Skip to main content
Top
Published in: Cancer Cell International 1/2024

Open Access 01-12-2024 | Glioblastoma | Review

New insights into targeted therapy of glioblastoma using smart nanoparticles

Authors: Habib Ghaznavi, Reza Afzalipour, Samideh Khoei, Saman Sargazi, Sakine Shirvalilou, Roghayeh Sheervalilou

Published in: Cancer Cell International | Issue 1/2024

Login to get access

Abstract

In recent times, the intersection of nanotechnology and biomedical research has given rise to nanobiomedicine, a captivating realm that holds immense promise for revolutionizing diagnostic and therapeutic approaches in the field of cancer. This innovative fusion of biology, medicine, and nanotechnology aims to create diagnostic and therapeutic agents with enhanced safety and efficacy, particularly in the realm of theranostics for various malignancies. Diverse inorganic, organic, and hybrid organic–inorganic nanoparticles, each possessing unique properties, have been introduced into this domain. This review seeks to highlight the latest strides in targeted glioblastoma therapy by focusing on the application of inorganic smart nanoparticles. Beyond exploring the general role of nanotechnology in medical applications, this review delves into groundbreaking strategies for glioblastoma treatment, showcasing the potential of smart nanoparticles through in vitro studies, in vivo investigations, and ongoing clinical trials.
Literature
1.
go back to reference Barnholtz-Sloan JS, Ostrom QT, Cote D. Epidemiology of brain tumors. Neurol Clin. 2018;36(3):395–419.PubMedCrossRef Barnholtz-Sloan JS, Ostrom QT, Cote D. Epidemiology of brain tumors. Neurol Clin. 2018;36(3):395–419.PubMedCrossRef
2.
go back to reference Ostrom QT, Cioffi G, Waite K, Kruchko C, Barnholtz-Sloan JS. CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2014–2018. Neuro-oncology. 2021;23(Supplement_3):iii1–iii105. Ostrom QT, Cioffi G, Waite K, Kruchko C, Barnholtz-Sloan JS. CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2014–2018. Neuro-oncology. 2021;23(Supplement_3):iii1–iii105.
4.
go back to reference Louis DN, Perry A, Wesseling P, Brat DJ, Cree IA, Figarella-Branger D, Hawkins C, Ng H, Pfister SM, Reifenberger G. The 2021 WHO classification of tumors of the central nervous system: a summary. Neurooncology. 2021;23(8):1231–51. Louis DN, Perry A, Wesseling P, Brat DJ, Cree IA, Figarella-Branger D, Hawkins C, Ng H, Pfister SM, Reifenberger G. The 2021 WHO classification of tumors of the central nervous system: a summary. Neurooncology. 2021;23(8):1231–51.
5.
go back to reference Lu G, Wang X, Li F, Wang S, Zhao J, Wang J, Liu J, Lyu C, Ye P, Tan H. Engineered biomimetic nanoparticles achieve targeted delivery and efficient metabolism-based synergistic therapy against glioblastoma. Nat Commun. 2022;13(1):1–17. Lu G, Wang X, Li F, Wang S, Zhao J, Wang J, Liu J, Lyu C, Ye P, Tan H. Engineered biomimetic nanoparticles achieve targeted delivery and efficient metabolism-based synergistic therapy against glioblastoma. Nat Commun. 2022;13(1):1–17.
6.
go back to reference Akhter MH, Rizwanullah M, Ahmad J, Amin S, Ahmad MZ, Minhaj MA, Mujtaba MA, Ali J. Molecular targets and nanoparticulate systems designed for the improved therapeutic intervention in glioblastoma multiforme. Drug Res. 2021;71(03):122–37.CrossRef Akhter MH, Rizwanullah M, Ahmad J, Amin S, Ahmad MZ, Minhaj MA, Mujtaba MA, Ali J. Molecular targets and nanoparticulate systems designed for the improved therapeutic intervention in glioblastoma multiforme. Drug Res. 2021;71(03):122–37.CrossRef
7.
go back to reference Janjua TI, Rewatkar P, Ahmed-Cox A, Saeed I, Mansfeld FM, Kulshreshtha R, Kumeria T, Ziegler DS, Kavallaris M, Mazzieri R. Frontiers in the treatment of glioblastoma: past, present and emerging. Adv Drug Deliv Rev. 2021;171:108–38.PubMedCrossRef Janjua TI, Rewatkar P, Ahmed-Cox A, Saeed I, Mansfeld FM, Kulshreshtha R, Kumeria T, Ziegler DS, Kavallaris M, Mazzieri R. Frontiers in the treatment of glioblastoma: past, present and emerging. Adv Drug Deliv Rev. 2021;171:108–38.PubMedCrossRef
8.
go back to reference Tan AC, Ashley DM, López GY, Malinzak M, Friedman HS, Khasraw M. Management of glioblastoma: state of the art and future directions. Cancer J Clin. 2020;70(4):299–312.CrossRef Tan AC, Ashley DM, López GY, Malinzak M, Friedman HS, Khasraw M. Management of glioblastoma: state of the art and future directions. Cancer J Clin. 2020;70(4):299–312.CrossRef
9.
go back to reference Cote DJ, Ostrom QT. Epidemiology and etiology of glioblastoma. Precision Mol Pathol Glioblastoma. 2021:3–19. Cote DJ, Ostrom QT. Epidemiology and etiology of glioblastoma. Precision Mol Pathol Glioblastoma. 2021:3–19.
10.
go back to reference Ostrom QT, Gittleman H, Liao P, Vecchione-Koval T, Wolinsky Y, Kruchko C, Barnholtz-Sloan JS. CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2010–2014. Neurooncology. 2017;19(suppl5):v1–88. Ostrom QT, Gittleman H, Liao P, Vecchione-Koval T, Wolinsky Y, Kruchko C, Barnholtz-Sloan JS. CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2010–2014. Neurooncology. 2017;19(suppl5):v1–88.
11.
go back to reference Walker EV, Davis FG, Bryant Heather CfaSALRSLWRKCSJGM-CPJMBB-SJTDKMHH. : Malignant primary brain and other central nervous system tumors diagnosed in Canada from 2009 to 2013. Neuro-oncology. 2019;21(3):360–369. Walker EV, Davis FG, Bryant Heather CfaSALRSLWRKCSJGM-CPJMBB-SJTDKMHH. : Malignant primary brain and other central nervous system tumors diagnosed in Canada from 2009 to 2013. Neuro-oncology. 2019;21(3):360–369.
12.
go back to reference Fabbro-Peray P, Zouaoui S, Darlix A, Fabbro M, Pallud J, Rigau V, Mathieu-Daude H, Bessaoud F, Bauchet F, Riondel A. Association of patterns of care, prognostic factors, and use of radiotherapy–temozolomide therapy with survival in patients with newly diagnosed glioblastoma: a French national population-based study. J Neurooncol. 2019;142(1):91–101.PubMedCrossRef Fabbro-Peray P, Zouaoui S, Darlix A, Fabbro M, Pallud J, Rigau V, Mathieu-Daude H, Bessaoud F, Bauchet F, Riondel A. Association of patterns of care, prognostic factors, and use of radiotherapy–temozolomide therapy with survival in patients with newly diagnosed glioblastoma: a French national population-based study. J Neurooncol. 2019;142(1):91–101.PubMedCrossRef
13.
go back to reference Gittleman H, Boscia A, Ostrom QT, Truitt G, Fritz Y, Kruchko C, Barnholtz-Sloan JS. Survivorship in adults with malignant brain and other central nervous system tumor from 2000–2014. Neuro-oncology. 2018;20(suppl_7):vii6’vii16. Gittleman H, Boscia A, Ostrom QT, Truitt G, Fritz Y, Kruchko C, Barnholtz-Sloan JS. Survivorship in adults with malignant brain and other central nervous system tumor from 2000–2014. Neuro-oncology. 2018;20(suppl_7):vii6’vii16.
14.
go back to reference Brodbelt A, Greenberg D, Winters T, Williams M, Vernon S, Collins VP. Glioblastoma in England: 2007–2011. Eur J Cancer. 2015;51(4):533–42.PubMedCrossRef Brodbelt A, Greenberg D, Winters T, Williams M, Vernon S, Collins VP. Glioblastoma in England: 2007–2011. Eur J Cancer. 2015;51(4):533–42.PubMedCrossRef
15.
go back to reference Simińska D, Korbecki J, Kojder K, Kapczuk P, Fabiańska M, Gutowska I, Machoy-Mokrzyńska A, Chlubek D, Baranowska-Bosiacka I. Epidemiology of anthropometric factors in glioblastoma multiforme—literature review. Brain Sci. 2021;11(1):116.PubMedPubMedCentralCrossRef Simińska D, Korbecki J, Kojder K, Kapczuk P, Fabiańska M, Gutowska I, Machoy-Mokrzyńska A, Chlubek D, Baranowska-Bosiacka I. Epidemiology of anthropometric factors in glioblastoma multiforme—literature review. Brain Sci. 2021;11(1):116.PubMedPubMedCentralCrossRef
16.
go back to reference Cuschieri A, Pisani R, Agius S. From trauma to tumour: exploring post-TBI glioblastoma patient characteristics. World Neurosurg. 2024. Cuschieri A, Pisani R, Agius S. From trauma to tumour: exploring post-TBI glioblastoma patient characteristics. World Neurosurg. 2024.
17.
go back to reference Louis DN, Perry A, Reifenberger G, Von Deimling A, Figarella-Branger D, Cavenee WK, Ohgaki H, Wiestler OD, Kleihues P, Ellison DW. The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol. 2016;131(6):803–20.PubMedCrossRef Louis DN, Perry A, Reifenberger G, Von Deimling A, Figarella-Branger D, Cavenee WK, Ohgaki H, Wiestler OD, Kleihues P, Ellison DW. The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol. 2016;131(6):803–20.PubMedCrossRef
18.
go back to reference Verhaak RG, Hoadley KA, Purdom E, Wang V, Qi Y, Wilkerson MD, Miller CR, Ding L, Golub T, Mesirov JP. Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell. 2010;17(1):98–110.PubMedPubMedCentralCrossRef Verhaak RG, Hoadley KA, Purdom E, Wang V, Qi Y, Wilkerson MD, Miller CR, Ding L, Golub T, Mesirov JP. Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell. 2010;17(1):98–110.PubMedPubMedCentralCrossRef
19.
go back to reference Wang Q, Hu B, Hu X, Kim H, Squatrito M, Scarpace L, DeCarvalho AC, Lyu S, Li P, Li Y. Tumor evolution of glioma-intrinsic gene expression subtypes associates with immunological changes in the microenvironment. Cancer Cell. 2017;32(1):42–56. e46.PubMedPubMedCentralCrossRef Wang Q, Hu B, Hu X, Kim H, Squatrito M, Scarpace L, DeCarvalho AC, Lyu S, Li P, Li Y. Tumor evolution of glioma-intrinsic gene expression subtypes associates with immunological changes in the microenvironment. Cancer Cell. 2017;32(1):42–56. e46.PubMedPubMedCentralCrossRef
20.
go back to reference Gonzalez Castro LN, Wesseling P. The cIMPACT-NOW updates and their significance to current neuro-oncology practice. Neuro-Oncology Pract. 2021;8(1):4–10.CrossRef Gonzalez Castro LN, Wesseling P. The cIMPACT-NOW updates and their significance to current neuro-oncology practice. Neuro-Oncology Pract. 2021;8(1):4–10.CrossRef
21.
go back to reference Czarnywojtek A, Borowska M, Dyrka K, Van Gool S, Sawicka-Gutaj N, Moskal J, Kościński J, Graczyk P, Hałas T, Lewandowska AM. Glioblastoma multiforme: the latest diagnostics and treatment techniques. Pharmacology. 2023;108(5):423–31.PubMedCrossRef Czarnywojtek A, Borowska M, Dyrka K, Van Gool S, Sawicka-Gutaj N, Moskal J, Kościński J, Graczyk P, Hałas T, Lewandowska AM. Glioblastoma multiforme: the latest diagnostics and treatment techniques. Pharmacology. 2023;108(5):423–31.PubMedCrossRef
23.
go back to reference Sheervalilou R, Shirvaliloo S, Fekri Aval S, Khamaneh AM, Sharifi A, Ansarin K, Zarghami N. A new insight on reciprocal relationship between microRNA expression and epigenetic modifications in human lung cancer. Tumor Biology. 2017;39(5):1010428317695032.PubMedCrossRef Sheervalilou R, Shirvaliloo S, Fekri Aval S, Khamaneh AM, Sharifi A, Ansarin K, Zarghami N. A new insight on reciprocal relationship between microRNA expression and epigenetic modifications in human lung cancer. Tumor Biology. 2017;39(5):1010428317695032.PubMedCrossRef
24.
go back to reference Wu W, Klockow JL, Zhang M, Lafortune F, Chang E, Jin L, Wu Y, Daldrup-Link HE. Glioblastoma multiforme (GBM): an overview of current therapies and mechanisms of resistance. Pharmacol Res. 2021;171:105780.PubMedPubMedCentralCrossRef Wu W, Klockow JL, Zhang M, Lafortune F, Chang E, Jin L, Wu Y, Daldrup-Link HE. Glioblastoma multiforme (GBM): an overview of current therapies and mechanisms of resistance. Pharmacol Res. 2021;171:105780.PubMedPubMedCentralCrossRef
25.
go back to reference Ulutin C, Fayda M, Aksu G, Cetinayak O, Kuzhan O, Ors F, Beyzadeoglu M. Primary glioblastoma multiforme in younger patients: a single-institution experience. Tumori J. 2006;92(5):407–11.CrossRef Ulutin C, Fayda M, Aksu G, Cetinayak O, Kuzhan O, Ors F, Beyzadeoglu M. Primary glioblastoma multiforme in younger patients: a single-institution experience. Tumori J. 2006;92(5):407–11.CrossRef
26.
go back to reference Jung C, Foerch C, Schänzer A, Heck A, Plate K, Seifert V, Steinmetz H, Raabe A, Sitzer M. Serum GFAP is a diagnostic marker for glioblastoma multiforme. Brain. 2007;130(12):3336–41.PubMedCrossRef Jung C, Foerch C, Schänzer A, Heck A, Plate K, Seifert V, Steinmetz H, Raabe A, Sitzer M. Serum GFAP is a diagnostic marker for glioblastoma multiforme. Brain. 2007;130(12):3336–41.PubMedCrossRef
27.
go back to reference Stupp R, Hegi ME, Gilbert MR, Chakravarti A. Chemoradiotherapy in malignant glioma: standard of care and future directions. J Clin Oncol. 2007;25(26):4127–36.PubMedCrossRef Stupp R, Hegi ME, Gilbert MR, Chakravarti A. Chemoradiotherapy in malignant glioma: standard of care and future directions. J Clin Oncol. 2007;25(26):4127–36.PubMedCrossRef
28.
go back to reference Liu S, Shi W, Zhao Q, Zheng Z, Liu Z, Meng L, Dong L, Jiang X. Progress and prospect in tumor treating fields treatment of glioblastoma. Biomed Pharmacother. 2021;141:111810.PubMedCrossRef Liu S, Shi W, Zhao Q, Zheng Z, Liu Z, Meng L, Dong L, Jiang X. Progress and prospect in tumor treating fields treatment of glioblastoma. Biomed Pharmacother. 2021;141:111810.PubMedCrossRef
29.
30.
go back to reference Hernández-Pedro NY, Rangel-López E, Magaña-Maldonado R, de la Cruz VP, Santamaría, del Angel A, Pineda B, Sotelo J. Application of nanoparticles on diagnosis and therapy in gliomas. BioMed Res Int. 2013;2013. Hernández-Pedro NY, Rangel-López E, Magaña-Maldonado R, de la Cruz VP, Santamaría, del Angel A, Pineda B, Sotelo J. Application of nanoparticles on diagnosis and therapy in gliomas. BioMed Res Int. 2013;2013.
31.
go back to reference Neska-Matuszewska M, Bladowska J, Sąsiadek M, Zimny A. Differentiation of glioblastoma multiforme, metastases and primary central nervous system lymphomas using multiparametric perfusion and diffusion MR imaging of a tumor core and a peritumoral zone—searching for a practical approach. PLoS ONE. 2018;13(1):e0191341.PubMedPubMedCentralCrossRef Neska-Matuszewska M, Bladowska J, Sąsiadek M, Zimny A. Differentiation of glioblastoma multiforme, metastases and primary central nervous system lymphomas using multiparametric perfusion and diffusion MR imaging of a tumor core and a peritumoral zone—searching for a practical approach. PLoS ONE. 2018;13(1):e0191341.PubMedPubMedCentralCrossRef
32.
go back to reference Shergalis A, Bankhead A, Luesakul U, Muangsin N, Neamati N. Current challenges and opportunities in treating glioblastoma. Pharmacol Rev. 2018;70(3):412–45.PubMedPubMedCentralCrossRef Shergalis A, Bankhead A, Luesakul U, Muangsin N, Neamati N. Current challenges and opportunities in treating glioblastoma. Pharmacol Rev. 2018;70(3):412–45.PubMedPubMedCentralCrossRef
33.
go back to reference Sheervalilou R, Shirvaliloo M, Sargazi S, Ghaznavi H. Recent advances in iron oxide nanoparticles for brain cancer theranostics: from in vitro to clinical applications. Expert Opin Drug Deliv. 2021;18(7):949–77.PubMedCrossRef Sheervalilou R, Shirvaliloo M, Sargazi S, Ghaznavi H. Recent advances in iron oxide nanoparticles for brain cancer theranostics: from in vitro to clinical applications. Expert Opin Drug Deliv. 2021;18(7):949–77.PubMedCrossRef
35.
go back to reference Ljubimova JY, Sun T, Mashouf L, Ljubimov AV, Israel LL, Ljubimov VA, Falahatian V, Holler E. Covalent nano delivery systems for selective imaging and treatment of brain tumors. Adv Drug Deliv Rev. 2017;113:177–200.PubMedPubMedCentralCrossRef Ljubimova JY, Sun T, Mashouf L, Ljubimov AV, Israel LL, Ljubimov VA, Falahatian V, Holler E. Covalent nano delivery systems for selective imaging and treatment of brain tumors. Adv Drug Deliv Rev. 2017;113:177–200.PubMedPubMedCentralCrossRef
36.
go back to reference Danhier F. To exploit the tumor microenvironment: since the EPR effect fails in the clinic, what is the future of nanomedicine? J Controlled Release. 2016;244:108–21.CrossRef Danhier F. To exploit the tumor microenvironment: since the EPR effect fails in the clinic, what is the future of nanomedicine? J Controlled Release. 2016;244:108–21.CrossRef
37.
go back to reference Urbantat RM, Jelgersma C, Brandenburg S, Nieminen-Kelhä M, Kremenetskaia I, Zollfrank J, Mueller S, Rubarth K, Koch A, Vajkoczy P. Tumor-associated microglia/macrophages as a predictor for survival in glioblastoma and temozolomide-induced changes in CXCR2 signaling with new resistance overcoming strategy by combination therapy. Int J Mol Sci. 2021;22(20):11180.PubMedPubMedCentralCrossRef Urbantat RM, Jelgersma C, Brandenburg S, Nieminen-Kelhä M, Kremenetskaia I, Zollfrank J, Mueller S, Rubarth K, Koch A, Vajkoczy P. Tumor-associated microglia/macrophages as a predictor for survival in glioblastoma and temozolomide-induced changes in CXCR2 signaling with new resistance overcoming strategy by combination therapy. Int J Mol Sci. 2021;22(20):11180.PubMedPubMedCentralCrossRef
38.
go back to reference Zhao M, van Straten D, Broekman ML, Préat V, Schiffelers RM. Nanocarrier-based drug combination therapy for glioblastoma. Theranostics. 2020;10(3):1355.PubMedPubMedCentralCrossRef Zhao M, van Straten D, Broekman ML, Préat V, Schiffelers RM. Nanocarrier-based drug combination therapy for glioblastoma. Theranostics. 2020;10(3):1355.PubMedPubMedCentralCrossRef
39.
go back to reference Chinot OL, Wick W, Mason W, Henriksson R, Saran F, Nishikawa R, Carpentier AF, Hoang-Xuan K, Kavan P, Cernea D. Bevacizumab plus radiotherapy–temozolomide for newly diagnosed glioblastoma. N Engl J Med. 2014;370(8):709–22.PubMedCrossRef Chinot OL, Wick W, Mason W, Henriksson R, Saran F, Nishikawa R, Carpentier AF, Hoang-Xuan K, Kavan P, Cernea D. Bevacizumab plus radiotherapy–temozolomide for newly diagnosed glioblastoma. N Engl J Med. 2014;370(8):709–22.PubMedCrossRef
40.
go back to reference Cheng Z, Li M, Dey R, Chen Y. Nanomaterials for cancer therapy: current progress and perspectives. J Hematol Oncol. 2021;14(1):1–27.CrossRef Cheng Z, Li M, Dey R, Chen Y. Nanomaterials for cancer therapy: current progress and perspectives. J Hematol Oncol. 2021;14(1):1–27.CrossRef
41.
42.
go back to reference Ozdemir-Kaynak E, Qutub AA, Yesil-Celiktas O. Advances in glioblastoma multiforme treatment: new models for nanoparticle therapy. Front Physiol. 2018;9:170.PubMedPubMedCentralCrossRef Ozdemir-Kaynak E, Qutub AA, Yesil-Celiktas O. Advances in glioblastoma multiforme treatment: new models for nanoparticle therapy. Front Physiol. 2018;9:170.PubMedPubMedCentralCrossRef
43.
go back to reference Gevertz JL, Gillies GT, Torquato S. Simulating tumor growth in confined heterogeneous environments. Phys Biol. 2008;5(3):036010.PubMedCrossRef Gevertz JL, Gillies GT, Torquato S. Simulating tumor growth in confined heterogeneous environments. Phys Biol. 2008;5(3):036010.PubMedCrossRef
44.
go back to reference Escribá PV, Busquets X, Inokuchi J-i, Balogh G, Török Z, Horváth I, Harwood JL, Vígh L. Membrane lipid therapy: modulation of the cell membrane composition and structure as a molecular base for drug discovery and new disease treatment. Prog Lipid Res. 2015;59:38–53.PubMedCrossRef Escribá PV, Busquets X, Inokuchi J-i, Balogh G, Török Z, Horváth I, Harwood JL, Vígh L. Membrane lipid therapy: modulation of the cell membrane composition and structure as a molecular base for drug discovery and new disease treatment. Prog Lipid Res. 2015;59:38–53.PubMedCrossRef
45.
go back to reference Watanabe Y, Dahlman EL, Leder KZ, Hui SK. A mathematical model of tumor growth and its response to single irradiation. Theoretical Biology Med Modelling. 2016;13:1–20.CrossRef Watanabe Y, Dahlman EL, Leder KZ, Hui SK. A mathematical model of tumor growth and its response to single irradiation. Theoretical Biology Med Modelling. 2016;13:1–20.CrossRef
46.
go back to reference Gevertz JL. Computational modeling of tumor response to vascular-targeting therapies—part I: validation. Comput Math Method M. 2011;2011. Gevertz JL. Computational modeling of tumor response to vascular-targeting therapies—part I: validation. Comput Math Method M. 2011;2011.
47.
go back to reference Alfonso JCL, Köhn-Luque A, Stylianopoulos T, Feuerhake F, Deutsch A, Hatzikirou H. Why one-size-fits-all vaso-modulatory interventions fail to control glioma invasion: in silico insights. Sci Rep. 2016;6(1):37283.PubMedPubMedCentralCrossRef Alfonso JCL, Köhn-Luque A, Stylianopoulos T, Feuerhake F, Deutsch A, Hatzikirou H. Why one-size-fits-all vaso-modulatory interventions fail to control glioma invasion: in silico insights. Sci Rep. 2016;6(1):37283.PubMedPubMedCentralCrossRef
48.
go back to reference Lauzon M-A, Daviau A, Marcos B, Faucheux N. Nanoparticle-mediated growth factor delivery systems: a new way to treat Alzheimer’s disease. J Controlled Release. 2015;206:187–205.CrossRef Lauzon M-A, Daviau A, Marcos B, Faucheux N. Nanoparticle-mediated growth factor delivery systems: a new way to treat Alzheimer’s disease. J Controlled Release. 2015;206:187–205.CrossRef
49.
go back to reference Wang Z, Gao L, Guo X, Feng C, Lian W, Deng K, Xing B. Development and validation of a nomogram with an autophagy-related gene signature for predicting survival in patients with glioblastoma. Aging. 2019;11(24):12246.PubMedPubMedCentralCrossRef Wang Z, Gao L, Guo X, Feng C, Lian W, Deng K, Xing B. Development and validation of a nomogram with an autophagy-related gene signature for predicting survival in patients with glioblastoma. Aging. 2019;11(24):12246.PubMedPubMedCentralCrossRef
50.
go back to reference Sheervalilou R, Khamaneh AM, Sharifi A, Nazemiyeh M, Taghizadieh A, Ansarin K, Zarghami N. Using miR-10b, miR-1 and miR-30a expression profiles of bronchoalveolar lavage and sputum for early detection of non-small cell lung cancer. Biomed Pharmacother. 2017;88:1173–82.CrossRef Sheervalilou R, Khamaneh AM, Sharifi A, Nazemiyeh M, Taghizadieh A, Ansarin K, Zarghami N. Using miR-10b, miR-1 and miR-30a expression profiles of bronchoalveolar lavage and sputum for early detection of non-small cell lung cancer. Biomed Pharmacother. 2017;88:1173–82.CrossRef
53.
go back to reference Chaturvedi VK, Singh A, Singh VK, Singh MP. Cancer nanotechnology: a new revolution for cancer diagnosis and therapy. Curr Drug Metab. 2019;20(6):416–29.PubMedCrossRef Chaturvedi VK, Singh A, Singh VK, Singh MP. Cancer nanotechnology: a new revolution for cancer diagnosis and therapy. Curr Drug Metab. 2019;20(6):416–29.PubMedCrossRef
54.
go back to reference Zottel A, Videtič Paska A, Jovčevska I. Nanotechnology meets oncology: nanomaterials in brain cancer research, diagnosis and therapy. Materials. 2019;12(10):1588.PubMedPubMedCentralCrossRef Zottel A, Videtič Paska A, Jovčevska I. Nanotechnology meets oncology: nanomaterials in brain cancer research, diagnosis and therapy. Materials. 2019;12(10):1588.PubMedPubMedCentralCrossRef
55.
go back to reference Almanghadim HG, Nourollahzadeh Z, Khademi NS, Tezerjani MD, Sehrig FZ, Estelami N, Shirvaliloo M, Sheervalilou R, Sargazi S. Application of nanoparticles in cancer therapy with an emphasis on cell cycle. Cell Biol Int. 2021;45(10):1989–98.PubMedCrossRef Almanghadim HG, Nourollahzadeh Z, Khademi NS, Tezerjani MD, Sehrig FZ, Estelami N, Shirvaliloo M, Sheervalilou R, Sargazi S. Application of nanoparticles in cancer therapy with an emphasis on cell cycle. Cell Biol Int. 2021;45(10):1989–98.PubMedCrossRef
57.
go back to reference Jayasinghe MK, Tan M, Peng B, Yang Y, Sethi G, Pirisinu M, Le MT. New approaches in extracellular vesicle engineering for improving the efficacy of anti-cancer therapies. In: Seminars in Cancer Biology: 2021. Elsevier: 62–78. Jayasinghe MK, Tan M, Peng B, Yang Y, Sethi G, Pirisinu M, Le MT. New approaches in extracellular vesicle engineering for improving the efficacy of anti-cancer therapies. In: Seminars in Cancer Biology: 2021. Elsevier: 62–78.
58.
go back to reference Shahraki K, Boroumand PG, Lotfi H, Radnia F, Shahriari H, Sargazi S, Mortazavi SS, Shirvaliloo M, Shirvalilou S, Sheervalilou R. An update in the applications of exosomes in cancer theranostics: from research to clinical trials. J Cancer Res Clin Oncol. 2023:1–30. Shahraki K, Boroumand PG, Lotfi H, Radnia F, Shahriari H, Sargazi S, Mortazavi SS, Shirvaliloo M, Shirvalilou S, Sheervalilou R. An update in the applications of exosomes in cancer theranostics: from research to clinical trials. J Cancer Res Clin Oncol. 2023:1–30.
59.
go back to reference Peer D, Karp J, Hong S, Farokhzad O, Margalit R, Langer R. Nanocarriers as an emerging platform for cancer therapy. Nat Nanotech. 2007;2(2007):751–759. Peer D, Karp J, Hong S, Farokhzad O, Margalit R, Langer R. Nanocarriers as an emerging platform for cancer therapy. Nat Nanotech. 2007;2(2007):751–759.
60.
go back to reference Gaillard PJ, Appeldoorn CC, Rip J, Dorland R, van der Pol SM, Kooij G, de Vries HE, Reijerkerk A. Enhanced brain delivery of liposomal methylprednisolone improved therapeutic efficacy in a model of neuroinflammation. J Controlled Release. 2012;164(3):364–9.CrossRef Gaillard PJ, Appeldoorn CC, Rip J, Dorland R, van der Pol SM, Kooij G, de Vries HE, Reijerkerk A. Enhanced brain delivery of liposomal methylprednisolone improved therapeutic efficacy in a model of neuroinflammation. J Controlled Release. 2012;164(3):364–9.CrossRef
61.
go back to reference Gaillard PJ, Appeldoorn CC, Dorland R, Van Kregten J, Manca F, Vugts DJ, Windhorst B, van Dongen GA, de Vries HE, Maussang D. Pharmacokinetics, brain delivery, and efficacy in brain tumor-bearing mice of glutathione pegylated liposomal doxorubicin (2B3-101). PLoS ONE. 2014;9(1):e82331.PubMedPubMedCentralCrossRef Gaillard PJ, Appeldoorn CC, Dorland R, Van Kregten J, Manca F, Vugts DJ, Windhorst B, van Dongen GA, de Vries HE, Maussang D. Pharmacokinetics, brain delivery, and efficacy in brain tumor-bearing mice of glutathione pegylated liposomal doxorubicin (2B3-101). PLoS ONE. 2014;9(1):e82331.PubMedPubMedCentralCrossRef
62.
64.
go back to reference Zois CE, Harris AL. Glycogen metabolism has a key role in the cancer microenvironment and provides new targets for cancer therapy. J Mol Med. 2016;94(2):137–54.PubMedCrossRef Zois CE, Harris AL. Glycogen metabolism has a key role in the cancer microenvironment and provides new targets for cancer therapy. J Mol Med. 2016;94(2):137–54.PubMedCrossRef
65.
go back to reference Song W, Anselmo AC, Huang L. Nanotechnology intervention of the microbiome for cancer therapy. Nat Nanotechnol. 2019;14(12):1093–103.PubMedCrossRef Song W, Anselmo AC, Huang L. Nanotechnology intervention of the microbiome for cancer therapy. Nat Nanotechnol. 2019;14(12):1093–103.PubMedCrossRef
66.
go back to reference Telrandhe R. Nanotechnology for cancer therapy: recent developments. Eur J Pharm Med Res. 2016;3(11):284–94. Telrandhe R. Nanotechnology for cancer therapy: recent developments. Eur J Pharm Med Res. 2016;3(11):284–94.
67.
go back to reference Farokhzad OC, Jon S, Khademhosseini A, Tran T-NT, LaVan DA, Langer R. Nanoparticle-aptamer bioconjugates: a new approach for targeting prostate cancer cells. Cancer Res. 2004;64(21):7668–72.PubMedCrossRef Farokhzad OC, Jon S, Khademhosseini A, Tran T-NT, LaVan DA, Langer R. Nanoparticle-aptamer bioconjugates: a new approach for targeting prostate cancer cells. Cancer Res. 2004;64(21):7668–72.PubMedCrossRef
68.
go back to reference Karabeber H, Huang R, Iacono P, Samii JM, Pitter K, Holland EC, Kircher MF. Guiding brain tumor resection using surface-enhanced Raman scattering nanoparticles and a hand-held Raman scanner. ACS Nano. 2014;8(10):9755–66.PubMedPubMedCentralCrossRef Karabeber H, Huang R, Iacono P, Samii JM, Pitter K, Holland EC, Kircher MF. Guiding brain tumor resection using surface-enhanced Raman scattering nanoparticles and a hand-held Raman scanner. ACS Nano. 2014;8(10):9755–66.PubMedPubMedCentralCrossRef
69.
go back to reference Rutka JT, Kim B, Etame A, Diaz RJ. Nanosurgical resection of malignant brain tumors: beyond the cutting edge. ACS Nano. 2014;8(10):9716–22.PubMedCrossRef Rutka JT, Kim B, Etame A, Diaz RJ. Nanosurgical resection of malignant brain tumors: beyond the cutting edge. ACS Nano. 2014;8(10):9716–22.PubMedCrossRef
70.
go back to reference Chatterjee P, Kumar S. Current developments in nanotechnology for cancer treatment. Mater Today: Proc. 2022;48:1754–8. Chatterjee P, Kumar S. Current developments in nanotechnology for cancer treatment. Mater Today: Proc. 2022;48:1754–8.
71.
go back to reference Martin F, Melnik K, West T, Shapiro J, Cohen M, Boiarski A, Ferrari M. Acute toxicity of intravenously administered microfabricated silicon dioxide drug delivery particles in mice: preliminary findings. Drugs R D. 2005;6:71–81.PubMedCrossRef Martin F, Melnik K, West T, Shapiro J, Cohen M, Boiarski A, Ferrari M. Acute toxicity of intravenously administered microfabricated silicon dioxide drug delivery particles in mice: preliminary findings. Drugs R D. 2005;6:71–81.PubMedCrossRef
72.
go back to reference Loo C, Lowery A, Halas N, West J, Drezek R. Immunotargeted nanoshells for integrated cancer imaging and therapy. Nano Lett. 2005;5(4):709–11.PubMedCrossRef Loo C, Lowery A, Halas N, West J, Drezek R. Immunotargeted nanoshells for integrated cancer imaging and therapy. Nano Lett. 2005;5(4):709–11.PubMedCrossRef
73.
go back to reference Green JJ, Chiu E, Leshchiner ES, Shi J, Langer R, Anderson DG. Electrostatic ligand coatings of nanoparticles enable ligand-specific gene delivery to human primary cells. Nano Lett. 2007;7(4):874–9.PubMedCrossRef Green JJ, Chiu E, Leshchiner ES, Shi J, Langer R, Anderson DG. Electrostatic ligand coatings of nanoparticles enable ligand-specific gene delivery to human primary cells. Nano Lett. 2007;7(4):874–9.PubMedCrossRef
74.
go back to reference Pan B, Cui D, Sheng Y, Ozkan C, Gao F, He R, Li Q, Xu P, Huang T. Dendrimer-modified magnetic nanoparticles enhance efficiency of gene delivery system. Cancer Res. 2007;67(17):8156–63.PubMedCrossRef Pan B, Cui D, Sheng Y, Ozkan C, Gao F, He R, Li Q, Xu P, Huang T. Dendrimer-modified magnetic nanoparticles enhance efficiency of gene delivery system. Cancer Res. 2007;67(17):8156–63.PubMedCrossRef
75.
go back to reference Mohanraj V, Chen Y. Nanoparticles-a review. Trop J Pharm Res. 2006;5(1):561–73. Mohanraj V, Chen Y. Nanoparticles-a review. Trop J Pharm Res. 2006;5(1):561–73.
76.
go back to reference Yan F, Xu H, Anker J, Kopelman R, Ross B, Rehemtulla A, Reddy R. Synthesis and characterization of silica-embedded iron oxide nanoparticles for magnetic resonance imaging. J Nanosci Nanotechnol. 2004;4(1–2):72–6.PubMedCrossRef Yan F, Xu H, Anker J, Kopelman R, Ross B, Rehemtulla A, Reddy R. Synthesis and characterization of silica-embedded iron oxide nanoparticles for magnetic resonance imaging. J Nanosci Nanotechnol. 2004;4(1–2):72–6.PubMedCrossRef
77.
go back to reference Palazzolo S, Bayda S, Hadla M, Caligiuri I, Corona G, Toffoli G, Rizzolio F. The clinical translation of organic nanomaterials for cancer therapy: a focus on polymeric nanoparticles, micelles, liposomes and exosomes. Curr Med Chem. 2018;25(34):4224–68.PubMedCrossRef Palazzolo S, Bayda S, Hadla M, Caligiuri I, Corona G, Toffoli G, Rizzolio F. The clinical translation of organic nanomaterials for cancer therapy: a focus on polymeric nanoparticles, micelles, liposomes and exosomes. Curr Med Chem. 2018;25(34):4224–68.PubMedCrossRef
78.
go back to reference Liu J, Huang J, Zhang L, Lei J. Multifunctional metal–organic framework heterostructures for enhanced cancer therapy. Chem Soc Rev. 2021;50(2):1188–218.PubMedCrossRef Liu J, Huang J, Zhang L, Lei J. Multifunctional metal–organic framework heterostructures for enhanced cancer therapy. Chem Soc Rev. 2021;50(2):1188–218.PubMedCrossRef
79.
go back to reference Wang D, Zhang Z, Lin L, Liu F, Wang Y, Guo Z, Li Y, Tian H, Chen X. Porphyrin-based covalent organic framework nanoparticles for photoacoustic imaging-guided photodynamic and photothermal combination cancer therapy. Biomaterials. 2019;223:119459.PubMedCrossRef Wang D, Zhang Z, Lin L, Liu F, Wang Y, Guo Z, Li Y, Tian H, Chen X. Porphyrin-based covalent organic framework nanoparticles for photoacoustic imaging-guided photodynamic and photothermal combination cancer therapy. Biomaterials. 2019;223:119459.PubMedCrossRef
81.
go back to reference Xiao W, Ehsanipour A, Sohrabi A, Seidlits SK. Hyaluronic-acid based hydrogels for 3-dimensional culture of patient-derived glioblastoma cells. JoVE (Journal Visualized Experiments). 2018(138):e58176. Xiao W, Ehsanipour A, Sohrabi A, Seidlits SK. Hyaluronic-acid based hydrogels for 3-dimensional culture of patient-derived glioblastoma cells. JoVE (Journal Visualized Experiments). 2018(138):e58176.
82.
go back to reference Lapcık L Jr, Lapcık L, De Smedt S, Demeester J, Chabrecek P. Hyaluronan: preparation, structure, properties, and applications. Chem Rev. 1998;98(8):2663–84.PubMedCrossRef Lapcık L Jr, Lapcık L, De Smedt S, Demeester J, Chabrecek P. Hyaluronan: preparation, structure, properties, and applications. Chem Rev. 1998;98(8):2663–84.PubMedCrossRef
83.
go back to reference Cai Z, Zhang H, Wei Y, Cong F. Hyaluronan-inorganic nanohybrid materials for biomedical applications. Biomacromolecules. 2017;18(6):1677–96.PubMedCrossRef Cai Z, Zhang H, Wei Y, Cong F. Hyaluronan-inorganic nanohybrid materials for biomedical applications. Biomacromolecules. 2017;18(6):1677–96.PubMedCrossRef
84.
go back to reference Mattheolabakis G, Rigas B, Constantinides PP. Nanodelivery strategies in cancer chemotherapy: biological rationale and pharmaceutical perspectives. Nanomedicine. 2012;7(10):1577–90.PubMedCrossRef Mattheolabakis G, Rigas B, Constantinides PP. Nanodelivery strategies in cancer chemotherapy: biological rationale and pharmaceutical perspectives. Nanomedicine. 2012;7(10):1577–90.PubMedCrossRef
86.
go back to reference Li M, Luo Z, Zhao Y. Recent advancements in 2D nanomaterials for cancer therapy. Sci China Chem. 2018;61(10):1214–26.CrossRef Li M, Luo Z, Zhao Y. Recent advancements in 2D nanomaterials for cancer therapy. Sci China Chem. 2018;61(10):1214–26.CrossRef
87.
go back to reference Fei W, Zhang M, Fan X, Ye Y, Zhao M, Zheng C, Li Y, Zheng X. Engineering of bioactive metal sulfide nanomaterials for cancer therapy. J Nanobiotechnol. 2021;19(1):1–27.CrossRef Fei W, Zhang M, Fan X, Ye Y, Zhao M, Zheng C, Li Y, Zheng X. Engineering of bioactive metal sulfide nanomaterials for cancer therapy. J Nanobiotechnol. 2021;19(1):1–27.CrossRef
88.
go back to reference Wiwatchaitawee K, Quarterman JC, Geary SM, Salem AK. Enhancement of therapies for glioblastoma (GBM) using nanoparticle-based delivery systems. AAPS PharmSciTech. 2021;22:1–16.CrossRef Wiwatchaitawee K, Quarterman JC, Geary SM, Salem AK. Enhancement of therapies for glioblastoma (GBM) using nanoparticle-based delivery systems. AAPS PharmSciTech. 2021;22:1–16.CrossRef
90.
go back to reference Jain K. Nanobiotechnology-based drug delivery to the central nervous system. Neurodegenerative Dis. 2007;4(4):287–91.CrossRef Jain K. Nanobiotechnology-based drug delivery to the central nervous system. Neurodegenerative Dis. 2007;4(4):287–91.CrossRef
91.
go back to reference Tran S, DeGiovanni P-J, Piel B, Rai P. Cancer nanomedicine: a review of recent success in drug delivery. Clin Translational Med. 2017;6(1):1–21.CrossRef Tran S, DeGiovanni P-J, Piel B, Rai P. Cancer nanomedicine: a review of recent success in drug delivery. Clin Translational Med. 2017;6(1):1–21.CrossRef
92.
go back to reference Ganipineni LP, Danhier F, Préat V. Drug delivery challenges and future of chemotherapeutic nanomedicine for glioblastoma treatment. J Controlled Release. 2018;281:42–57.CrossRef Ganipineni LP, Danhier F, Préat V. Drug delivery challenges and future of chemotherapeutic nanomedicine for glioblastoma treatment. J Controlled Release. 2018;281:42–57.CrossRef
93.
go back to reference Giese A, Bjerkvig R, Berens M, Westphal M. Cost of migration: invasion of malignant gliomas and implications for treatment. J Clin Oncol. 2003;21(8):1624–36.PubMedCrossRef Giese A, Bjerkvig R, Berens M, Westphal M. Cost of migration: invasion of malignant gliomas and implications for treatment. J Clin Oncol. 2003;21(8):1624–36.PubMedCrossRef
94.
go back to reference Tzeng SY, Green JJ. Therapeutic nanomedicine for brain cancer. Therapeutic Delivery. 2013;4(6):687–704.PubMedCrossRef Tzeng SY, Green JJ. Therapeutic nanomedicine for brain cancer. Therapeutic Delivery. 2013;4(6):687–704.PubMedCrossRef
95.
go back to reference Karthika C, Sureshkumar R, Zehravi M, Akter R, Ali F, Ramproshad S, Mondal B, Kundu MK, Dey A, Rahman M. Multidrug resistance in cancer cells: focus on a possible strategy plan to address colon carcinoma cells. Life. 2022;12(6):811.PubMedPubMedCentralCrossRef Karthika C, Sureshkumar R, Zehravi M, Akter R, Ali F, Ramproshad S, Mondal B, Kundu MK, Dey A, Rahman M. Multidrug resistance in cancer cells: focus on a possible strategy plan to address colon carcinoma cells. Life. 2022;12(6):811.PubMedPubMedCentralCrossRef
96.
go back to reference Marin J, Al-Abdulla R, Lozano E, Briz O, Bujanda L, Banales M, Macias J. Mechanisms of resistance to chemotherapy in gastric cancer. Anti-Cancer Agents Med Chem (Formerly Curr Med Chemistry-Anti-Cancer Agents). 2016;16(3):318–34. Marin J, Al-Abdulla R, Lozano E, Briz O, Bujanda L, Banales M, Macias J. Mechanisms of resistance to chemotherapy in gastric cancer. Anti-Cancer Agents Med Chem (Formerly Curr Med Chemistry-Anti-Cancer Agents). 2016;16(3):318–34.
97.
go back to reference Majidinia M, Mirza-Aghazadeh‐Attari M, Rahimi M, Mihanfar A, Karimian A, Safa A, Yousefi B. Overcoming multidrug resistance in cancer: recent progress in nanotechnology and new horizons. IUBMB Life. 2020;72(5):855–71.PubMedCrossRef Majidinia M, Mirza-Aghazadeh‐Attari M, Rahimi M, Mihanfar A, Karimian A, Safa A, Yousefi B. Overcoming multidrug resistance in cancer: recent progress in nanotechnology and new horizons. IUBMB Life. 2020;72(5):855–71.PubMedCrossRef
98.
go back to reference Xu Y-Y, Gao P, Sun Y, Duan Y-R. Development of targeted therapies in treatment of glioblastoma. Cancer Biology Med. 2015;12(3):223. Xu Y-Y, Gao P, Sun Y, Duan Y-R. Development of targeted therapies in treatment of glioblastoma. Cancer Biology Med. 2015;12(3):223.
99.
go back to reference Jurj A, Braicu C, Pop L-A, Tomuleasa C, Gherman CD, Berindan-Neagoe I. The new era of nanotechnology, an alternative to change cancer treatment. Drug Des Devel Ther. 2017;11:2871.PubMedPubMedCentralCrossRef Jurj A, Braicu C, Pop L-A, Tomuleasa C, Gherman CD, Berindan-Neagoe I. The new era of nanotechnology, an alternative to change cancer treatment. Drug Des Devel Ther. 2017;11:2871.PubMedPubMedCentralCrossRef
100.
go back to reference Jallouli Y, Paillard A, Chang J, Sevin E, Betbeder D. Influence of surface charge and inner composition of porous nanoparticles to cross blood–brain barrier in vitro. Int J Pharm. 2007;344(1–2):103–9.PubMedCrossRef Jallouli Y, Paillard A, Chang J, Sevin E, Betbeder D. Influence of surface charge and inner composition of porous nanoparticles to cross blood–brain barrier in vitro. Int J Pharm. 2007;344(1–2):103–9.PubMedCrossRef
101.
go back to reference Li S-D, Huang L. Nanoparticles evading the reticuloendothelial system: role of the supported bilayer. Biochim et Biophys Acta (BBA)-Biomembranes. 2009;1788(10):2259–66.PubMedCrossRef Li S-D, Huang L. Nanoparticles evading the reticuloendothelial system: role of the supported bilayer. Biochim et Biophys Acta (BBA)-Biomembranes. 2009;1788(10):2259–66.PubMedCrossRef
102.
go back to reference Zhao J, Zhang B, Shen S, Chen J, Zhang Q, Jiang X, Pang Z. CREKA peptide-conjugated dendrimer nanoparticles for glioblastoma multiforme delivery. J Colloid Interface Sci. 2015;450:396–403.PubMedCrossRef Zhao J, Zhang B, Shen S, Chen J, Zhang Q, Jiang X, Pang Z. CREKA peptide-conjugated dendrimer nanoparticles for glioblastoma multiforme delivery. J Colloid Interface Sci. 2015;450:396–403.PubMedCrossRef
103.
go back to reference Gref R, Domb A, Quellec P, Blunk T, Müller R, Verbavatz J-M, Langer R. The controlled intravenous delivery of drugs using PEG-coated sterically stabilized nanospheres. Adv Drug Deliv Rev. 1995;16(2–3):215–33.PubMedPubMedCentralCrossRef Gref R, Domb A, Quellec P, Blunk T, Müller R, Verbavatz J-M, Langer R. The controlled intravenous delivery of drugs using PEG-coated sterically stabilized nanospheres. Adv Drug Deliv Rev. 1995;16(2–3):215–33.PubMedPubMedCentralCrossRef
104.
go back to reference Laginha KM, Verwoert S, Charrois GJ, Allen TM. Determination of doxorubicin levels in whole tumor and tumor nuclei in murine breast cancer tumors. Clin Cancer Res. 2005;11(19):6944–9.PubMedCrossRef Laginha KM, Verwoert S, Charrois GJ, Allen TM. Determination of doxorubicin levels in whole tumor and tumor nuclei in murine breast cancer tumors. Clin Cancer Res. 2005;11(19):6944–9.PubMedCrossRef
105.
go back to reference Tagde P, Tagde P, Tagde S, Bhattacharya T, Garg V, Akter R, Rahman MH, Najda A, Albadrani GM, Sayed AA. Natural bioactive molecules: an alternative approach to the treatment and control of glioblastoma multiforme. Biomed Pharmacother. 2021;141:111928.PubMedCrossRef Tagde P, Tagde P, Tagde S, Bhattacharya T, Garg V, Akter R, Rahman MH, Najda A, Albadrani GM, Sayed AA. Natural bioactive molecules: an alternative approach to the treatment and control of glioblastoma multiforme. Biomed Pharmacother. 2021;141:111928.PubMedCrossRef
106.
go back to reference Huang H, Feng W, Chen Y, Shi J. Inorganic nanoparticles in clinical trials and translations. Nano Today. 2020;35:100972.CrossRef Huang H, Feng W, Chen Y, Shi J. Inorganic nanoparticles in clinical trials and translations. Nano Today. 2020;35:100972.CrossRef
107.
go back to reference Li X, Li W, Wang M, Liao Z. Magnetic nanoparticles for cancer theranostics: advances and prospects. J Controlled Release. 2021;335:437–48.CrossRef Li X, Li W, Wang M, Liao Z. Magnetic nanoparticles for cancer theranostics: advances and prospects. J Controlled Release. 2021;335:437–48.CrossRef
108.
go back to reference Farzin A, Etesami SA, Quint J, Memic A, Tamayol A. Magnetic nanoparticles in cancer therapy and diagnosis. Adv Healthc Mater. 2020;9(9):1901058.CrossRef Farzin A, Etesami SA, Quint J, Memic A, Tamayol A. Magnetic nanoparticles in cancer therapy and diagnosis. Adv Healthc Mater. 2020;9(9):1901058.CrossRef
110.
go back to reference Pourgholi F, Farhad J-N, Kafil HS, Yousefi M. Nanoparticles: novel vehicles in treatment of glioblastoma. Biomed Pharmacother. 2016;77:98–107.PubMedCrossRef Pourgholi F, Farhad J-N, Kafil HS, Yousefi M. Nanoparticles: novel vehicles in treatment of glioblastoma. Biomed Pharmacother. 2016;77:98–107.PubMedCrossRef
111.
go back to reference Rezaie P, Khoei S, Khoee S, Shirvalilou S, Mahdavi SR. Evaluation of combined effect of hyperthermia and ionizing radiation on cytotoxic damages induced by IUdR-loaded PCL-PEG-coated magnetic nanoparticles in spheroid culture of U87MG glioblastoma cell line. Int J Radiat Biol. 2018;94(11):1027–37.PubMedCrossRef Rezaie P, Khoei S, Khoee S, Shirvalilou S, Mahdavi SR. Evaluation of combined effect of hyperthermia and ionizing radiation on cytotoxic damages induced by IUdR-loaded PCL-PEG-coated magnetic nanoparticles in spheroid culture of U87MG glioblastoma cell line. Int J Radiat Biol. 2018;94(11):1027–37.PubMedCrossRef
112.
go back to reference Campos EA, Pinto DVBS, Oliveira, JISd. Mattos EdC, Dutra RdCL: synthesis, characterization and applications of iron oxide nanoparticles-a short review. J Aerosp Technol Manage. 2015;7:267–76.CrossRef Campos EA, Pinto DVBS, Oliveira, JISd. Mattos EdC, Dutra RdCL: synthesis, characterization and applications of iron oxide nanoparticles-a short review. J Aerosp Technol Manage. 2015;7:267–76.CrossRef
113.
go back to reference Assa F, Jafarizadeh-Malmiri H, Ajamein H, Anarjan N, Vaghari H, Sayyar Z, Berenjian A. A biotechnological perspective on the application of iron oxide nanoparticles. Nano Res. 2016;9(8):2203–25.CrossRef Assa F, Jafarizadeh-Malmiri H, Ajamein H, Anarjan N, Vaghari H, Sayyar Z, Berenjian A. A biotechnological perspective on the application of iron oxide nanoparticles. Nano Res. 2016;9(8):2203–25.CrossRef
114.
go back to reference Akbarzadeh A, Samiei M, Davaran S. Magnetic nanoparticles: preparation, physical properties, and applications in biomedicine. Nanoscale Res Lett. 2012;7(1):1–13.CrossRef Akbarzadeh A, Samiei M, Davaran S. Magnetic nanoparticles: preparation, physical properties, and applications in biomedicine. Nanoscale Res Lett. 2012;7(1):1–13.CrossRef
115.
go back to reference Li F, Lu J, Kong X, Hyeon T, Ling D. Dynamic nanoparticle assemblies for biomedical applications. Adv Mater. 2017;29(14):1605897.CrossRef Li F, Lu J, Kong X, Hyeon T, Ling D. Dynamic nanoparticle assemblies for biomedical applications. Adv Mater. 2017;29(14):1605897.CrossRef
116.
go back to reference Arias LS, Pessan JP, Vieira APM, Lima TMTd, Delbem ACB, Monteiro DR. Iron oxide nanoparticles for biomedical applications: a perspective on synthesis, drugs, antimicrobial activity, and toxicity. Antibiotics. 2018;7(2):46.PubMedPubMedCentralCrossRef Arias LS, Pessan JP, Vieira APM, Lima TMTd, Delbem ACB, Monteiro DR. Iron oxide nanoparticles for biomedical applications: a perspective on synthesis, drugs, antimicrobial activity, and toxicity. Antibiotics. 2018;7(2):46.PubMedPubMedCentralCrossRef
117.
go back to reference Bruschi ML, de Toledo LAS. Pharmaceutical applications of iron-oxide magnetic nanoparticles. Magnetochemistry. 2019;5(3):50.CrossRef Bruschi ML, de Toledo LAS. Pharmaceutical applications of iron-oxide magnetic nanoparticles. Magnetochemistry. 2019;5(3):50.CrossRef
118.
go back to reference Alexiou C, Schmid RJ, Jurgons R, Kremer M, Wanner G, Bergemann C, Huenges E, Nawroth T, Arnold W, Parak FG. Targeting cancer cells: magnetic nanoparticles as drug carriers. Eur Biophys J. 2006;35(5):446–50.PubMedCrossRef Alexiou C, Schmid RJ, Jurgons R, Kremer M, Wanner G, Bergemann C, Huenges E, Nawroth T, Arnold W, Parak FG. Targeting cancer cells: magnetic nanoparticles as drug carriers. Eur Biophys J. 2006;35(5):446–50.PubMedCrossRef
119.
go back to reference Abadi B, Yazdanpanah N, Nokhodchi A, Rezaei N. Smart biomaterials to enhance the efficiency of immunotherapy in glioblastoma: state of the art and future perspectives. Adv Drug Deliv Rev. 2021;179:114035.PubMedCrossRef Abadi B, Yazdanpanah N, Nokhodchi A, Rezaei N. Smart biomaterials to enhance the efficiency of immunotherapy in glioblastoma: state of the art and future perspectives. Adv Drug Deliv Rev. 2021;179:114035.PubMedCrossRef
120.
go back to reference Ciccarese F, Raimondi V, Sharova E, Silic-Benussi M, Ciminale V. Nanoparticles as tools to target redox homeostasis in cancer cells. Antioxidants. 2020;9(3):211.PubMedPubMedCentralCrossRef Ciccarese F, Raimondi V, Sharova E, Silic-Benussi M, Ciminale V. Nanoparticles as tools to target redox homeostasis in cancer cells. Antioxidants. 2020;9(3):211.PubMedPubMedCentralCrossRef
121.
go back to reference Jin J, Ovais M, Chen C. Stimulus-responsive gold nanotheranostic platforms for targeting the tumor microenvironment. Nano Today. 2018;22:83–99.CrossRef Jin J, Ovais M, Chen C. Stimulus-responsive gold nanotheranostic platforms for targeting the tumor microenvironment. Nano Today. 2018;22:83–99.CrossRef
122.
go back to reference Singh P, Pandit S, Mokkapati V, Garg A, Ravikumar V, Mijakovic I. Gold nanoparticles in diagnostics and therapeutics for human cancer. Int J Mol Sci. 2018;19(7):1979.PubMedPubMedCentralCrossRef Singh P, Pandit S, Mokkapati V, Garg A, Ravikumar V, Mijakovic I. Gold nanoparticles in diagnostics and therapeutics for human cancer. Int J Mol Sci. 2018;19(7):1979.PubMedPubMedCentralCrossRef
123.
go back to reference Aryal S, Bisht G. New paradigm for a targeted cancer therapeutic approach: a short review on potential synergy of gold nanoparticles and cold atmospheric plasma. Biomedicines. 2017;5(3):38.PubMedPubMedCentralCrossRef Aryal S, Bisht G. New paradigm for a targeted cancer therapeutic approach: a short review on potential synergy of gold nanoparticles and cold atmospheric plasma. Biomedicines. 2017;5(3):38.PubMedPubMedCentralCrossRef
124.
go back to reference Rehman Y, Qutaish H, Kim JH, Huang X-F, Alvi S, Konstantinov K. Microenvironmental behaviour of nanotheranostic systems for controlled oxidative stress and cancer treatment. Nanomaterials. 2022;12(14):2462.PubMedPubMedCentralCrossRef Rehman Y, Qutaish H, Kim JH, Huang X-F, Alvi S, Konstantinov K. Microenvironmental behaviour of nanotheranostic systems for controlled oxidative stress and cancer treatment. Nanomaterials. 2022;12(14):2462.PubMedPubMedCentralCrossRef
125.
go back to reference Chen N, Yang W, Bao Y, Xu H, Qin S, Tu Y. BSA capped au nanoparticle as an efficient sensitizer for glioblastoma tumor radiation therapy. RSC Adv. 2015;5(51):40514–20.CrossRef Chen N, Yang W, Bao Y, Xu H, Qin S, Tu Y. BSA capped au nanoparticle as an efficient sensitizer for glioblastoma tumor radiation therapy. RSC Adv. 2015;5(51):40514–20.CrossRef
126.
go back to reference Peng L, Liang Y, Zhong X, Liang Z, Tian Y, Li S, Liang J, Wang R, Zhong Y, Shi Y. Aptamer-conjugated gold nanoparticles targeting epidermal growth factor receptor variant III for the treatment of glioblastoma. Int J Nanomed. 2020;15:1363.CrossRef Peng L, Liang Y, Zhong X, Liang Z, Tian Y, Li S, Liang J, Wang R, Zhong Y, Shi Y. Aptamer-conjugated gold nanoparticles targeting epidermal growth factor receptor variant III for the treatment of glioblastoma. Int J Nanomed. 2020;15:1363.CrossRef
128.
go back to reference Saleem J, Wang L, Chen C. Carbon-based nanomaterials for cancer therapy via targeting tumor microenvironment. Adv Healthc Mater. 2018;7(20):1800525.CrossRef Saleem J, Wang L, Chen C. Carbon-based nanomaterials for cancer therapy via targeting tumor microenvironment. Adv Healthc Mater. 2018;7(20):1800525.CrossRef
129.
go back to reference Leite ML, da Cunha NB, Costa FF. Antimicrobial peptides, nanotechnology, and natural metabolites as novel approaches for cancer treatment. Pharmacol Ther. 2018;183:160–76.PubMedCrossRef Leite ML, da Cunha NB, Costa FF. Antimicrobial peptides, nanotechnology, and natural metabolites as novel approaches for cancer treatment. Pharmacol Ther. 2018;183:160–76.PubMedCrossRef
130.
go back to reference Chakrabarti M, Kiseleva R, Vertegel A, Ray SK. Carbon nanomaterials for drug delivery and cancer therapy. J Nanosci Nanotechnol. 2015;15(8):5501–11.PubMedCrossRef Chakrabarti M, Kiseleva R, Vertegel A, Ray SK. Carbon nanomaterials for drug delivery and cancer therapy. J Nanosci Nanotechnol. 2015;15(8):5501–11.PubMedCrossRef
131.
go back to reference Benos L, Spyrou LA, Sarris IE. Development of a new theoretical model for blood-CNTs effective thermal conductivity pertaining to hyperthermia therapy of glioblastoma multiform. Comput Methods Programs Biomed. 2019;172:79–85.PubMedCrossRef Benos L, Spyrou LA, Sarris IE. Development of a new theoretical model for blood-CNTs effective thermal conductivity pertaining to hyperthermia therapy of glioblastoma multiform. Comput Methods Programs Biomed. 2019;172:79–85.PubMedCrossRef
132.
go back to reference Salazar A, Pérez-de la Cruz V, Muñoz-Sandoval E, Chavarria V, García Morales MdL, Espinosa-Bonilla A, Sotelo J, Jiménez-Anguiano A, Pineda B. Potential use of nitrogen-doped carbon nanotube sponges as payload carriers against malignant glioma. Nanomaterials. 2021;11(5):1244.PubMedPubMedCentralCrossRef Salazar A, Pérez-de la Cruz V, Muñoz-Sandoval E, Chavarria V, García Morales MdL, Espinosa-Bonilla A, Sotelo J, Jiménez-Anguiano A, Pineda B. Potential use of nitrogen-doped carbon nanotube sponges as payload carriers against malignant glioma. Nanomaterials. 2021;11(5):1244.PubMedPubMedCentralCrossRef
133.
go back to reference Perini G, Palmieri V, Ciasca G, D’Ascenzo M, Primiano A, Gervasoni J, De Maio F, De Spirito M, Papi M. Enhanced chemotherapy for glioblastoma multiforme mediated by functionalized graphene quantum dots. Materials. 2020;13(18):4139.PubMedPubMedCentralCrossRef Perini G, Palmieri V, Ciasca G, D’Ascenzo M, Primiano A, Gervasoni J, De Maio F, De Spirito M, Papi M. Enhanced chemotherapy for glioblastoma multiforme mediated by functionalized graphene quantum dots. Materials. 2020;13(18):4139.PubMedPubMedCentralCrossRef
134.
go back to reference Perini G, Palmieri V, Friggeri G, Augello A, De Spirito M, Papi M. Carboxylated graphene quantum dots-mediated photothermal therapy enhances drug-membrane permeability, ROS production, and the immune system recruitment on 3D glioblastoma models. Cancer Nanotechnol. 2023;14(1):13.CrossRef Perini G, Palmieri V, Friggeri G, Augello A, De Spirito M, Papi M. Carboxylated graphene quantum dots-mediated photothermal therapy enhances drug-membrane permeability, ROS production, and the immune system recruitment on 3D glioblastoma models. Cancer Nanotechnol. 2023;14(1):13.CrossRef
135.
go back to reference Perini G, Rosa E, Friggeri G, Di Pietro L, Barba M, Parolini O, Ciasca G, Moriconi C, Papi M, De Spirito M. INSIDIA 2.0 high-throughput analysis of 3D cancer models: multiparametric quantification of graphene quantum dots photothermal therapy for glioblastoma and pancreatic cancer. Int J Mol Sci. 2022;23(6):3217.PubMedPubMedCentralCrossRef Perini G, Rosa E, Friggeri G, Di Pietro L, Barba M, Parolini O, Ciasca G, Moriconi C, Papi M, De Spirito M. INSIDIA 2.0 high-throughput analysis of 3D cancer models: multiparametric quantification of graphene quantum dots photothermal therapy for glioblastoma and pancreatic cancer. Int J Mol Sci. 2022;23(6):3217.PubMedPubMedCentralCrossRef
136.
go back to reference Li Z, Zhao C, Fu Q, Ye J, Su L, Ge X, Chen L, Song J, Yang H. Neodymium (3+)-coordinated black phosphorus quantum dots with retrievable NIR/X‐ray optoelectronic switching effect for anti‐glioblastoma. Small. 2022;18(5):2105160.CrossRef Li Z, Zhao C, Fu Q, Ye J, Su L, Ge X, Chen L, Song J, Yang H. Neodymium (3+)-coordinated black phosphorus quantum dots with retrievable NIR/X‐ray optoelectronic switching effect for anti‐glioblastoma. Small. 2022;18(5):2105160.CrossRef
137.
go back to reference Kaushik NK, Kaushik N, Wahab R, Bhartiya P, Linh NN, Khan F, Al-Khedhairy AA, Choi EH. Cold atmospheric plasma and gold quantum dots exert dual cytotoxicity mediated by the cell receptor-activated apoptotic pathway in glioblastoma cells. Cancers. 2020;12(2):457.PubMedPubMedCentralCrossRef Kaushik NK, Kaushik N, Wahab R, Bhartiya P, Linh NN, Khan F, Al-Khedhairy AA, Choi EH. Cold atmospheric plasma and gold quantum dots exert dual cytotoxicity mediated by the cell receptor-activated apoptotic pathway in glioblastoma cells. Cancers. 2020;12(2):457.PubMedPubMedCentralCrossRef
138.
go back to reference Iranpour S, Bahrami AR, Saljooghi AS, Matin MM. Application of smart nanoparticles as a potential platform for effective colorectal cancer therapy. Coord Chem Rev. 2021;442:213949.CrossRef Iranpour S, Bahrami AR, Saljooghi AS, Matin MM. Application of smart nanoparticles as a potential platform for effective colorectal cancer therapy. Coord Chem Rev. 2021;442:213949.CrossRef
139.
go back to reference Eugenio M, Campanati L, Müller N, Romão LF, de Souza J, Alves-Leon S, de Souza W, Sant’Anna C. Silver/silver chloride nanoparticles inhibit the proliferation of human glioblastoma cells. Cytotechnology. 2018;70(6):1607–18.PubMedPubMedCentralCrossRef Eugenio M, Campanati L, Müller N, Romão LF, de Souza J, Alves-Leon S, de Souza W, Sant’Anna C. Silver/silver chloride nanoparticles inhibit the proliferation of human glioblastoma cells. Cytotechnology. 2018;70(6):1607–18.PubMedPubMedCentralCrossRef
140.
go back to reference Householder KT, DiPerna DM, Chung EP, Luning AR, Nguyen DT, Stabenfeldt SE, Mehta S, Sirianni RW. pH driven precipitation of quisinostat onto PLA-PEG nanoparticles enables treatment of intracranial glioblastoma. Colloids Surf B. 2018;166:37–44.CrossRef Householder KT, DiPerna DM, Chung EP, Luning AR, Nguyen DT, Stabenfeldt SE, Mehta S, Sirianni RW. pH driven precipitation of quisinostat onto PLA-PEG nanoparticles enables treatment of intracranial glioblastoma. Colloids Surf B. 2018;166:37–44.CrossRef
141.
go back to reference Davanzo NN, Pellosi DS, Franchi LP, Tedesco AC. Light source is critical to induce glioblastoma cell death by photodynamic therapy using chloro-aluminiumphtalocyanine albumin-based nanoparticles. Photodiagn Photodyn Ther. 2017;19:181–3.CrossRef Davanzo NN, Pellosi DS, Franchi LP, Tedesco AC. Light source is critical to induce glioblastoma cell death by photodynamic therapy using chloro-aluminiumphtalocyanine albumin-based nanoparticles. Photodiagn Photodyn Ther. 2017;19:181–3.CrossRef
142.
go back to reference Zhang P, Miska J, Lee-Chang C, Rashidi A, Panek WK, An S, Zannikou M, Lopez-Rosas A, Han Y, Xiao T. Therapeutic targeting of tumor-associated myeloid cells synergizes with radiation therapy for glioblastoma. Proc Natl Acad Sci. 2019;116(47):23714–23.PubMedPubMedCentralCrossRef Zhang P, Miska J, Lee-Chang C, Rashidi A, Panek WK, An S, Zannikou M, Lopez-Rosas A, Han Y, Xiao T. Therapeutic targeting of tumor-associated myeloid cells synergizes with radiation therapy for glioblastoma. Proc Natl Acad Sci. 2019;116(47):23714–23.PubMedPubMedCentralCrossRef
143.
go back to reference Liu P, Huang Z, Chen Z, Xu R, Wu H, Zang F, Wang C, Gu N. Silver nanoparticles: a novel radiation sensitizer for glioma? Nanoscale. 2013;5(23):11829–36.PubMedCrossRef Liu P, Huang Z, Chen Z, Xu R, Wu H, Zang F, Wang C, Gu N. Silver nanoparticles: a novel radiation sensitizer for glioma? Nanoscale. 2013;5(23):11829–36.PubMedCrossRef
144.
go back to reference Meteoglu I, Erdemir A. Genistein and temozolomide-loaded polymeric nanoparticles: a synergistic approach for improved anti-tumor efficacy against glioblastoma. Process Biochem. 2021;110:9–18.CrossRef Meteoglu I, Erdemir A. Genistein and temozolomide-loaded polymeric nanoparticles: a synergistic approach for improved anti-tumor efficacy against glioblastoma. Process Biochem. 2021;110:9–18.CrossRef
145.
go back to reference Alphandéry E, Idbaih A, Adam C, Delattre J-Y, Schmitt C, Guyot F, Chebbi I. Development of non-pyrogenic magnetosome minerals coated with poly-l-lysine leading to full disappearance of intracranial U87-Luc glioblastoma in 100% of treated mice using magnetic hyperthermia. Biomaterials. 2017;141:210–22.PubMedCrossRef Alphandéry E, Idbaih A, Adam C, Delattre J-Y, Schmitt C, Guyot F, Chebbi I. Development of non-pyrogenic magnetosome minerals coated with poly-l-lysine leading to full disappearance of intracranial U87-Luc glioblastoma in 100% of treated mice using magnetic hyperthermia. Biomaterials. 2017;141:210–22.PubMedCrossRef
146.
go back to reference Patil R, Galstyan A, Sun T, Shatalova ES, Butte P, Mamelak AN, Carico C, Kittle DS, Grodzinski ZB, Chiechi A. Polymalic acid chlorotoxin nanoconjugate for near-infrared fluorescence guided resection of glioblastoma multiforme. Biomaterials. 2019;206:146–59.PubMedPubMedCentralCrossRef Patil R, Galstyan A, Sun T, Shatalova ES, Butte P, Mamelak AN, Carico C, Kittle DS, Grodzinski ZB, Chiechi A. Polymalic acid chlorotoxin nanoconjugate for near-infrared fluorescence guided resection of glioblastoma multiforme. Biomaterials. 2019;206:146–59.PubMedPubMedCentralCrossRef
147.
go back to reference Hettiarachchi SD, Graham RM, Mintz KJ, Zhou Y, Vanni S, Peng Z, Leblanc RM. Triple conjugated carbon dots as a nano-drug delivery model for glioblastoma brain tumors. Nanoscale. 2019;11(13):6192–205.PubMedPubMedCentralCrossRef Hettiarachchi SD, Graham RM, Mintz KJ, Zhou Y, Vanni S, Peng Z, Leblanc RM. Triple conjugated carbon dots as a nano-drug delivery model for glioblastoma brain tumors. Nanoscale. 2019;11(13):6192–205.PubMedPubMedCentralCrossRef
148.
go back to reference Qian M, Du Y, Wang S, Li C, Jiang H, Shi W, Chen J, Wang Y, Wagner E, Huang R. Highly crystalline multicolor carbon nanodots for dual-modal imaging-guided photothermal therapy of glioma. ACS Appl Mater Interfaces. 2018;10(4):4031–40.PubMedCrossRef Qian M, Du Y, Wang S, Li C, Jiang H, Shi W, Chen J, Wang Y, Wagner E, Huang R. Highly crystalline multicolor carbon nanodots for dual-modal imaging-guided photothermal therapy of glioma. ACS Appl Mater Interfaces. 2018;10(4):4031–40.PubMedCrossRef
149.
go back to reference Lee C, Hwang HS, Lee S, Kim B, Kim JO, Oh KT, Lee ES, Choi HG, Youn YS. Rabies virus-inspired silica‐coated gold nanorods as a photothermal therapeutic platform for treating brain tumors. Adv Mater. 2017;29(13):1605563.CrossRef Lee C, Hwang HS, Lee S, Kim B, Kim JO, Oh KT, Lee ES, Choi HG, Youn YS. Rabies virus-inspired silica‐coated gold nanorods as a photothermal therapeutic platform for treating brain tumors. Adv Mater. 2017;29(13):1605563.CrossRef
150.
go back to reference Ran D, Mao J, Shen Q, Xie C, Zhan C, Wang R, Lu W. GRP78 enabled micelle-based glioma targeted drug delivery. J Controlled Release. 2017;255:120–31.CrossRef Ran D, Mao J, Shen Q, Xie C, Zhan C, Wang R, Lu W. GRP78 enabled micelle-based glioma targeted drug delivery. J Controlled Release. 2017;255:120–31.CrossRef
151.
go back to reference Wu C, Xu Q, Chen X, Liu J. Delivery luteolin with folacin-modified nanoparticle for glioma therapy. Int J Nanomed. 2019;14:7515.CrossRef Wu C, Xu Q, Chen X, Liu J. Delivery luteolin with folacin-modified nanoparticle for glioma therapy. Int J Nanomed. 2019;14:7515.CrossRef
152.
go back to reference Zheng S, Cheng Y, Teng Y, Liu X, Yu T, Wang Y, Liu J, Hu Y, Wu C, Wang X. Application of luteolin nanomicelles anti-glioma effect with improvement in vitro and in vivo. Oncotarget. 2017;8(37):61146.PubMedPubMedCentralCrossRef Zheng S, Cheng Y, Teng Y, Liu X, Yu T, Wang Y, Liu J, Hu Y, Wu C, Wang X. Application of luteolin nanomicelles anti-glioma effect with improvement in vitro and in vivo. Oncotarget. 2017;8(37):61146.PubMedPubMedCentralCrossRef
153.
go back to reference Yang J, Shi Z, Liu R, Wu Y, Zhang X. Combined-therapeutic strategies synergistically potentiate glioblastoma multiforme treatment via nanotechnology. Theranostics. 2020;10(7):3223.PubMedPubMedCentralCrossRef Yang J, Shi Z, Liu R, Wu Y, Zhang X. Combined-therapeutic strategies synergistically potentiate glioblastoma multiforme treatment via nanotechnology. Theranostics. 2020;10(7):3223.PubMedPubMedCentralCrossRef
154.
go back to reference Jiang H, Wang C, Guo Z, Wang Z, Liu L. Silver nanocrystals mediated combination therapy of radiation with magnetic hyperthermia on glioma cells. J Nanosci Nanotechnol. 2012;12(11):8276–81.PubMedCrossRef Jiang H, Wang C, Guo Z, Wang Z, Liu L. Silver nanocrystals mediated combination therapy of radiation with magnetic hyperthermia on glioma cells. J Nanosci Nanotechnol. 2012;12(11):8276–81.PubMedCrossRef
155.
go back to reference Ohtake M, Umemura M, Sato I, Akimoto T, Oda K, Nagasako A, Kim J-H, Fujita T, Yokoyama U, Nakayama T, et al. Hyperthermia and chemotherapy using Fe(Salen) nanoparticles might impact glioblastoma treatment. Sci Rep. 2017;7(1):42783.PubMedPubMedCentralCrossRef Ohtake M, Umemura M, Sato I, Akimoto T, Oda K, Nagasako A, Kim J-H, Fujita T, Yokoyama U, Nakayama T, et al. Hyperthermia and chemotherapy using Fe(Salen) nanoparticles might impact glioblastoma treatment. Sci Rep. 2017;7(1):42783.PubMedPubMedCentralCrossRef
156.
go back to reference Minaei SE, Khoei S, Khoee S, Vafashoar F, Mahabadi VP. In vitro anti-cancer efficacy of multi-functionalized magnetite nanoparticles combining alternating magnetic hyperthermia in glioblastoma cancer cells. Mater Sci Engineering: C. 2019;101:575–87.CrossRef Minaei SE, Khoei S, Khoee S, Vafashoar F, Mahabadi VP. In vitro anti-cancer efficacy of multi-functionalized magnetite nanoparticles combining alternating magnetic hyperthermia in glioblastoma cancer cells. Mater Sci Engineering: C. 2019;101:575–87.CrossRef
157.
go back to reference Hao Y, Zhang B, Zheng C, Ji R, Ren X, Guo F, Sun S, Shi J, Zhang H, Zhang Z. The tumor-targeting core–shell structured DTX-loaded PLGA@ au nanoparticles for chemo-photothermal therapy and X-ray imaging. J Controlled Release. 2015;220:545–55.CrossRef Hao Y, Zhang B, Zheng C, Ji R, Ren X, Guo F, Sun S, Shi J, Zhang H, Zhang Z. The tumor-targeting core–shell structured DTX-loaded PLGA@ au nanoparticles for chemo-photothermal therapy and X-ray imaging. J Controlled Release. 2015;220:545–55.CrossRef
158.
go back to reference Kuang J, Song W, Yin J, Zeng X, Han S, Zhao YP, Tao J, Liu CJ, He XH, Zhang XZ. iRGD modified chemo-immunotherapeutic nanoparticles for enhanced immunotherapy against glioblastoma. Adv Funct Mater. 2018;28(17):1800025.CrossRef Kuang J, Song W, Yin J, Zeng X, Han S, Zhao YP, Tao J, Liu CJ, He XH, Zhang XZ. iRGD modified chemo-immunotherapeutic nanoparticles for enhanced immunotherapy against glioblastoma. Adv Funct Mater. 2018;28(17):1800025.CrossRef
159.
go back to reference Yao J, Feng X, Dai X, Peng G, Guo Z, Liu Z, Wang M, Guo W, Zhang P, Li Y. TMZ magnetic temperature-sensitive liposomes-mediated magnetothermal chemotherapy induces pyroptosis in glioblastoma. Nanomed Nanotechnol Biol Med. 2022;43:102554.CrossRef Yao J, Feng X, Dai X, Peng G, Guo Z, Liu Z, Wang M, Guo W, Zhang P, Li Y. TMZ magnetic temperature-sensitive liposomes-mediated magnetothermal chemotherapy induces pyroptosis in glioblastoma. Nanomed Nanotechnol Biol Med. 2022;43:102554.CrossRef
160.
go back to reference Tapeinos C, Marino A, Battaglini M, Migliorin S, Brescia R, Scarpellini A, Fernández CDJ, Prato M, Drago F, Ciofani G. Stimuli-responsive lipid-based magnetic nanovectors increase apoptosis in glioblastoma cells through synergic intracellular hyperthermia and chemotherapy. Nanoscale. 2019;11(1):72–88.CrossRef Tapeinos C, Marino A, Battaglini M, Migliorin S, Brescia R, Scarpellini A, Fernández CDJ, Prato M, Drago F, Ciofani G. Stimuli-responsive lipid-based magnetic nanovectors increase apoptosis in glioblastoma cells through synergic intracellular hyperthermia and chemotherapy. Nanoscale. 2019;11(1):72–88.CrossRef
161.
go back to reference Ito A, Shinkai M, Honda H, Kobayashi T. Heat-inducible TNF-α gene therapy combined with hyperthermia using magnetic nanoparticles as a novel tumor-targeted therapy. Cancer Gene Ther. 2001;8(9):649–54.PubMedCrossRef Ito A, Shinkai M, Honda H, Kobayashi T. Heat-inducible TNF-α gene therapy combined with hyperthermia using magnetic nanoparticles as a novel tumor-targeted therapy. Cancer Gene Ther. 2001;8(9):649–54.PubMedCrossRef
162.
go back to reference Babincová N, Sourivong P, Babinec P, Bergemann C, Babincová M, Durdík Š. Applications of magnetoliposomes with encapsulated doxorubicin for integrated chemotherapy and hyperthermia of rat C6 glioma. Z für Naturforschung C. 2018;73(7–8):265–71.CrossRef Babincová N, Sourivong P, Babinec P, Bergemann C, Babincová M, Durdík Š. Applications of magnetoliposomes with encapsulated doxorubicin for integrated chemotherapy and hyperthermia of rat C6 glioma. Z für Naturforschung C. 2018;73(7–8):265–71.CrossRef
163.
go back to reference Zhang H, Wang T, Liu H, Ren F, Qiu W, Sun Q, Yan F, Zheng H, Li Z, Gao M. Second near-infrared photodynamic therapy and chemotherapy of orthotopic malignant glioblastoma with ultra-small cu 2 – x Se nanoparticles. Nanoscale. 2019;11(16):7600–8.PubMedCrossRef Zhang H, Wang T, Liu H, Ren F, Qiu W, Sun Q, Yan F, Zheng H, Li Z, Gao M. Second near-infrared photodynamic therapy and chemotherapy of orthotopic malignant glioblastoma with ultra-small cu 2 – x Se nanoparticles. Nanoscale. 2019;11(16):7600–8.PubMedCrossRef
164.
go back to reference Pucci C, Marino A, Şen Ö, De Pasquale D, Bartolucci M, Iturrioz-Rodríguez N, di Leo N, de Vito G, Debellis D, Petretto A. Ultrasound-responsive nutlin-loaded nanoparticles for combined chemotherapy and piezoelectric treatment of glioblastoma cells. Acta Biomater. 2022;139:218–36.PubMedCrossRef Pucci C, Marino A, Şen Ö, De Pasquale D, Bartolucci M, Iturrioz-Rodríguez N, di Leo N, de Vito G, Debellis D, Petretto A. Ultrasound-responsive nutlin-loaded nanoparticles for combined chemotherapy and piezoelectric treatment of glioblastoma cells. Acta Biomater. 2022;139:218–36.PubMedCrossRef
165.
go back to reference Erel-Akbaba G, Carvalho LA, Tian T, Zinter M, Akbaba H, Obeid PJ, Chiocca EA, Weissleder R, Kantarci AG, Tannous BA. Radiation-induced targeted nanoparticle-based gene delivery for brain tumor therapy. ACS Nano. 2019;13(4):4028–40.PubMedPubMedCentralCrossRef Erel-Akbaba G, Carvalho LA, Tian T, Zinter M, Akbaba H, Obeid PJ, Chiocca EA, Weissleder R, Kantarci AG, Tannous BA. Radiation-induced targeted nanoparticle-based gene delivery for brain tumor therapy. ACS Nano. 2019;13(4):4028–40.PubMedPubMedCentralCrossRef
166.
go back to reference Chen M-H, Liu T-Y, Chen Y-C, Chen M-H. Combining augmented radiotherapy and immunotherapy through a nano-gold and bacterial outer-membrane vesicle complex for the treatment of glioblastoma. Nanomaterials. 2021;11(7):1661.PubMedPubMedCentralCrossRef Chen M-H, Liu T-Y, Chen Y-C, Chen M-H. Combining augmented radiotherapy and immunotherapy through a nano-gold and bacterial outer-membrane vesicle complex for the treatment of glioblastoma. Nanomaterials. 2021;11(7):1661.PubMedPubMedCentralCrossRef
167.
go back to reference Hartshorn CM, Bradbury MS, Lanza GM, Nel AE, Rao J, Wang AZ, Wiesner UB, Yang L, Grodzinski P. Nanotechnology strategies to advance outcomes in clinical cancer care. ACS Nano. 2018;12(1):24–43.PubMedCrossRef Hartshorn CM, Bradbury MS, Lanza GM, Nel AE, Rao J, Wang AZ, Wiesner UB, Yang L, Grodzinski P. Nanotechnology strategies to advance outcomes in clinical cancer care. ACS Nano. 2018;12(1):24–43.PubMedCrossRef
168.
go back to reference Yang F, Zhao Z, Sun B, Chen Q, Sun J, He Z, Luo C. Nanotherapeutics for antimetastatic treatment. Trends Cancer. 2020;6(8):645–59.PubMedCrossRef Yang F, Zhao Z, Sun B, Chen Q, Sun J, He Z, Luo C. Nanotherapeutics for antimetastatic treatment. Trends Cancer. 2020;6(8):645–59.PubMedCrossRef
169.
go back to reference Yasri S, Wiwanitkit V. Nanotechnology in oncology: a concern on its unwanted effects and ethics. J Med Soc. 2018;32(2):81.CrossRef Yasri S, Wiwanitkit V. Nanotechnology in oncology: a concern on its unwanted effects and ethics. J Med Soc. 2018;32(2):81.CrossRef
170.
go back to reference Singh N, Manshian B, Jenkins GJ, Griffiths SM, Williams PM, Maffeis TG, Wright CJ, Doak SH. NanoGenotoxicology: the DNA damaging potential of engineered nanomaterials. Biomaterials. 2009;30(23–24):3891–914.PubMedCrossRef Singh N, Manshian B, Jenkins GJ, Griffiths SM, Williams PM, Maffeis TG, Wright CJ, Doak SH. NanoGenotoxicology: the DNA damaging potential of engineered nanomaterials. Biomaterials. 2009;30(23–24):3891–914.PubMedCrossRef
171.
go back to reference Tinkle SS. Nanotechnology: collaborative opportunities for ecotoxicology and environmental health. Environ Toxicol Chem. 2008;27(9):1823.PubMedCrossRef Tinkle SS. Nanotechnology: collaborative opportunities for ecotoxicology and environmental health. Environ Toxicol Chem. 2008;27(9):1823.PubMedCrossRef
172.
go back to reference Shen L, Wang Z, Zhou P. The genetic toxicity and toxicology mechanism of metal nano materials. Chin J Prev Med. 2015;49(9):831–4. Shen L, Wang Z, Zhou P. The genetic toxicity and toxicology mechanism of metal nano materials. Chin J Prev Med. 2015;49(9):831–4.
Metadata
Title
New insights into targeted therapy of glioblastoma using smart nanoparticles
Authors
Habib Ghaznavi
Reza Afzalipour
Samideh Khoei
Saman Sargazi
Sakine Shirvalilou
Roghayeh Sheervalilou
Publication date
01-12-2024
Publisher
BioMed Central
Published in
Cancer Cell International / Issue 1/2024
Electronic ISSN: 1475-2867
DOI
https://doi.org/10.1186/s12935-024-03331-3

Other articles of this Issue 1/2024

Cancer Cell International 1/2024 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine