Skip to main content
Top
Published in: Cancer Cell International 1/2022

Open Access 01-12-2022 | Glioblastoma | Research

The autophagy inducer trehalose stimulates macropinocytosis in NF1-deficient glioblastoma cells

Authors: Barbara Del Bello, Alessandra Gamberucci, Paola Marcolongo, Emilia Maellaro

Published in: Cancer Cell International | Issue 1/2022

Login to get access

Abstract

Background

Glioblastoma is a highly aggressive brain tumor. A big effort is required to find novel molecules which can cross the blood–brain barrier and efficiently kill these tumor cells. In this perspective, trehalose (α-glucopyranosyl‐[1→1]‐α‐d‐glucopyranoside), found in various dietary sources and used as a safe nutrient supplement, attracted our attention for its pleiotropic effects against tumor cells.

Methods

Human glioblastoma cell lines U373-MG and T98G were exposed to trehalose and analyzed at different time points. Cell proliferation was evaluated at medium term, and clonogenic capacity and cell morphology were evaluated at long term. Western blot was used to evaluate biochemical markers of autophagy (also measured in cells co-treated with EIPA or chloroquine), and mTOR, AMPK and ERK 1/2 signalling. Macropinocytosis was evaluated morphologically by bright-field microscopy; in cells loaded with the fluorescein-conjugated fluid-phase tracer dextran, macropinocytic vacuoles were also visualized by fluorescence microscopy, and the extent of macropinocytosis was quantified by flow cytometry.

Results

The long-term effect of trehalose on U373-MG and T98G cell lines was impressive, as indicated by a dramatic reduction in clonogenic efficiency. Mechanistically, trehalose proved to be an efficient autophagy inducer in macropinocytosis-deficient T98G cells and an efficient inducer of macropinocytosis and eventual cell death by methuosis in U373-MG glioblastoma cells, proved to be poorly responsive to induction of autophagy. These two processes appeared to act in a mutually exclusive manner; indeed, co-treatment of U373-MG cells with the macropinocytosis inhibitor, EIPA, significantly increased the autophagic response. mTOR activation and AMPK inhibition occurred in a similar way in the two trehalose-treated cell lines. Interestingly, ERK 1/2 was activated only in macropinocytosis-proficient U373-MG cells harbouring loss-of-function mutations in the negative RAS regulator, NF1, suggesting a key role of RAS signalling.

Conclusions

Our results indicate that trehalose is worthy of further study as a candidate molecule for glioblastoma therapy, due to its capacity to induce a sustained autophagic response, ultimately leading to loss of clonogenic potential, and more interestingly, to force macropinocytosis, eventually leading to cell death by methuosis, particularly in tumor cells with RAS hyperactivity. As a further anticancer strategy, stimulation of macropinocytosis may be exploited to increase intracellular delivery of anticancer drugs.
Literature
2.
go back to reference Buckley CM, King JS. Drinking problems: mechanisms of macropinosome formation and maturation. FEBS J. 2017;284(22):3778–90.PubMedCrossRef Buckley CM, King JS. Drinking problems: mechanisms of macropinosome formation and maturation. FEBS J. 2017;284(22):3778–90.PubMedCrossRef
3.
go back to reference Maltese WA, Overmeyer JH. Methuosis: nonapoptotic cell death associated with vacuolization of macropinosome and endosome compartments. Am J Pathol. 2014;184:1630–42.PubMedPubMedCentralCrossRef Maltese WA, Overmeyer JH. Methuosis: nonapoptotic cell death associated with vacuolization of macropinosome and endosome compartments. Am J Pathol. 2014;184:1630–42.PubMedPubMedCentralCrossRef
5.
go back to reference Chaitanya NSN, Devi A, Sahu S, Alugoju P. Molecular mechanisms of action of Trehalose in cancer: a comprehensive review. Life Sci. 2021;269:118968.CrossRef Chaitanya NSN, Devi A, Sahu S, Alugoju P. Molecular mechanisms of action of Trehalose in cancer: a comprehensive review. Life Sci. 2021;269:118968.CrossRef
6.
go back to reference Allavena G, Del Bello B, Tini P, Volpi N, Valacchi G, Miracco C, Pirtoli L, Maellaro E. Trehalose inhibits cell proliferation and amplifies long-term temozolomide‐ and radiation‐induced cytotoxicity in melanoma cells: a role for autophagy and premature senescence. J Cell Physiol. 2019;234:11708–21.PubMedCrossRef Allavena G, Del Bello B, Tini P, Volpi N, Valacchi G, Miracco C, Pirtoli L, Maellaro E. Trehalose inhibits cell proliferation and amplifies long-term temozolomide‐ and radiation‐induced cytotoxicity in melanoma cells: a role for autophagy and premature senescence. J Cell Physiol. 2019;234:11708–21.PubMedCrossRef
7.
go back to reference Tanaka M, Machida Y, Niu S, Ikeda T, Jana N, Doi H, Kurosawa M, Nekooki M, Nukina N. Trehalose alleviates polyglutamine-mediated pathology in a mouse model of Huntington disease. Nat Med. 2004;10(2):148–54.PubMedCrossRef Tanaka M, Machida Y, Niu S, Ikeda T, Jana N, Doi H, Kurosawa M, Nekooki M, Nukina N. Trehalose alleviates polyglutamine-mediated pathology in a mouse model of Huntington disease. Nat Med. 2004;10(2):148–54.PubMedCrossRef
8.
go back to reference Franken NAP, Rodermond HM, Stap J, Haveman J, van Bree C. Clonogenic assay of cells in vitro. Nat Protoc. 2006;1(5):2315–9.PubMedCrossRef Franken NAP, Rodermond HM, Stap J, Haveman J, van Bree C. Clonogenic assay of cells in vitro. Nat Protoc. 2006;1(5):2315–9.PubMedCrossRef
9.
go back to reference Litovchick L. Stripping of the immunoblot for reprobing. Cold Spring Harb Protoc. 2020;2020(3):098491.PubMed Litovchick L. Stripping of the immunoblot for reprobing. Cold Spring Harb Protoc. 2020;2020(3):098491.PubMed
12.
go back to reference Del Bello B, Toscano M, Moretti D, Maellaro E. Cisplatin-induced apoptosis inhibits autophagy, which acts as a pro-survival mechanism in human melanoma cells. PLoS ONE. 2013;8(2):e57236.PubMedPubMedCentralCrossRef Del Bello B, Toscano M, Moretti D, Maellaro E. Cisplatin-induced apoptosis inhibits autophagy, which acts as a pro-survival mechanism in human melanoma cells. PLoS ONE. 2013;8(2):e57236.PubMedPubMedCentralCrossRef
13.
go back to reference Mizushima N, Yoshimori T, Ohsumi Y. The role of Atg proteins in autophagosome formation. Annu Rev Cell Dev Biol. 2011;27:107–32.PubMedCrossRef Mizushima N, Yoshimori T, Ohsumi Y. The role of Atg proteins in autophagosome formation. Annu Rev Cell Dev Biol. 2011;27:107–32.PubMedCrossRef
14.
go back to reference Florey O, Overholtzer M. Macropinocytosis and autophagy crosstalk in nutrient scavenging. Philos Trans R Soc Lond B Biol Sci. 2019;374:20180154.PubMedCrossRef Florey O, Overholtzer M. Macropinocytosis and autophagy crosstalk in nutrient scavenging. Philos Trans R Soc Lond B Biol Sci. 2019;374:20180154.PubMedCrossRef
15.
go back to reference Yoshida S, Pacitto R, Inoki H, Swanson J. Macropinocytosis, mTORC1 and cellular growth control. Cell Mol Life Sci. 2018;75:1227–39.PubMedCrossRef Yoshida S, Pacitto R, Inoki H, Swanson J. Macropinocytosis, mTORC1 and cellular growth control. Cell Mol Life Sci. 2018;75:1227–39.PubMedCrossRef
16.
go back to reference Koivusalo M, Welch C, Hayashi H, Scott CC, Kim M, Alexander T, Touret N, Hahn KM, Grinstein S. Amiloride inhibits macropinocytosis by lowering submembranous pH and preventing Rac1 and Cdc42 signaling. J Cell Biol. 2010;188(4):547–63.PubMedPubMedCentralCrossRef Koivusalo M, Welch C, Hayashi H, Scott CC, Kim M, Alexander T, Touret N, Hahn KM, Grinstein S. Amiloride inhibits macropinocytosis by lowering submembranous pH and preventing Rac1 and Cdc42 signaling. J Cell Biol. 2010;188(4):547–63.PubMedPubMedCentralCrossRef
18.
go back to reference Patil V, Pal J, Somasundaram K. Elucidating the cancer-specific genetic alteration spectrum of glioblastoma derived cell lines from whole exome and RNA sequencing. Oncotarget. 2015;6(41):43452–71.PubMedPubMedCentralCrossRef Patil V, Pal J, Somasundaram K. Elucidating the cancer-specific genetic alteration spectrum of glioblastoma derived cell lines from whole exome and RNA sequencing. Oncotarget. 2015;6(41):43452–71.PubMedPubMedCentralCrossRef
19.
go back to reference See WL, Tan I-L, Mukherjee J, Nicolaides T, Pieper RO. Sensitivity of glioblastomas to clinically available MEK inhibitors is defined by neurofibromin 1 deficiency. Cancer Res. 2012;72(13):3350–9.PubMedPubMedCentralCrossRef See WL, Tan I-L, Mukherjee J, Nicolaides T, Pieper RO. Sensitivity of glioblastomas to clinically available MEK inhibitors is defined by neurofibromin 1 deficiency. Cancer Res. 2012;72(13):3350–9.PubMedPubMedCentralCrossRef
20.
go back to reference Richards AB, Krakowka S, Dexter LB, Schmid H, Wolterbeek APM, Waalkens-Berendsen DH, Shigoyuki A, Kurimoto K. Trehalose: a review of properties, history of use and human tolerance, and results of multiple safety studies. Food Chem Toxicol. 2002;40(7):871–98.PubMedCrossRef Richards AB, Krakowka S, Dexter LB, Schmid H, Wolterbeek APM, Waalkens-Berendsen DH, Shigoyuki A, Kurimoto K. Trehalose: a review of properties, history of use and human tolerance, and results of multiple safety studies. Food Chem Toxicol. 2002;40(7):871–98.PubMedCrossRef
21.
go back to reference Hosseinpour-Moghaddam K, Caraglia M, Sahebkar A. Autophagy induction by trehalose: molecular mechanisms and therapeutic impacts. J Cell Physiol. 2018;233(9):6524–43.PubMedCrossRef Hosseinpour-Moghaddam K, Caraglia M, Sahebkar A. Autophagy induction by trehalose: molecular mechanisms and therapeutic impacts. J Cell Physiol. 2018;233(9):6524–43.PubMedCrossRef
22.
23.
go back to reference Galluzzi L, Baehrecke EH, Ballabio A, Boya P, Bravo-San Pedro JM, Cecconi F, Choi AM, Chu CT, et al. Molecular definitions of autophagy and related processes. EMBO J. 2017;36(13):1811–36.PubMedPubMedCentralCrossRef Galluzzi L, Baehrecke EH, Ballabio A, Boya P, Bravo-San Pedro JM, Cecconi F, Choi AM, Chu CT, et al. Molecular definitions of autophagy and related processes. EMBO J. 2017;36(13):1811–36.PubMedPubMedCentralCrossRef
24.
25.
go back to reference Lim P, Gleeson PA. Macropinocytosis: an endocytic pathway for internalising large gulps. Immunol Cell Biol. 2011;89:836–43.PubMedCrossRef Lim P, Gleeson PA. Macropinocytosis: an endocytic pathway for internalising large gulps. Immunol Cell Biol. 2011;89:836–43.PubMedCrossRef
26.
go back to reference Commisso C, Davidson SM, Soydaner-Azeloglu RG, Parker SJ, Kamphorst JJ, Hackett S, Grabocka E, Nofal M, et al. Macropinocytosis of protein is an amino acid supply route in Ras-transformed cells. Nature. 2013;497:633–7.PubMedPubMedCentralCrossRef Commisso C, Davidson SM, Soydaner-Azeloglu RG, Parker SJ, Kamphorst JJ, Hackett S, Grabocka E, Nofal M, et al. Macropinocytosis of protein is an amino acid supply route in Ras-transformed cells. Nature. 2013;497:633–7.PubMedPubMedCentralCrossRef
27.
go back to reference Overmeyer JH, Kaul A, Johnson EE, Maltese WA. Active Ras triggers death in glioblastoma cells through hyperstimulation of macropinocytosis. Mol Cancer Res. 2008;6(6):965–77.PubMedPubMedCentralCrossRef Overmeyer JH, Kaul A, Johnson EE, Maltese WA. Active Ras triggers death in glioblastoma cells through hyperstimulation of macropinocytosis. Mol Cancer Res. 2008;6(6):965–77.PubMedPubMedCentralCrossRef
28.
go back to reference Bhanot H, Young AM, Overmeyer JH, Maltese WA. Induction of nonapoptotic cell death by activated Ras requires inverse regulation of Rac1 and Arf6. Mol Cancer Res. 2010;8(10):1358–74.PubMedPubMedCentralCrossRef Bhanot H, Young AM, Overmeyer JH, Maltese WA. Induction of nonapoptotic cell death by activated Ras requires inverse regulation of Rac1 and Arf6. Mol Cancer Res. 2010;8(10):1358–74.PubMedPubMedCentralCrossRef
29.
go back to reference Overmeyer JH, Young AM, Bhanot H, Maltese WA. A chalcone-related small molecule that induces methuosis, a novel form of non-apoptotic cell death, in glioblastoma cells. Mol Cancer. 2011;10:69.PubMedPubMedCentralCrossRef Overmeyer JH, Young AM, Bhanot H, Maltese WA. A chalcone-related small molecule that induces methuosis, a novel form of non-apoptotic cell death, in glioblastoma cells. Mol Cancer. 2011;10:69.PubMedPubMedCentralCrossRef
30.
go back to reference Robinson MW, Overmeyer JH, Young AM, Erhardt PW, Maltese WA. Synthesis and evaluation of indole-based chalcones as inducers of methuosis, a novel type of nonapoptotic cell death. J Med Chem. 2012;55:1940–56.PubMedPubMedCentralCrossRef Robinson MW, Overmeyer JH, Young AM, Erhardt PW, Maltese WA. Synthesis and evaluation of indole-based chalcones as inducers of methuosis, a novel type of nonapoptotic cell death. J Med Chem. 2012;55:1940–56.PubMedPubMedCentralCrossRef
31.
go back to reference Colin M, Delporte C, Janky R, Lechon AS, Renard G, Van Antwerpen P, Maltese WA, Mathieu V. Dysregulation of macropinocytosis processes in glioblastomas may be exploited to increase intracellular anti-cancer drug levels: the example of temozolomide. Cancers. 2019;11(3):411.PubMedCentralCrossRef Colin M, Delporte C, Janky R, Lechon AS, Renard G, Van Antwerpen P, Maltese WA, Mathieu V. Dysregulation of macropinocytosis processes in glioblastomas may be exploited to increase intracellular anti-cancer drug levels: the example of temozolomide. Cancers. 2019;11(3):411.PubMedCentralCrossRef
32.
go back to reference Manara MC, Terracciano M, Mancarella C, Sciandra M, Guerzoni C, Pasello M, Grilli A, Zini N, et al. CD99 triggering induces methuosis of Ewing sarcoma cells through IGF-1R/RAS/Rac1 signaling. Oncotarget. 2016;7:79925–42.PubMedPubMedCentralCrossRef Manara MC, Terracciano M, Mancarella C, Sciandra M, Guerzoni C, Pasello M, Grilli A, Zini N, et al. CD99 triggering induces methuosis of Ewing sarcoma cells through IGF-1R/RAS/Rac1 signaling. Oncotarget. 2016;7:79925–42.PubMedPubMedCentralCrossRef
34.
go back to reference Lin SC, Hardie DG. AMPK: Sensing glucose as well as cellular energy status. Cell Metab. 2018;27(2):299–313.PubMedCrossRef Lin SC, Hardie DG. AMPK: Sensing glucose as well as cellular energy status. Cell Metab. 2018;27(2):299–313.PubMedCrossRef
35.
36.
go back to reference Knobbe CB, Reifenberger J, Reifenberger G. Mutation analysis of the Ras pathway genes NRAS, HRAS, KRAS and BRAF in glioblastomas. Acta Neuropathol. 2004;108(6):467–70.PubMedCrossRef Knobbe CB, Reifenberger J, Reifenberger G. Mutation analysis of the Ras pathway genes NRAS, HRAS, KRAS and BRAF in glioblastomas. Acta Neuropathol. 2004;108(6):467–70.PubMedCrossRef
38.
go back to reference Scheer M, Leisz S, Sorge E, Storozhuk O, Prell J, Ho I, Harder A. Neurofibromatosis type 1 gene alterations define specific features of a subset of glioblastomas. Int J Mol Sci. 2021;23(1):352.PubMedPubMedCentralCrossRef Scheer M, Leisz S, Sorge E, Storozhuk O, Prell J, Ho I, Harder A. Neurofibromatosis type 1 gene alterations define specific features of a subset of glioblastomas. Int J Mol Sci. 2021;23(1):352.PubMedPubMedCentralCrossRef
39.
go back to reference Hiatt KK, Ingram DA, Zhang Y, Bollag G, Clapp DW. Neurofibromin GTPase-activating protein-related domains restore normal growth in Nf1-/- cells. J Biol Chem. 2001;276(10):7240–5.PubMedCrossRef Hiatt KK, Ingram DA, Zhang Y, Bollag G, Clapp DW. Neurofibromin GTPase-activating protein-related domains restore normal growth in Nf1-/- cells. J Biol Chem. 2001;276(10):7240–5.PubMedCrossRef
40.
go back to reference Bloomfield G, Traynor D, Sander SP, Veltman DM, Pachebat JA, Kay RR. Neurofibromin controls macropinocytosis and phagocytosis in Dictyostelium. eLife. 2015;4:e04940.PubMedCentralCrossRef Bloomfield G, Traynor D, Sander SP, Veltman DM, Pachebat JA, Kay RR. Neurofibromin controls macropinocytosis and phagocytosis in Dictyostelium. eLife. 2015;4:e04940.PubMedCentralCrossRef
41.
go back to reference Ghoshal P, Singla B, Lin H, Cherian-Shaw M, Tritz R, Padgett CA, Hudson F, Zhang H, et al. Loss of GTPase activating protein neurofibromin stimulates paracrine cell communication via macropinocytosis. Redox Biol. 2019;27:101224.PubMedPubMedCentralCrossRef Ghoshal P, Singla B, Lin H, Cherian-Shaw M, Tritz R, Padgett CA, Hudson F, Zhang H, et al. Loss of GTPase activating protein neurofibromin stimulates paracrine cell communication via macropinocytosis. Redox Biol. 2019;27:101224.PubMedPubMedCentralCrossRef
42.
go back to reference Verma AK, Bharti PS, Rafat S, Bhatt D, Goyal Y, Pandey KK, Ranjan S, Almatrood, SA, et al. Autophagy paradox of cancer: role, regulation, and duality. Oxid Med Cell Longev. 2021;2021:8832541.PubMedPubMedCentralCrossRef Verma AK, Bharti PS, Rafat S, Bhatt D, Goyal Y, Pandey KK, Ranjan S, Almatrood, SA, et al. Autophagy paradox of cancer: role, regulation, and duality. Oxid Med Cell Longev. 2021;2021:8832541.PubMedPubMedCentralCrossRef
43.
go back to reference Wagenknecht B, Glaser T, Naumann U, Kügler S, Isenmann S, Bähr M, Korneluk R, Liston P, Weller M. Expression and biological activity of X-linked inhibitor of apoptosis (XIAP) in human malignant glioma. Cell Death Differ. 1999;6(4):370–6.PubMedCrossRef Wagenknecht B, Glaser T, Naumann U, Kügler S, Isenmann S, Bähr M, Korneluk R, Liston P, Weller M. Expression and biological activity of X-linked inhibitor of apoptosis (XIAP) in human malignant glioma. Cell Death Differ. 1999;6(4):370–6.PubMedCrossRef
44.
go back to reference Jiang Z, Zheng X, Rich KM. Down-regulation of Bcl-2 and Bcl-xL expression with bispecific antisense treatment in glioblastoma cell lines induce cell death. J Neurochem. 2003;84(2):273–81.PubMedCrossRef Jiang Z, Zheng X, Rich KM. Down-regulation of Bcl-2 and Bcl-xL expression with bispecific antisense treatment in glioblastoma cell lines induce cell death. J Neurochem. 2003;84(2):273–81.PubMedCrossRef
45.
go back to reference Escamilla-Ramírez A, Castillo-Rodríguez RA, Zavala-Vega S, Jimenez-Farfan D, Anaya-Rubio I, Briseño E, Palencia G, Guevara P, et al. Autophagy as a potential therapy for malignant glioma. Pharmaceuticals. 2020;13(7):156.PubMedCentralCrossRef Escamilla-Ramírez A, Castillo-Rodríguez RA, Zavala-Vega S, Jimenez-Farfan D, Anaya-Rubio I, Briseño E, Palencia G, Guevara P, et al. Autophagy as a potential therapy for malignant glioma. Pharmaceuticals. 2020;13(7):156.PubMedCentralCrossRef
46.
go back to reference Ryskalin L, Gaglione A, Limanaqi F, Biagioni F, Familiari P, Frati A, Esposito V, Fornai F. The autophagy status of cancer stem cells in gliobastoma multiforme: from cancer promotion to therapeutic strategies. Int J Mol Sci. 2019; 20(15):3824.PubMedCentralCrossRef Ryskalin L, Gaglione A, Limanaqi F, Biagioni F, Familiari P, Frati A, Esposito V, Fornai F. The autophagy status of cancer stem cells in gliobastoma multiforme: from cancer promotion to therapeutic strategies. Int J Mol Sci. 2019; 20(15):3824.PubMedCentralCrossRef
47.
go back to reference Song S, Zhang Y, Ding T, Ji N, Zhao H. The dual role of macropinocytosis in cancers: promoting growth and inducing methuosis to participate in anticancer therapies as targets. Front Oncol. 2021;10:570108.PubMedPubMedCentralCrossRef Song S, Zhang Y, Ding T, Ji N, Zhao H. The dual role of macropinocytosis in cancers: promoting growth and inducing methuosis to participate in anticancer therapies as targets. Front Oncol. 2021;10:570108.PubMedPubMedCentralCrossRef
48.
go back to reference Li YX, Pang HB. Macropinocytosis as a cell entry route for peptide-functionalized and bystander nanoparticles. J Control Release. 2021;329:1222–30.PubMedCrossRef Li YX, Pang HB. Macropinocytosis as a cell entry route for peptide-functionalized and bystander nanoparticles. J Control Release. 2021;329:1222–30.PubMedCrossRef
Metadata
Title
The autophagy inducer trehalose stimulates macropinocytosis in NF1-deficient glioblastoma cells
Authors
Barbara Del Bello
Alessandra Gamberucci
Paola Marcolongo
Emilia Maellaro
Publication date
01-12-2022
Publisher
BioMed Central
Published in
Cancer Cell International / Issue 1/2022
Electronic ISSN: 1475-2867
DOI
https://doi.org/10.1186/s12935-022-02652-5

Other articles of this Issue 1/2022

Cancer Cell International 1/2022 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine