Skip to main content
Top
Published in: Journal of Translational Medicine 1/2021

Open Access 01-12-2021 | Glioma | Research

Bioinformatics analysis reveals a stem cell-expressed circ-Serpine2-mediated miRNA-mRNA regulatory subnetwork in the malignant progression of glioma

Authors: Guowei Li, Qing Lan

Published in: Journal of Translational Medicine | Issue 1/2021

Login to get access

Abstract

Background

High-grade glioma has a poor prognosis, and GSCs can have pivotal roles in glioma pathology. This study investigated GSC exosome-containing circRNA mechanisms affecting the malignant progression of glioma.

Methods

In this study, we identified differentially expressed circRNAs and constructed a circRNA-miRNA-mRNA regulatory network through circRNA sequencing/bioinformatics analysis. Then, we identified circRNAs that were upregulated in GSC23 cells and employed them as downstream targets in subsequent investigations. Such investigations included downstream target knockout to assess any influence on A172 cell proliferation, invasion, migration and apoptosis. In addition, in vivo investigations using tumor-bearing animals evaluated the in vivo influences of the selected targets.

Results

This study identified circ-Serpine2/miR-124-3p/KIF20A as a regulatory pathway in glioma. Our in vitro analysis confirmed that circ-Serpine2 could upregulate KIF20A by sponging miR-124-3p, consequently promoting A172 cell proliferation, migration and invasion. Such a signaling channel could also inhibit glioma cell apoptosis. Additionally, our research indicated that circ-Serpine2 inhibited glioma apoptosis and promoted in vivo tumor progression.

Conclusion

Circ-Serpine2 exacerbated the malignant progression of glioma mediated by the miR-124-3p/KIF20A nexus, thus providing novel predictive/prognostic biomarkers and drug targets against glioma.
Literature
1.
go back to reference Chang Y, Wu Q, Tian T, et al. The influence of SRPK1 on glioma apoptosis, metastasis, and angiogenesis through the PI3K/Akt signaling pathway under normoxia. Tumour Biol. 2015;36(8):6083–93.CrossRef Chang Y, Wu Q, Tian T, et al. The influence of SRPK1 on glioma apoptosis, metastasis, and angiogenesis through the PI3K/Akt signaling pathway under normoxia. Tumour Biol. 2015;36(8):6083–93.CrossRef
2.
go back to reference Liu M, Dai B, Kang SH, et al. FoxM1B is overexpressed in human glioblastomas and critically regulates the tumorigenicity of glioma cells. Cancer Res. 2006;66(7):3593–602.CrossRef Liu M, Dai B, Kang SH, et al. FoxM1B is overexpressed in human glioblastomas and critically regulates the tumorigenicity of glioma cells. Cancer Res. 2006;66(7):3593–602.CrossRef
3.
go back to reference Ostrom QT, Gittleman H, Farah P, et al. CBTRUS statistical report: pimary brain and central nervous system tumors diagnosed in the United States in 2006–2010. Neuro Oncol. 2013;15:ii1-56.CrossRef Ostrom QT, Gittleman H, Farah P, et al. CBTRUS statistical report: pimary brain and central nervous system tumors diagnosed in the United States in 2006–2010. Neuro Oncol. 2013;15:ii1-56.CrossRef
4.
go back to reference Goodenberger ML, Jenkins RB. Genetics of adult glioma. Cancer Genet. 2012;205:613–21.CrossRef Goodenberger ML, Jenkins RB. Genetics of adult glioma. Cancer Genet. 2012;205:613–21.CrossRef
5.
go back to reference Barbagallo D, Caponnetto A, Brex D, et al. CircSMARCA5 regulates VEGFA mRNA Splicing and angiogenesis in glioblastoma multiforme through the binding of SRSF1. Cancers. 2019;11(2):194.CrossRef Barbagallo D, Caponnetto A, Brex D, et al. CircSMARCA5 regulates VEGFA mRNA Splicing and angiogenesis in glioblastoma multiforme through the binding of SRSF1. Cancers. 2019;11(2):194.CrossRef
6.
go back to reference Wank M, Schilling D, Schmid TE, et al. Human glioma migration and infiltration properties as a target for personalized radiation medicine. Cancers. 2018;10(11):456.CrossRef Wank M, Schilling D, Schmid TE, et al. Human glioma migration and infiltration properties as a target for personalized radiation medicine. Cancers. 2018;10(11):456.CrossRef
7.
go back to reference Chen TC, da Fonseca CO, Schönthal AH. Intranasal perillyl alcohol for glioma therapy: molecular mechanisms and clinical development. Int J Mol Sci. 2018;19(12):3905.CrossRef Chen TC, da Fonseca CO, Schönthal AH. Intranasal perillyl alcohol for glioma therapy: molecular mechanisms and clinical development. Int J Mol Sci. 2018;19(12):3905.CrossRef
8.
go back to reference van Ierschot F, Bastiaanse R, Miceli G. Evaluating spelling in glioma patients undergoing awake surgery: a systematic review. Neuropsychol Rev. 2018;28(4):470–95.CrossRef van Ierschot F, Bastiaanse R, Miceli G. Evaluating spelling in glioma patients undergoing awake surgery: a systematic review. Neuropsychol Rev. 2018;28(4):470–95.CrossRef
9.
go back to reference Ostrom QT, Bauchet L, Davis FG, et al. The epidemiology of glioma in adults: a “state of the science” review. Neuro Oncol. 2014;16(7):896–913.CrossRef Ostrom QT, Bauchet L, Davis FG, et al. The epidemiology of glioma in adults: a “state of the science” review. Neuro Oncol. 2014;16(7):896–913.CrossRef
10.
go back to reference Chan XH, Nama S, Gopal F, et al. Targeting glioma stem cells by functional inhibition of a prosurvival oncomiR-138 in malignant gliomas. Cell Rep. 2012;2(3):591–602.CrossRef Chan XH, Nama S, Gopal F, et al. Targeting glioma stem cells by functional inhibition of a prosurvival oncomiR-138 in malignant gliomas. Cell Rep. 2012;2(3):591–602.CrossRef
11.
go back to reference Huang Z, Cheng L, Guryanova OA, et al. Cancer stem cells in glioblastoma–molecular signaling and therapeutic targeting. Protein Cell. 2010;1(7):638–55.CrossRef Huang Z, Cheng L, Guryanova OA, et al. Cancer stem cells in glioblastoma–molecular signaling and therapeutic targeting. Protein Cell. 2010;1(7):638–55.CrossRef
12.
go back to reference Bao S, Wu Q, Sathornsumetee S, et al. Stem cell-like glioma cells promote tumor angiogenesis through vascular endothelial growth factor. Cancer Res. 2006;66(16):7843–8.CrossRef Bao S, Wu Q, Sathornsumetee S, et al. Stem cell-like glioma cells promote tumor angiogenesis through vascular endothelial growth factor. Cancer Res. 2006;66(16):7843–8.CrossRef
13.
go back to reference Wang J, Chen S, Ma X, et al. Effects of endothelial progenitor cell-derived microvesicles on hypoxia/reoxygenation-induced endothelial dysfunction and apoptosis. Oxid Med Cell Longev. 2013;2013:572729.PubMedPubMedCentral Wang J, Chen S, Ma X, et al. Effects of endothelial progenitor cell-derived microvesicles on hypoxia/reoxygenation-induced endothelial dysfunction and apoptosis. Oxid Med Cell Longev. 2013;2013:572729.PubMedPubMedCentral
14.
go back to reference Wang X, Gu H, Huang W, et al. Hsp20-mediated activation of exosome biogenesis in cardiomyocytes improves cardiac function and angiogenesis in diabetic mice. Diabetes. 2016;65:3111–28.CrossRef Wang X, Gu H, Huang W, et al. Hsp20-mediated activation of exosome biogenesis in cardiomyocytes improves cardiac function and angiogenesis in diabetic mice. Diabetes. 2016;65:3111–28.CrossRef
15.
16.
go back to reference Otsuki T, Ishikawa M, Hori Y, et al. Volatile anesthetic sevoflurane ameliorates endotoxin-induced acute lung injury via microRNA modulation in rats. Biomed Rep. 2015;3(3):408–12.CrossRef Otsuki T, Ishikawa M, Hori Y, et al. Volatile anesthetic sevoflurane ameliorates endotoxin-induced acute lung injury via microRNA modulation in rats. Biomed Rep. 2015;3(3):408–12.CrossRef
17.
go back to reference Ma ZL, Hou PP, Li YL, et al. MicroRNA-34a inhibits the proliferation and promotes the apoptosis of nonsmall cell lung cancer H1299 cell line by targeting TGFbetaR2. Tumour Biol. 2015;36(4):2481–90.CrossRef Ma ZL, Hou PP, Li YL, et al. MicroRNA-34a inhibits the proliferation and promotes the apoptosis of nonsmall cell lung cancer H1299 cell line by targeting TGFbetaR2. Tumour Biol. 2015;36(4):2481–90.CrossRef
18.
go back to reference Brower JV, Clark PA, Lyon W, et al. MicroRNAs in cancer: glioblastoma and glioblastoma cancer stem cells. Neurochem Int. 2014;77:68–77.CrossRef Brower JV, Clark PA, Lyon W, et al. MicroRNAs in cancer: glioblastoma and glioblastoma cancer stem cells. Neurochem Int. 2014;77:68–77.CrossRef
19.
go back to reference Li Q, Wang AY, Xu QG, et al. In-vitro inhibitory effect of EGFL7-RNAi on endothelial angiogenesis in glioma. Int J Clin Exp Pathol. 2015;8(10):12234–42.PubMedPubMedCentral Li Q, Wang AY, Xu QG, et al. In-vitro inhibitory effect of EGFL7-RNAi on endothelial angiogenesis in glioma. Int J Clin Exp Pathol. 2015;8(10):12234–42.PubMedPubMedCentral
20.
go back to reference Dworkin M, Mehan W, Niemierko A, et al. Increase of pseudoprogression and other treatment related effects in low-grade glioma patients treated with proton radiation and temozolomide. J Neurooncol. 2019;142(1):69–77.CrossRef Dworkin M, Mehan W, Niemierko A, et al. Increase of pseudoprogression and other treatment related effects in low-grade glioma patients treated with proton radiation and temozolomide. J Neurooncol. 2019;142(1):69–77.CrossRef
21.
go back to reference Noorlag L, De Vos FY, Kok A, et al. Treatment of malignant gliomas with ketogenic or caloric restricted diets: a systematic review of preclinical and early clinical studies. Clin Nutr. 2019;38(5):1986–94.CrossRef Noorlag L, De Vos FY, Kok A, et al. Treatment of malignant gliomas with ketogenic or caloric restricted diets: a systematic review of preclinical and early clinical studies. Clin Nutr. 2019;38(5):1986–94.CrossRef
22.
go back to reference Liu H, Li C, Yang J, et al. Long noncoding RNA CASC9/miR-519d/STAT3 positive feedback loop facilitate the glioma tumourigenesis. J Cell Mol Med. 2018;22(12):6338–44.CrossRef Liu H, Li C, Yang J, et al. Long noncoding RNA CASC9/miR-519d/STAT3 positive feedback loop facilitate the glioma tumourigenesis. J Cell Mol Med. 2018;22(12):6338–44.CrossRef
23.
go back to reference Sun X, Wang J, Huang M, et al. STAT3 promotes tumour progression in glioma by inducing FOXP1 transcription. J Cell Mol Med. 2018;22(11):5629–38.CrossRef Sun X, Wang J, Huang M, et al. STAT3 promotes tumour progression in glioma by inducing FOXP1 transcription. J Cell Mol Med. 2018;22(11):5629–38.CrossRef
24.
go back to reference Bian L, Zhi X, Ma L, et al. Hsa_circRNA_ 103809 regulated the cell proliferation and migration in colorectal cancer via miR-532-3p/FOXO4 axis. Biochem Biophys Res Commun. 2018;505(2):346–52.CrossRef Bian L, Zhi X, Ma L, et al. Hsa_circRNA_ 103809 regulated the cell proliferation and migration in colorectal cancer via miR-532-3p/FOXO4 axis. Biochem Biophys Res Commun. 2018;505(2):346–52.CrossRef
25.
go back to reference Cao S, Wang G, Wang J, et al. Hsa_circ_101280 promotes hepatocellular carcinoma by regulating miR-375/JAK2. Immunol Cell Biol. 2019;97(2):218–28.CrossRef Cao S, Wang G, Wang J, et al. Hsa_circ_101280 promotes hepatocellular carcinoma by regulating miR-375/JAK2. Immunol Cell Biol. 2019;97(2):218–28.CrossRef
26.
go back to reference Wei H, Pan L, Tao D, et al. Circular RNA circZFR contributes to papillary thyroid cancer cell proliferation and invasion by sponging miR-1261 and facilitating C8orf4 expression. Biochem Biophys Res Commun. 2018;503(1):56–61.CrossRef Wei H, Pan L, Tao D, et al. Circular RNA circZFR contributes to papillary thyroid cancer cell proliferation and invasion by sponging miR-1261 and facilitating C8orf4 expression. Biochem Biophys Res Commun. 2018;503(1):56–61.CrossRef
27.
go back to reference Domenis R, Cesselli D, Toffoletto B, et al. Systemic T Cells immunosuppression of glioma stem cell-derived exosomes is mediated by monocytic myeloid-derived suppressor cells. PLoS ONE. 2017;12(1):e0169932.CrossRef Domenis R, Cesselli D, Toffoletto B, et al. Systemic T Cells immunosuppression of glioma stem cell-derived exosomes is mediated by monocytic myeloid-derived suppressor cells. PLoS ONE. 2017;12(1):e0169932.CrossRef
28.
go back to reference Gong M, Yu B, Wang J, et al. Mesenchymal stem cells release exosomes that transfer miRNAs to endothelial cells and promote angiogenesis. Oncotarget. 2017;8(28):45200–12.CrossRef Gong M, Yu B, Wang J, et al. Mesenchymal stem cells release exosomes that transfer miRNAs to endothelial cells and promote angiogenesis. Oncotarget. 2017;8(28):45200–12.CrossRef
29.
go back to reference Li MY, Liu DW, Mao YG. Advances in the research of effects of exosomes derived from stem cells on wound repair. Zhonghua Shao Shang Za Zhi. 2017;33(3):180–4.PubMed Li MY, Liu DW, Mao YG. Advances in the research of effects of exosomes derived from stem cells on wound repair. Zhonghua Shao Shang Za Zhi. 2017;33(3):180–4.PubMed
30.
go back to reference Nilsson J, Skog J, Nordstrand A, et al. Prostate cancer-derived urine exosomes: a novel approach to biomarkers for prostate cancer. Br J Cancer. 2009;100(10):1603–7.CrossRef Nilsson J, Skog J, Nordstrand A, et al. Prostate cancer-derived urine exosomes: a novel approach to biomarkers for prostate cancer. Br J Cancer. 2009;100(10):1603–7.CrossRef
31.
go back to reference Bobrie A, Colombo M, Raposo G, et al. Exosome secretion: molecular mechanisms and roles in immune responses. Traffic. 2011;12(12):1659–68.CrossRef Bobrie A, Colombo M, Raposo G, et al. Exosome secretion: molecular mechanisms and roles in immune responses. Traffic. 2011;12(12):1659–68.CrossRef
32.
go back to reference Villarroya-Beltri C, Gutierrez-Vazquez C, Sanchez-Madrid F, et al. Analysis of microRNA and protein transfer by exosomes during an immune synapse. Methods Mol Biol. 2013;1024:41–51.CrossRef Villarroya-Beltri C, Gutierrez-Vazquez C, Sanchez-Madrid F, et al. Analysis of microRNA and protein transfer by exosomes during an immune synapse. Methods Mol Biol. 2013;1024:41–51.CrossRef
33.
go back to reference Figueroa J, Phillips LM, Shahar T, et al. Exosomes from glioma-associated mesenchymal stem cells increase the Tumorigenicity of glioma stem-like cells via transfer of miR-1587. Cancer Res. 2017;77(21):5808–19.CrossRef Figueroa J, Phillips LM, Shahar T, et al. Exosomes from glioma-associated mesenchymal stem cells increase the Tumorigenicity of glioma stem-like cells via transfer of miR-1587. Cancer Res. 2017;77(21):5808–19.CrossRef
34.
go back to reference Pagliara V, Adornetto A, Mammì M, et al. Protease nexin-1 affects the migration and invasion of C6 glioma cells through the regulation of urokinase plasminogen activator and matrix metalloproteinase-9/2. Biochim Biophys Acta. 2014;1843(11):2631–44.CrossRef Pagliara V, Adornetto A, Mammì M, et al. Protease nexin-1 affects the migration and invasion of C6 glioma cells through the regulation of urokinase plasminogen activator and matrix metalloproteinase-9/2. Biochim Biophys Acta. 2014;1843(11):2631–44.CrossRef
35.
go back to reference Vaillant C, Valdivieso P, Nuciforo S, et al. Serpine2/PN-1 Is required for proliferative expansion of pre-neoplastic lesions and malignant progression to medulloblastoma. PLoS ONE. 2015;10(4):e0124870.CrossRef Vaillant C, Valdivieso P, Nuciforo S, et al. Serpine2/PN-1 Is required for proliferative expansion of pre-neoplastic lesions and malignant progression to medulloblastoma. PLoS ONE. 2015;10(4):e0124870.CrossRef
36.
go back to reference Wu Q, Xu L, Wang C, et al. MicroRNA-124-3p represses cell growth and cell motility by targeting EphA2 in glioma. Biochem Biophys Res Commun. 2018;503(4):2436–42.CrossRef Wu Q, Xu L, Wang C, et al. MicroRNA-124-3p represses cell growth and cell motility by targeting EphA2 in glioma. Biochem Biophys Res Commun. 2018;503(4):2436–42.CrossRef
37.
go back to reference Liu S, Yin F, Zhang J, et al. Regulatory roles of miRNA in the human neural stem cell transformation to glioma stem cells. J Cell Biochem. 2014;115(8):1368–80.CrossRef Liu S, Yin F, Zhang J, et al. Regulatory roles of miRNA in the human neural stem cell transformation to glioma stem cells. J Cell Biochem. 2014;115(8):1368–80.CrossRef
38.
go back to reference Zhou Y, Yang L, Zhang X, et al. Identification of potential biomarkers in glioblastoma through bioinformatic analysis and evaluating their prognostic value. Biomed Res Int. 2019;2019:6581576.PubMedPubMedCentral Zhou Y, Yang L, Zhang X, et al. Identification of potential biomarkers in glioblastoma through bioinformatic analysis and evaluating their prognostic value. Biomed Res Int. 2019;2019:6581576.PubMedPubMedCentral
39.
go back to reference Saito K, Ohta S, Kawakami Y, et al. Functional analysis of KIF20A, a potential immunotherapeutic target for glioma. J Neurooncol. 2017;132(1):63–74.CrossRef Saito K, Ohta S, Kawakami Y, et al. Functional analysis of KIF20A, a potential immunotherapeutic target for glioma. J Neurooncol. 2017;132(1):63–74.CrossRef
Metadata
Title
Bioinformatics analysis reveals a stem cell-expressed circ-Serpine2-mediated miRNA-mRNA regulatory subnetwork in the malignant progression of glioma
Authors
Guowei Li
Qing Lan
Publication date
01-12-2021
Publisher
BioMed Central
Published in
Journal of Translational Medicine / Issue 1/2021
Electronic ISSN: 1479-5876
DOI
https://doi.org/10.1186/s12967-021-03118-4

Other articles of this Issue 1/2021

Journal of Translational Medicine 1/2021 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.