Skip to main content
Top
Published in: Journal of Experimental & Clinical Cancer Research 1/2021

Open Access 01-12-2021 | Glioblastoma | Review

What are the applications of single-cell RNA sequencing in cancer research: a systematic review

Authors: Lvyuan Li, Fang Xiong, Yumin Wang, Shanshan Zhang, Zhaojian Gong, Xiayu Li, Yi He, Lei Shi, Fuyan Wang, Qianjin Liao, Bo Xiang, Ming Zhou, Xiaoling Li, Yong Li, Guiyuan Li, Zhaoyang Zeng, Wei Xiong, Can Guo

Published in: Journal of Experimental & Clinical Cancer Research | Issue 1/2021

Login to get access

Abstract

Single-cell RNA sequencing (scRNA-seq) is a tool for studying gene expression at the single-cell level that has been widely used due to its unprecedented high resolution. In the present review, we outline the preparation process and sequencing platforms for the scRNA-seq analysis of solid tumor specimens and discuss the main steps and methods used during data analysis, including quality control, batch-effect correction, normalization, cell cycle phase assignment, clustering, cell trajectory and pseudo-time reconstruction, differential expression analysis and gene set enrichment analysis, as well as gene regulatory network inference. Traditional bulk RNA sequencing does not address the heterogeneity within and between tumors, and since the development of the first scRNA-seq technique, this approach has been widely used in cancer research to better understand cancer cell biology and pathogenetic mechanisms. ScRNA-seq has been of great significance for the development of targeted therapy and immunotherapy. In the second part of this review, we focus on the application of scRNA-seq in solid tumors, and summarize the findings and achievements in tumor research afforded by its use. ScRNA-seq holds promise for improving our understanding of the molecular characteristics of cancer, and potentially contributing to improved diagnosis, prognosis, and therapeutics.
Appendix
Available only for authorised users
Literature
25.
38.
45.
go back to reference Buettner F, Natarajan KN, Casale FP, et al. Computational analysis of cell-to-cell heterogeneity in single-cell RNA-sequencing data reveals hidden subpopulations of cells. Nat Biotechnol. 2015;33(2):155–60.https://doi.org/10.1038/nbt.3102. Buettner F, Natarajan KN, Casale FP, et al. Computational analysis of cell-to-cell heterogeneity in single-cell RNA-sequencing data reveals hidden subpopulations of cells. Nat Biotechnol. 2015;33(2):155–60.https://​doi.​org/​10.​1038/​nbt.​3102.
75.
go back to reference Huang DW, Sherman BT, Tan Q, et al. DAVID Bioinformatics Resources: expanded annotation database and novel algorithms to better extract biology from large gene lists. Nucleic Acids Res. 2007;35(Web Server issue):W169–75. https://doi.org/10.1093/nar/gkm415. Huang DW, Sherman BT, Tan Q, et al. DAVID Bioinformatics Resources: expanded annotation database and novel algorithms to better extract biology from large gene lists. Nucleic Acids Res. 2007;35(Web Server issue):W169–75. https://​doi.​org/​10.​1093/​nar/​gkm415.
89.
go back to reference Wei J, Wu C, Meng H, et al. The biogenesis and roles of extrachromosomal oncogene involved in carcinogenesis and evolution. Am J Cancer Res. 2020;10(11):3532–50. Wei J, Wu C, Meng H, et al. The biogenesis and roles of extrachromosomal oncogene involved in carcinogenesis and evolution. Am J Cancer Res. 2020;10(11):3532–50.
97.
109.
130.
144.
go back to reference Zhang J, Guan M, Wang Q, Zhang J, Zhou T, Sun X. Single-cell transcriptome-based multilayer network biomarker for predicting prognosis and therapeutic response of gliomas. Brief Bioinform. 2019; 21(3):1080-1097. https://doi.org/10.1093/bib/bbz040. Zhang J, Guan M, Wang Q, Zhang J, Zhou T, Sun X. Single-cell transcriptome-based multilayer network biomarker for predicting prognosis and therapeutic response of gliomas. Brief Bioinform. 2019; 21(3):1080-1097. https://​doi.​org/​10.​1093/​bib/​bbz040.
148.
go back to reference Cai J, Chen S, Yi M, et al. ΔNp63α is a super enhancer-enriched master factor controlling the basal-to-luminal differentiation transcriptional program and gene regulatory networks in nasopharyngeal carcinoma. Carcinogenesis. 2020;41(9):1282–93. https://doi.org/10.1093/carcin/bgz203. Cai J, Chen S, Yi M, et al. ΔNp63α is a super enhancer-enriched master factor controlling the basal-to-luminal differentiation transcriptional program and gene regulatory networks in nasopharyngeal carcinoma. Carcinogenesis. 2020;41(9):1282–93. https://​doi.​org/​10.​1093/​carcin/​bgz203.
151.
Metadata
Title
What are the applications of single-cell RNA sequencing in cancer research: a systematic review
Authors
Lvyuan Li
Fang Xiong
Yumin Wang
Shanshan Zhang
Zhaojian Gong
Xiayu Li
Yi He
Lei Shi
Fuyan Wang
Qianjin Liao
Bo Xiang
Ming Zhou
Xiaoling Li
Yong Li
Guiyuan Li
Zhaoyang Zeng
Wei Xiong
Can Guo
Publication date
01-12-2021
Publisher
BioMed Central
Published in
Journal of Experimental & Clinical Cancer Research / Issue 1/2021
Electronic ISSN: 1756-9966
DOI
https://doi.org/10.1186/s13046-021-01955-1

Other articles of this Issue 1/2021

Journal of Experimental & Clinical Cancer Research 1/2021 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine