Skip to main content
Top
Published in: Cancer Cell International 1/2022

01-12-2022 | Glioma | Primary research

Cysteine cathepsin C: a novel potential biomarker for the diagnosis and prognosis of glioma

Authors: Xingbo Cheng, Zhishuai Ren, Zhendong Liu, Xiang Sun, Rongjun Qian, Chen Cao, Binfeng Liu, Jialin Wang, Hongbo Wang, Yuqi Guo, Yanzheng Gao

Published in: Cancer Cell International | Issue 1/2022

Login to get access

Abstract

Background

Cysteine cathepsin C encoded by the CTSC gene is an important member of the cysteine cathepsin family that plays a key role regulation of many types of tumors. However, whether CTSC is involved in the pathological process of glioma has not yet been reported. We comprehensively analyzed data from multiple databases and for the first time revealed a role and specific mechanism of action of CTSC in glioma, identifying it as a novel and efficient biomarker for the diagnosis and treatment of this brain tumor.

Methods

The expression of CTSC in glioma and its relationship with clinical characteristics and prognosis of patients with glioma were analyzed at different levels by using clinical sample information from several databases. CTSC expression levels in glioma and normal brain tissues, as well as in glioma cells and normal brain cells, was validated by real-time quantitative polymerase chain reaction (RT-qPCR). Gene set enrichment analysis (GSEA) was used to reveal the signaling pathways that CTSC may participate in. The connectivity map was used to reveal small molecules that may inhibit CTSC expression in glioma, and the putative effect of these compounds was verified by RT-qPCR.

Results

Our analyses showed that the expression of CTSC in glioma was higher than that in non-cancerous cells. GSEA showed that CTSC expression may regulate the malignant development of glioma through Toll-like receptor signaling pathways, pathways in cancer, and extracellular matrix receptor interaction signaling pathways. And we proved piperlongumine and scopoletin could inhibit CTSC expression in glioma cells.

Conclusions

CTSC may serve as an efficient molecular target for the diagnosis and therapy of glioma, thereby improving the poor prognosis of patients with glioma.
Appendix
Available only for authorised users
Literature
1.
go back to reference Parkin D, Bray F, Ferlay J, Pisani P. Global cancer statistics, 2002. CA Cancer J Clin. 2005;55(2):74–108.PubMed Parkin D, Bray F, Ferlay J, Pisani P. Global cancer statistics, 2002. CA Cancer J Clin. 2005;55(2):74–108.PubMed
2.
go back to reference Ostrom Q, Cote D, Ascha M, Kruchko C, Barnholtz-Sloan J. Adult glioma incidence and survival by race or ethnicity in the United States from 2000 to 2014. JAMA Oncol. 2018;4(9):1254–62.PubMedPubMedCentral Ostrom Q, Cote D, Ascha M, Kruchko C, Barnholtz-Sloan J. Adult glioma incidence and survival by race or ethnicity in the United States from 2000 to 2014. JAMA Oncol. 2018;4(9):1254–62.PubMedPubMedCentral
3.
go back to reference Nagarajan R, Costello J. Epigenetic mechanisms in glioblastoma multiforme. Semin Cancer Biol. 2009;19(3):188–97.PubMed Nagarajan R, Costello J. Epigenetic mechanisms in glioblastoma multiforme. Semin Cancer Biol. 2009;19(3):188–97.PubMed
4.
go back to reference Jhaveri N, Chen T, Hofman F. Tumor vasculature and glioma stem cells: contributions to glioma progression. Cancer Lett. 2016;380(2):545–51.PubMed Jhaveri N, Chen T, Hofman F. Tumor vasculature and glioma stem cells: contributions to glioma progression. Cancer Lett. 2016;380(2):545–51.PubMed
5.
go back to reference Kalinina J, Peng J, Ritchie J, Van Meir E. Proteomics of gliomas: initial biomarker discovery and evolution of technology. Neuro Oncol. 2011;13(9):926–42.PubMedPubMedCentral Kalinina J, Peng J, Ritchie J, Van Meir E. Proteomics of gliomas: initial biomarker discovery and evolution of technology. Neuro Oncol. 2011;13(9):926–42.PubMedPubMedCentral
7.
go back to reference Berghoff A, Stefanits H, Heinzl H, Preusser M. Clinical neuropathology practice news 4-2012: levels of evidence for brain tumor biomarkers. Clin Neuropathol. 2012;31(4):206–9.PubMedPubMedCentral Berghoff A, Stefanits H, Heinzl H, Preusser M. Clinical neuropathology practice news 4-2012: levels of evidence for brain tumor biomarkers. Clin Neuropathol. 2012;31(4):206–9.PubMedPubMedCentral
8.
go back to reference Patel M, Vogelbaum M, Barnett G, Jalali R, Ahluwalia M. Molecular targeted therapy in recurrent glioblastoma: current challenges and future directions. Expert Opin Investig Drugs. 2012;21(9):1247–66.PubMed Patel M, Vogelbaum M, Barnett G, Jalali R, Ahluwalia M. Molecular targeted therapy in recurrent glioblastoma: current challenges and future directions. Expert Opin Investig Drugs. 2012;21(9):1247–66.PubMed
9.
go back to reference Gupta K, Salunke P. Molecular markers of glioma: an update on recent progress and perspectives. J Cancer Res Clin Oncol. 2012;138(12):1971–81.PubMed Gupta K, Salunke P. Molecular markers of glioma: an update on recent progress and perspectives. J Cancer Res Clin Oncol. 2012;138(12):1971–81.PubMed
10.
go back to reference Wesseling P, Capper D. WHO 2016 Classification of gliomas. Neuropathol Appl Neurobiol. 2018;44(2):139–50.PubMed Wesseling P, Capper D. WHO 2016 Classification of gliomas. Neuropathol Appl Neurobiol. 2018;44(2):139–50.PubMed
11.
go back to reference Kafka A, Bačić M, Tomas D, Žarković K, Bukovac A, Njirić N, et al. Different behaviour of DVL1, DVL2, DVL3 in astrocytoma malignancy grades and their association to TCF1 and LEF1 upregulation. J Cell Mol Med. 2019;23(1):641–55.PubMed Kafka A, Bačić M, Tomas D, Žarković K, Bukovac A, Njirić N, et al. Different behaviour of DVL1, DVL2, DVL3 in astrocytoma malignancy grades and their association to TCF1 and LEF1 upregulation. J Cell Mol Med. 2019;23(1):641–55.PubMed
12.
go back to reference Olson O, Joyce J. Cysteine cathepsin proteases: regulators of cancer progression and therapeutic response. Nat Rev Cancer. 2015;15(12):712–29.PubMed Olson O, Joyce J. Cysteine cathepsin proteases: regulators of cancer progression and therapeutic response. Nat Rev Cancer. 2015;15(12):712–29.PubMed
13.
go back to reference Breznik B, Limback C, Porcnik A, Blejec A, Krajnc M, Bosnjak R, et al. Localization patterns of cathepsins K and X and their predictive value in glioblastoma. Radiol Oncol. 2018;52(4):433–42.PubMedPubMedCentral Breznik B, Limback C, Porcnik A, Blejec A, Krajnc M, Bosnjak R, et al. Localization patterns of cathepsins K and X and their predictive value in glioblastoma. Radiol Oncol. 2018;52(4):433–42.PubMedPubMedCentral
14.
go back to reference Kenig S, Frangež R, Pucer A, Lah T. Inhibition of cathepsin L lowers the apoptotic threshold of glioblastoma cells by up-regulating p53 and transcription of caspases 3 and 7. Apoptosis. 2011;16(7):671–82.PubMed Kenig S, Frangež R, Pucer A, Lah T. Inhibition of cathepsin L lowers the apoptotic threshold of glioblastoma cells by up-regulating p53 and transcription of caspases 3 and 7. Apoptosis. 2011;16(7):671–82.PubMed
15.
go back to reference Lankelma J, Voorend D, Barwari T, Koetsveld J, Van der Spek A, De Porto A, et al. Cathepsin L, target in cancer treatment? Life Sci. 2010;86:225–33.PubMed Lankelma J, Voorend D, Barwari T, Koetsveld J, Van der Spek A, De Porto A, et al. Cathepsin L, target in cancer treatment? Life Sci. 2010;86:225–33.PubMed
16.
go back to reference Gole B, Huszthy P, Popović M, Jeruc J, Ardebili Y, Bjerkvig R, et al. The regulation of cysteine cathepsins and cystatins in human gliomas. Int J Cancer. 2012;131(8):1779–89.PubMed Gole B, Huszthy P, Popović M, Jeruc J, Ardebili Y, Bjerkvig R, et al. The regulation of cysteine cathepsins and cystatins in human gliomas. Int J Cancer. 2012;131(8):1779–89.PubMed
17.
go back to reference Kenig S, Frangež R, Pucer A, Lah T. Inhibition of cathepsin L lowers the apoptotic threshold of glioblastoma cells by up-regulating p53 and transcription of caspases 3 and 7. Apoptosis: an international journal on programmed cell death. 2011;16(7):671–82. Kenig S, Frangež R, Pucer A, Lah T. Inhibition of cathepsin L lowers the apoptotic threshold of glioblastoma cells by up-regulating p53 and transcription of caspases 3 and 7. Apoptosis: an international journal on programmed cell death. 2011;16(7):671–82.
18.
go back to reference Lankelma J, Voorend D, Barwari T, Koetsveld J, Van der Spek A, De Porto A, et al. Cathepsin L, target in cancer treatment? Life sciences. 2010;86:225–33.PubMed Lankelma J, Voorend D, Barwari T, Koetsveld J, Van der Spek A, De Porto A, et al. Cathepsin L, target in cancer treatment? Life sciences. 2010;86:225–33.PubMed
19.
go back to reference Flannery T, McQuaid S, McGoohan C, McConnell R, McGregor G, Mirakhur M, et al. Cathepsin S expression: an independent prognostic factor in glioblastoma tumours—a pilot study. Int J Cancer. 2006;119(4):854–60.PubMed Flannery T, McQuaid S, McGoohan C, McConnell R, McGregor G, Mirakhur M, et al. Cathepsin S expression: an independent prognostic factor in glioblastoma tumours—a pilot study. Int J Cancer. 2006;119(4):854–60.PubMed
20.
go back to reference Khaket T, Singh M, Khan I, Bhardwaj M, Kang S. Targeting of cathepsin C induces autophagic dysregulation that directs ER stress mediated cellular cytotoxicity in colorectal cancer cells. Cell Signal. 2018;46:92–102.PubMed Khaket T, Singh M, Khan I, Bhardwaj M, Kang S. Targeting of cathepsin C induces autophagic dysregulation that directs ER stress mediated cellular cytotoxicity in colorectal cancer cells. Cell Signal. 2018;46:92–102.PubMed
21.
go back to reference Folkerts H, Hilgendorf S, Vellenga E, Bremer E, Wiersma V. The multifaceted role of autophagy in cancer and the microenvironment. Med Res Rev. 2019;39(2):517–60.PubMed Folkerts H, Hilgendorf S, Vellenga E, Bremer E, Wiersma V. The multifaceted role of autophagy in cancer and the microenvironment. Med Res Rev. 2019;39(2):517–60.PubMed
22.
go back to reference Zhang G, Yue X, Li S. Cathepsin C. Interacts with TNF-α/p38 MAPK Signaling Pathway to Promote Proliferation and Metastasis in Hepatocellular Carcinoma. Cancer research treatment: official journal of Korean Cancer Association. 2020;52(1):10–23. Zhang G, Yue X, Li S. Cathepsin C. Interacts with TNF-α/p38 MAPK Signaling Pathway to Promote Proliferation and Metastasis in Hepatocellular Carcinoma. Cancer research treatment: official journal of Korean Cancer Association. 2020;52(1):10–23.
23.
go back to reference Ikenoue T, Hong S, Inoki K. Monitoring mammalian target of rapamycin (mTOR) activity. Methods Enzymol. 2009;452:165–80.PubMed Ikenoue T, Hong S, Inoki K. Monitoring mammalian target of rapamycin (mTOR) activity. Methods Enzymol. 2009;452:165–80.PubMed
24.
go back to reference Xiao G, Zhang X, Zhang X, Chen Y, Xia Z, Cao H, et al. Aging-related genes are potential prognostic biomarkers for patients with gliomas. Aging. 2021;13(9):13239–63.PubMedPubMedCentral Xiao G, Zhang X, Zhang X, Chen Y, Xia Z, Cao H, et al. Aging-related genes are potential prognostic biomarkers for patients with gliomas. Aging. 2021;13(9):13239–63.PubMedPubMedCentral
25.
go back to reference Tang Z, Li C, Kang B, Gao G, Li C, Zhang Z. GEPIA: a web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Res. 2017;45:W98–102.PubMedPubMedCentral Tang Z, Li C, Kang B, Gao G, Li C, Zhang Z. GEPIA: a web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Res. 2017;45:W98–102.PubMedPubMedCentral
26.
go back to reference Barrett T, Troup D, Wilhite S, Ledoux P, Evangelista C, Kim I, et al. NCBI GEO: archive for functional genomics data sets--10 years on. Nucleic Acids Res. 2011;39:D1005–10.PubMed Barrett T, Troup D, Wilhite S, Ledoux P, Evangelista C, Kim I, et al. NCBI GEO: archive for functional genomics data sets--10 years on. Nucleic Acids Res. 2011;39:D1005–10.PubMed
27.
go back to reference Thul P, Lindskog C. The human protein atlas: A spatial map of the human proteome. Protein Sci. 2018;27(1):233–44.PubMed Thul P, Lindskog C. The human protein atlas: A spatial map of the human proteome. Protein Sci. 2018;27(1):233–44.PubMed
28.
go back to reference Subramanian A, Tamayo P, Mootha V, Mukherjee S, Ebert B, Gillette M, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA. 2005;102(43):15545–50.PubMedPubMedCentral Subramanian A, Tamayo P, Mootha V, Mukherjee S, Ebert B, Gillette M, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA. 2005;102(43):15545–50.PubMedPubMedCentral
29.
go back to reference Lamb J, Crawford E, Peck D, Modell J, Blat I, Wrobel M, et al. The Connectivity Map: using gene-expression signatures to connect small molecules, genes, and disease. Science (New York). 2006; 313(5795):pp. 1929–35. Lamb J, Crawford E, Peck D, Modell J, Blat I, Wrobel M, et al. The Connectivity Map: using gene-expression signatures to connect small molecules, genes, and disease. Science (New York). 2006; 313(5795):pp. 1929–35.
30.
go back to reference Joyce J, Hanahan D. Multiple roles for cysteine cathepsins in cancer. Cell Cycle. 2004;3(12):1516–619.PubMed Joyce J, Hanahan D. Multiple roles for cysteine cathepsins in cancer. Cell Cycle. 2004;3(12):1516–619.PubMed
31.
go back to reference Gocheva V, Zeng W, Ke D, Klimstra D, Reinheckel T, Peters C, et al. Distinct roles for cysteine cathepsin genes in multistage tumorigenesis. Genes Dev. 2006;20(5):543–56.PubMedPubMedCentral Gocheva V, Zeng W, Ke D, Klimstra D, Reinheckel T, Peters C, et al. Distinct roles for cysteine cathepsin genes in multistage tumorigenesis. Genes Dev. 2006;20(5):543–56.PubMedPubMedCentral
32.
go back to reference Ruffell B, Affara N, Cottone L, Junankar S, Johansson M, DeNardo D, et al. Cathepsin C is a tissue-specific regulator of squamous carcinogenesis. Genes Dev. 2013;27(19):2086–98.PubMedPubMedCentral Ruffell B, Affara N, Cottone L, Junankar S, Johansson M, DeNardo D, et al. Cathepsin C is a tissue-specific regulator of squamous carcinogenesis. Genes Dev. 2013;27(19):2086–98.PubMedPubMedCentral
33.
go back to reference Chai R, Zhang K, Chang Y, Wu F, Liu Y, Zhao Z, et al. Systematically characterize the clinical and biological significances of 1p19q genes in 1p/19q non-codeletion glioma. Carcinogenesis. 2019;40(10):1229–39.PubMed Chai R, Zhang K, Chang Y, Wu F, Liu Y, Zhao Z, et al. Systematically characterize the clinical and biological significances of 1p19q genes in 1p/19q non-codeletion glioma. Carcinogenesis. 2019;40(10):1229–39.PubMed
34.
go back to reference Zhang H, Tao J, Sheng L, Hu X, Rong R, Xu M, et al. Twist2 promotes kidney cancer cell proliferation and invasion by regulating ITGA6 and CD44 expression in the ECM-receptor interaction pathway. Onco Targets Ther. 2016;9:1801–12.PubMedPubMedCentral Zhang H, Tao J, Sheng L, Hu X, Rong R, Xu M, et al. Twist2 promotes kidney cancer cell proliferation and invasion by regulating ITGA6 and CD44 expression in the ECM-receptor interaction pathway. Onco Targets Ther. 2016;9:1801–12.PubMedPubMedCentral
35.
go back to reference Xu Y, Liu H, Liu S, Wang Y, Xie J, Stinchcombe T, et al. Genetic variant of IRAK2 in the toll-like receptor signaling pathway and survival of non-small cell lung cancer. Int J Cancer. 2018;143(10):2400–8.PubMedPubMedCentral Xu Y, Liu H, Liu S, Wang Y, Xie J, Stinchcombe T, et al. Genetic variant of IRAK2 in the toll-like receptor signaling pathway and survival of non-small cell lung cancer. Int J Cancer. 2018;143(10):2400–8.PubMedPubMedCentral
37.
go back to reference Matijevic Glavan T, Cipak Gasparovic A, Vérillaud B, Busson P, Pavelic J. Toll-like receptor 3 stimulation triggers metabolic reprogramming in pharyngeal cancer cell line through Myc, MAPK, and HIF. Mol Carcinog. 2017;56(4):1214–26.PubMed Matijevic Glavan T, Cipak Gasparovic A, Vérillaud B, Busson P, Pavelic J. Toll-like receptor 3 stimulation triggers metabolic reprogramming in pharyngeal cancer cell line through Myc, MAPK, and HIF. Mol Carcinog. 2017;56(4):1214–26.PubMed
38.
39.
go back to reference Veyrat M, Durand S, Classe M, Glavan T, Oker N, Kapetanakis N, et al. Stimulation of the toll-like receptor 3 promotes metabolic reprogramming in head and neck carcinoma cells. Oncotarget. 2016;7(50):82580–93.PubMedPubMedCentral Veyrat M, Durand S, Classe M, Glavan T, Oker N, Kapetanakis N, et al. Stimulation of the toll-like receptor 3 promotes metabolic reprogramming in head and neck carcinoma cells. Oncotarget. 2016;7(50):82580–93.PubMedPubMedCentral
40.
go back to reference Dong X, Tamura K, Kobayashi D, Ando N, Sumita K, Maehara T. LAPTM4B-35 is a novel prognostic factor for glioblastoma. J Neurooncol. 2017;132(2):295–303.PubMed Dong X, Tamura K, Kobayashi D, Ando N, Sumita K, Maehara T. LAPTM4B-35 is a novel prognostic factor for glioblastoma. J Neurooncol. 2017;132(2):295–303.PubMed
41.
go back to reference Ookawa S, Wanibuchi M, Kataoka-Sasaki Y, Sasaki M, Oka S, Ohtaki S, et al. Digital polymerase chain reaction quantification of SERPINA1 predicts prognosis in high-grade glioma. World Neurosurg. 2018;111:e783-9.PubMed Ookawa S, Wanibuchi M, Kataoka-Sasaki Y, Sasaki M, Oka S, Ohtaki S, et al. Digital polymerase chain reaction quantification of SERPINA1 predicts prognosis in high-grade glioma. World Neurosurg. 2018;111:e783-9.PubMed
42.
go back to reference Kee H, Ahn K, Choi K, Won Song J, Heo T, Jung S, et al. Expression of brain-specific angiogenesis inhibitor 3 (BAI3) in normal brain and implications for BAI3 in ischemia-induced brain angiogenesis and malignant glioma. FEBS Lett. 2004;569:307–16.PubMed Kee H, Ahn K, Choi K, Won Song J, Heo T, Jung S, et al. Expression of brain-specific angiogenesis inhibitor 3 (BAI3) in normal brain and implications for BAI3 in ischemia-induced brain angiogenesis and malignant glioma. FEBS Lett. 2004;569:307–16.PubMed
43.
go back to reference Rodrigues Silva D, Baroni S, Svidzinski A, Bersani-Amado C, Cortez D. Anti-inflammatory activity of the extract, fractions and amides from the leaves of Piper ovatum Vahl (Piperaceae). J Ethnopharmacol. 2008;116(3):569–73.PubMed Rodrigues Silva D, Baroni S, Svidzinski A, Bersani-Amado C, Cortez D. Anti-inflammatory activity of the extract, fractions and amides from the leaves of Piper ovatum Vahl (Piperaceae). J Ethnopharmacol. 2008;116(3):569–73.PubMed
44.
go back to reference Bezerra D, Pessoa C, de Moraes M, Saker-Neto N, Silveira E, Costa-Lotufo L. Overview of the therapeutic potential of piplartine (piperlongumine). Eur J Pharm Sci. 2013;48(3):453–63.PubMed Bezerra D, Pessoa C, de Moraes M, Saker-Neto N, Silveira E, Costa-Lotufo L. Overview of the therapeutic potential of piplartine (piperlongumine). Eur J Pharm Sci. 2013;48(3):453–63.PubMed
45.
go back to reference Kim T, Song J, Kim S, Parikh A, Mo X, Palanichamy K, et al. Piperlongumine treatment inactivates peroxiredoxin 4, exacerbates endoplasmic reticulum stress, and preferentially kills high-grade glioma cells. Neuro Oncol. 2014;16(10):1354–64.PubMedPubMedCentral Kim T, Song J, Kim S, Parikh A, Mo X, Palanichamy K, et al. Piperlongumine treatment inactivates peroxiredoxin 4, exacerbates endoplasmic reticulum stress, and preferentially kills high-grade glioma cells. Neuro Oncol. 2014;16(10):1354–64.PubMedPubMedCentral
47.
go back to reference Liu J, Pan F, Li L, Liu Q, Chen Y, Xiong X, et al. Piperlongumine selectively kills glioblastoma multiforme cells via reactive oxygen species accumulation dependent JNK and p38 activation. Biochem Biophys Res Commun. 2013;437(1):87–93.PubMed Liu J, Pan F, Li L, Liu Q, Chen Y, Xiong X, et al. Piperlongumine selectively kills glioblastoma multiforme cells via reactive oxygen species accumulation dependent JNK and p38 activation. Biochem Biophys Res Commun. 2013;437(1):87–93.PubMed
48.
go back to reference Pei S, Minhajuddin M, Callahan K, Balys M, Ashton J, Neering S, et al. Targeting aberrant glutathione metabolism to eradicate human acute myelogenous leukemia cells. J Biol Chem. 2013;288(47):33542–58.PubMedPubMedCentral Pei S, Minhajuddin M, Callahan K, Balys M, Ashton J, Neering S, et al. Targeting aberrant glutathione metabolism to eradicate human acute myelogenous leukemia cells. J Biol Chem. 2013;288(47):33542–58.PubMedPubMedCentral
49.
go back to reference Tian Q, Wang L, Sun X, Zeng F, Pan Q, Xue M. Scopoletin exerts anticancer effects on human cervical cancer cell lines by triggering apoptosis, cell cycle arrest, inhibition of cell invasion and PI3K/AKT signalling pathway. J BUON. 2019;24(3):997–1002.PubMed Tian Q, Wang L, Sun X, Zeng F, Pan Q, Xue M. Scopoletin exerts anticancer effects on human cervical cancer cell lines by triggering apoptosis, cell cycle arrest, inhibition of cell invasion and PI3K/AKT signalling pathway. J BUON. 2019;24(3):997–1002.PubMed
Metadata
Title
Cysteine cathepsin C: a novel potential biomarker for the diagnosis and prognosis of glioma
Authors
Xingbo Cheng
Zhishuai Ren
Zhendong Liu
Xiang Sun
Rongjun Qian
Chen Cao
Binfeng Liu
Jialin Wang
Hongbo Wang
Yuqi Guo
Yanzheng Gao
Publication date
01-12-2022
Publisher
BioMed Central
Published in
Cancer Cell International / Issue 1/2022
Electronic ISSN: 1475-2867
DOI
https://doi.org/10.1186/s12935-021-02417-6

Other articles of this Issue 1/2022

Cancer Cell International 1/2022 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine