ovulation and extends the life span of luteal cells. Mol Endocrinol 22(9):2128–2140CrossRefPubMedPubMedCentral
29.
go back to reference Fan H-Y et al. (2009) Cell type–specific targeted mutations of Kras and Pten document proliferation arrest in granulosa cells versus oncogenic insult to ovarian surface epithelial cells. Cancer Res 69(16):6463–6472CrossRefPubMedPubMedCentral Fan H-Y et al. (2009) Cell type–specific targeted mutations of Kras and Pten document proliferation arrest in granulosa cells versus oncogenic insult to ovarian surface epithelial cells. Cancer Res 69(16):6463–6472CrossRefPubMedPubMedCentral
30.
go back to reference Hayashi S et al. (2002) Efficient gene modulation in mouse epiblast using a Sox2Cre transgenic mouse strain. Mech Dev 119(Supplement(0)):S97–S101CrossRefPubMed Hayashi S et al. (2002) Efficient gene modulation in mouse epiblast using a Sox2Cre transgenic mouse strain. Mech Dev 119(Supplement(0)):S97–S101CrossRefPubMed
31.
go back to reference Schwenk F, Baron U, Rajewsky K (1995) A cre-transgenic mouse strain for the ubiquitous deletion of loxP-flanked gene segments including deletion in germ cells. Nucleic Acids Res 23(24):5080–5081CrossRefPubMedPubMedCentral Schwenk F, Baron U, Rajewsky K (1995) A cre-transgenic mouse strain for the ubiquitous deletion of loxP-flanked gene segments including deletion in germ cells. Nucleic Acids Res 23(24):5080–5081CrossRefPubMedPubMedCentral
33.
go back to reference Vignarajan S et al. (2014) Loss of PTEN stabilizes the lipid modifying enzyme cytosolic phospholipase a(2)alpha via AKT in prostate cancer cells. Oncotarget 5(15):6289–6299CrossRefPubMedPubMedCentral Vignarajan S et al. (2014) Loss of PTEN stabilizes the lipid modifying enzyme cytosolic phospholipase a(2)alpha via AKT in prostate cancer cells. Oncotarget 5(15):6289–6299CrossRefPubMedPubMedCentral
34.
go back to reference Lesche R et al. (2002) Cre/loxP-mediated inactivation of the murine Pten tumor suppressor gene. Genesis 32(2):148–149CrossRefPubMed Lesche R et al. (2002) Cre/loxP-mediated inactivation of the murine Pten tumor suppressor gene. Genesis 32(2):148–149CrossRefPubMed
35.
go back to reference Lim P et al. (2009) Sertoli cell androgen receptor DNA binding domain is essential for the completion of spermatogenesis. Endocrinology 150(10):4755–4765CrossRefPubMed Lim P et al. (2009) Sertoli cell androgen receptor DNA binding domain is essential for the completion of spermatogenesis. Endocrinology 150(10):4755–4765CrossRefPubMed
36.
go back to reference Lécureuil C et al. (2002) Sertoli and granulosa cell-specific cre recombinase activity in transgenic mice. Genesis 33(3):114–118CrossRefPubMed Lécureuil C et al. (2002) Sertoli and granulosa cell-specific cre recombinase activity in transgenic mice. Genesis 33(3):114–118CrossRefPubMed
37.
go back to reference Walters KA et al. (2012) Targeted loss of androgen receptor signaling in murine granulosa cells of Preantral and antral follicles causes female subfertility. Biol Reprod 87(6):151 1-11CrossRefPubMed Walters KA et al. (2012) Targeted loss of androgen receptor signaling in murine granulosa cells of Preantral and antral follicles causes female subfertility. Biol Reprod 87(6):151 1-11CrossRefPubMed
38.
go back to reference Allan CM et al. (2001) A novel transgenic model to characterize the specific effects of follicle-stimulating hormone on gonadal physiology in the absence of luteinizing hormone actions. Endocrinology 142(6):2213–2220PubMed Allan CM et al. (2001) A novel transgenic model to characterize the specific effects of follicle-stimulating hormone on gonadal physiology in the absence of luteinizing hormone actions. Endocrinology 142(6):2213–2220PubMed
39.
go back to reference Singh J, O’Neill C, Handelsman DJ (1995) Induction of spermatogenesis by androgens in gonadotropin-deficient (hpg) mice. Endocrinology 136(12):5311–5321PubMed Singh J, O’Neill C, Handelsman DJ (1995) Induction of spermatogenesis by androgens in gonadotropin-deficient (hpg) mice. Endocrinology 136(12):5311–5321PubMed
40.
go back to reference Byun, D.-S., et al. (2011) Intestinal epithelial-specific PTEN inactivation results in tumor formation. 301: G856-G864 Byun, D.-S., et al. (2011) Intestinal epithelial-specific PTEN inactivation results in tumor formation. 301: G856-G864
41.
go back to reference Jimenez M et al. (2005) Validation of an ultrasensitive and specific immunofluorometric assay for mouse follicle-stimulating hormone. Biol Reprod 72(1):78–85CrossRefPubMed Jimenez M et al. (2005) Validation of an ultrasensitive and specific immunofluorometric assay for mouse follicle-stimulating hormone. Biol Reprod 72(1):78–85CrossRefPubMed
42.
go back to reference Harwood DT, Handelsman DJ (2009) Development and validation of a sensitive liquid chromatography-tandem mass spectrometry assay to simultaneously measure androgens and estrogens in serum without derivatization. Clin Chim Acta 409(1):78–84CrossRefPubMed Harwood DT, Handelsman DJ (2009) Development and validation of a sensitive liquid chromatography-tandem mass spectrometry assay to simultaneously measure androgens and estrogens in serum without derivatization. Clin Chim Acta 409(1):78–84CrossRefPubMed
43.
go back to reference McNamara KM et al. (2010) Measurement of sex steroids in murine blood and reproductive tissues by liquid chromatography-tandem mass spectrometry. J Steroid Biochem Mol Biol 121(3–5):611–618CrossRefPubMed McNamara KM et al. (2010) Measurement of sex steroids in murine blood and reproductive tissues by liquid chromatography-tandem mass spectrometry. J Steroid Biochem Mol Biol 121(3–5):611–618CrossRefPubMed
44.
go back to reference Dixon D et al. (1999) Proliferative lesions of the ovary, uterus, vagina, cervix and oviduct in rats. Guides for Toxicologic Pathology:1 Dixon D et al. (1999) Proliferative lesions of the ovary, uterus, vagina, cervix and oviduct in rats. Guides for Toxicologic Pathology:1
45.
go back to reference Rudmann D et al. (2012) Proliferative and nonproliferative lesions of the rat and mouse mammary, Zymbal’s, preputial, and clitoral glands. Toxicol Pathol 40(6 suppl):7S–39SCrossRefPubMed Rudmann D et al. (2012) Proliferative and nonproliferative lesions of the rat and mouse mammary, Zymbal’s, preputial, and clitoral glands. Toxicol Pathol 40(6 suppl):7S–39SCrossRefPubMed
46.
go back to reference Upton DH et al. (2015) Granulosa cell-specific Brca1 loss alone or combined with Trp53 haploinsufficiency and transgenic FSH expression fails to induce ovarian tumors. Horm Cancer 6(4):142–152CrossRefPubMed Upton DH et al. (2015) Granulosa cell-specific Brca1 loss alone or combined with Trp53 haploinsufficiency and transgenic FSH expression fails to induce ovarian tumors. Horm Cancer 6(4):142–152CrossRefPubMed
47.
go back to reference Reddy P et al. (2008) Oocyte-specific deletion of Pten causes premature activation of the primordial follicle pool. Science 319(5863):611–613CrossRefPubMed Reddy P et al. (2008) Oocyte-specific deletion of Pten causes premature activation of the primordial follicle pool. Science 319(5863):611–613CrossRefPubMed
48.
go back to reference Jagarlamudi K et al. (2009) Oocyte-specific deletion of Pten in mice reveals a stage-specific function of PTEN/PI3K signaling in oocytes in controlling follicular activation. PLoS One 4(7):0006186CrossRef Jagarlamudi K et al. (2009) Oocyte-specific deletion of Pten in mice reveals a stage-specific function of PTEN/PI3K signaling in oocytes in controlling follicular activation. PLoS One 4(7):0006186CrossRef
49.
go back to reference Kumar TR et al. (1999) Transgenic models to study gonadotropin function: the role of follicle-stimulating hormone in gonadal growth and tumorigenesis. Mol Endocrinol 13(6):851–865CrossRefPubMed Kumar TR et al. (1999) Transgenic models to study gonadotropin function: the role of follicle-stimulating hormone in gonadal growth and tumorigenesis. Mol Endocrinol 13(6):851–865CrossRefPubMed
51.
52.
go back to reference Perets R et al. (2013) Transformation of the fallopian tube secretory epithelium leads to high-grade serous ovarian cancer in Brca;Tp53;Pten models. Cancer Cell 24(6):751–765CrossRefPubMedPubMedCentral Perets R et al. (2013) Transformation of the fallopian tube secretory epithelium leads to high-grade serous ovarian cancer in Brca;Tp53;Pten models. Cancer Cell 24(6):751–765CrossRefPubMedPubMedCentral
Metadata
Title
Global or Granulosa Cell-Specific Pten Mutations in Combination with Elevated FSH Levels Fail to Cause Ovarian Tumours in Mice
Authors
Dannielle H. Upton
Kirsty A. Walters
Rachel E. Allavena
Mark Jimenez
Reena Desai
David J. Handelsman
Charles M. Allan
Publication date
01-12-2016
Publisher
Springer US
Published in
Discover Oncology / Issue 5-6/2016
Print ISSN: 1868-8497
Electronic ISSN: 2730-6011
DOI
https://doi.org/10.1007/s12672-016-0272-3

Other articles of this Issue 5-6/2016

Discover Oncology 5-6/2016 Go to the issue