Skip to main content
Top
Published in: Cancer Cell International 1/2020

Open Access 01-12-2020 | Glioblastoma | Primary research

Nanos3, a cancer-germline gene, promotes cell proliferation, migration, chemoresistance, and invasion of human glioblastoma

Authors: Fengyu Zhang, Ruilai Liu, Cheng Liu, Haishi Zhang, Yuan Lu

Published in: Cancer Cell International | Issue 1/2020

Login to get access

Abstract

Background

Radiotherapy, chemotherapy, and surgery have made crucial strides in glioblastoma treatment, yet they often fail; thus, new treatment and new detection methods are needed. Aberrant expression of Nanos3 has been functionally associated with various cancers. Here, we sought to identify the clinical significance and potential mechanisms of Nanos3 in human glioblastoma.

Methods

Nanos3 expression was studied in nude mouse glioblastoma tissues and glioblastoma cell lines by immunohistochemistry, Western blot, and RT-PCR. Clustered regularly interspaced short palindromic repeats (CRISPR)–Cas9 gene editing assay was performed to generate the Nanos3 knockdown glioblastoma cell lines. The effects of Nanos3 on glioblastoma cells proliferation, migration, invasion, chemoresistance, germ cell characteristics, and tumor formation were analyzed by CCK8, transwell, cell survival experiments and alkaline phosphatase staining in vitro and in nude mouse models in vivo. Correlation between the expression of stemness proteins and the expression of Nanos3 was evaluated by Western blot.

Results

We found that Nanos3 was strongly expressed in both glioblastoma cell lines and tissues. Western blot and sequencing assays showed that the Nanos3 knockdown glioblastoma cell lines were established successfully, and we discovered that Nanos3 deletion reduced the proliferation, migration, and invasion of glioblastoma cells in vitro (P < 0.05). Nanos3 knockdown enhanced the sensitivity of glioblastoma cells to doxorubicin (DOX) and temozolomide (TMZ) (P < 0.05), and Nanos3+/− glioblastoma cell lines did not show the characteristics of the germline cells. In addition, Nanos3 deletion inhibited subcutaneous xenograft tumor growth in vivo (P < 0.001). Moreover, the oncogenesis germline protein levels of CD133, Oct4, Ki67, and Dazl decreased significantly in glioblastoma cells following Nanos3 knockdown.

Conclusions

Both in vitro and in vivo assays suggest that Nanos3, which is a cancer-germline gene, initiates the tumorigenesis of glioblastoma via acquiring the oncogenesis germline traits. These data demonstrate that ectopic germline traits are necessary for glioblastoma growth.
Appendix
Available only for authorised users
Literature
1.
go back to reference Zeng T, Cui D, Gao L. Glioma: an overview of current classifications, characteristics, molecular biology and target therapies. Front Biosci (Landmark Ed). 2015;1:1104–15. Zeng T, Cui D, Gao L. Glioma: an overview of current classifications, characteristics, molecular biology and target therapies. Front Biosci (Landmark Ed). 2015;1:1104–15.
2.
go back to reference Le Rhun E, Taillibert S, Chamberlain MC. Anaplastic glioma: current treatment and management. Expert Rev Neurother. 2015;15(6):601–20.PubMedCrossRef Le Rhun E, Taillibert S, Chamberlain MC. Anaplastic glioma: current treatment and management. Expert Rev Neurother. 2015;15(6):601–20.PubMedCrossRef
3.
go back to reference Deluche E, Bessette B, Durand S, Caire F, Rigau V, Robert S, et al. CHI3L1, NTRK2, 1p/19q and IDH status predicts prognosis in glioma. Cancers. 2019;11(4):544.PubMedCentralCrossRef Deluche E, Bessette B, Durand S, Caire F, Rigau V, Robert S, et al. CHI3L1, NTRK2, 1p/19q and IDH status predicts prognosis in glioma. Cancers. 2019;11(4):544.PubMedCentralCrossRef
4.
go back to reference Kuo YC, Chang YH, Rajesh R. Targeted delivery of etoposide, carmustine and doxorubicin to human glioblastoma cells using methoxy poly(ethylene glycol)-poly(ε-caprolactone) nanoparticles conjugated with wheat germ agglutinin and folic acid. Mater Sci Eng C Mater Biol Appl. 2019;96:114–28.PubMedCrossRef Kuo YC, Chang YH, Rajesh R. Targeted delivery of etoposide, carmustine and doxorubicin to human glioblastoma cells using methoxy poly(ethylene glycol)-poly(ε-caprolactone) nanoparticles conjugated with wheat germ agglutinin and folic acid. Mater Sci Eng C Mater Biol Appl. 2019;96:114–28.PubMedCrossRef
5.
go back to reference López-Valero I, Saiz-Ladera C, Torres S, Hernández-Tiedra S, García-Taboada E, Rodríguez-Fornés F, et al. Targeting glioma initiating cells with A combined therapy of cannabinoids and temozolomide. Biochem Pharmacol. 2018;157:266–74.PubMedCrossRef López-Valero I, Saiz-Ladera C, Torres S, Hernández-Tiedra S, García-Taboada E, Rodríguez-Fornés F, et al. Targeting glioma initiating cells with A combined therapy of cannabinoids and temozolomide. Biochem Pharmacol. 2018;157:266–74.PubMedCrossRef
6.
go back to reference Munksgaard Thorén M, Chmielarska Masoumi K, Krona C, Huang X, Kundu S, Schmidt L, et al. Integrin α10, a novel therapeutic target in glioblastoma, regulates cell migration, proliferation, and survival. Cancers. 2019;11(4):587.PubMedCentralCrossRef Munksgaard Thorén M, Chmielarska Masoumi K, Krona C, Huang X, Kundu S, Schmidt L, et al. Integrin α10, a novel therapeutic target in glioblastoma, regulates cell migration, proliferation, and survival. Cancers. 2019;11(4):587.PubMedCentralCrossRef
7.
go back to reference Li XT, Li JC, Feng M, Zhou YX, Du ZW. Novel lncRNA-ZNF281 regulates cell growth, stemness and invasion of glioma stem-like U251s cells. Neoplasma. 2019;66(1):118–27.PubMedCrossRef Li XT, Li JC, Feng M, Zhou YX, Du ZW. Novel lncRNA-ZNF281 regulates cell growth, stemness and invasion of glioma stem-like U251s cells. Neoplasma. 2019;66(1):118–27.PubMedCrossRef
8.
go back to reference Zhen Y, Nan Y, Guo S, Zhang L, Li G, Yue S, et al. Knockdown of NEAT1 repressed the malignant progression of glioma through sponging miR-107 and inhibiting CDK14. J Cell Physiol. 2019;234(7):10671–9.PubMedCrossRef Zhen Y, Nan Y, Guo S, Zhang L, Li G, Yue S, et al. Knockdown of NEAT1 repressed the malignant progression of glioma through sponging miR-107 and inhibiting CDK14. J Cell Physiol. 2019;234(7):10671–9.PubMedCrossRef
9.
go back to reference Janic A, Mendizabal L, Llamazares S, Rossell D, Gonzalez C. Ectopic expression of germline genes drives malignant brain tumor growth in Drosophila. Science. 2010;330(6012):1824–7.PubMedCrossRef Janic A, Mendizabal L, Llamazares S, Rossell D, Gonzalez C. Ectopic expression of germline genes drives malignant brain tumor growth in Drosophila. Science. 2010;330(6012):1824–7.PubMedCrossRef
10.
go back to reference Simpson AJ, Caballero OL, Jungbluth A, Chen YT, Old LJ. Cancer/testis antigens, gametogenesis and cancer. Nat Rev Cancer. 2005;5(8):615–25.PubMedCrossRef Simpson AJ, Caballero OL, Jungbluth A, Chen YT, Old LJ. Cancer/testis antigens, gametogenesis and cancer. Nat Rev Cancer. 2005;5(8):615–25.PubMedCrossRef
11.
go back to reference Old LJ. Cancer vaccines: an overview. Cancer Immun. 2008;8(Suppl 1):1.PubMed Old LJ. Cancer vaccines: an overview. Cancer Immun. 2008;8(Suppl 1):1.PubMed
12.
go back to reference Bonnomet A, Polette M, Strumane K, Gilles C, Dalstein V, Kileztky C, et al. The E-cadherin-repressed hNanos1 gene induces tumor cell invasion by upregulating MT1-MMP expression. Oncogene. 2008;27(26):3692–9.PubMedCrossRef Bonnomet A, Polette M, Strumane K, Gilles C, Dalstein V, Kileztky C, et al. The E-cadherin-repressed hNanos1 gene induces tumor cell invasion by upregulating MT1-MMP expression. Oncogene. 2008;27(26):3692–9.PubMedCrossRef
13.
go back to reference Wang Z, Lin H. Nanos maintains germline stem cell self-renewal by preventing differentiation. Science. 2004;303(5666):2016–9.PubMedCrossRef Wang Z, Lin H. Nanos maintains germline stem cell self-renewal by preventing differentiation. Science. 2004;303(5666):2016–9.PubMedCrossRef
16.
go back to reference Grelet S, Andries V, Polette M, Gilles C, Staes K, Martin AP, et al. The human NANOS3 gene contributes to lung tumour invasion by inducing epithelial–mesenchymal transition. J Pathol. 2015;237(1):25–37.PubMedCrossRef Grelet S, Andries V, Polette M, Gilles C, Staes K, Martin AP, et al. The human NANOS3 gene contributes to lung tumour invasion by inducing epithelial–mesenchymal transition. J Pathol. 2015;237(1):25–37.PubMedCrossRef
17.
go back to reference Tsuda M, Sasaoka Y, Kiso M, Abe K, Haraguchi S, Kobayashi S, et al. Conserved role of nanos proteins in germ cell development. Science. 2003;301(5637):1239–41.PubMedCrossRef Tsuda M, Sasaoka Y, Kiso M, Abe K, Haraguchi S, Kobayashi S, et al. Conserved role of nanos proteins in germ cell development. Science. 2003;301(5637):1239–41.PubMedCrossRef
18.
go back to reference Kusz KM, Tomczyk L, Sajek M, Spik A, Latos-Bielenska A, Jedrzejczak P, et al. The highly conserved NANOS2 protein: testis-specific expression and significance for the human male reproduction. Mol Hum Reprod. 2009;15(3):165–71.PubMedCrossRef Kusz KM, Tomczyk L, Sajek M, Spik A, Latos-Bielenska A, Jedrzejczak P, et al. The highly conserved NANOS2 protein: testis-specific expression and significance for the human male reproduction. Mol Hum Reprod. 2009;15(3):165–71.PubMedCrossRef
19.
go back to reference Jørgensen A, Nielsen JE, Almstrup K, Toft BG, Petersen BL, Meyts ER-D. Dysregulation of the mitosis-meiosis switch in testicular carcinomain situ. J Pathol. 2013;229(4):588–98.PubMedCrossRef Jørgensen A, Nielsen JE, Almstrup K, Toft BG, Petersen BL, Meyts ER-D. Dysregulation of the mitosis-meiosis switch in testicular carcinomain situ. J Pathol. 2013;229(4):588–98.PubMedCrossRef
20.
go back to reference Miles WO, Korenjak M, Griffiths LM, Dyer MA, Provero P, Dyson NJ. Post-transcriptional gene expression control by NANOS is up-regulated and functionally important in pRb-deficient cells. EMBO J. 2014;33(19):2201–15.PubMedPubMedCentralCrossRef Miles WO, Korenjak M, Griffiths LM, Dyer MA, Provero P, Dyson NJ. Post-transcriptional gene expression control by NANOS is up-regulated and functionally important in pRb-deficient cells. EMBO J. 2014;33(19):2201–15.PubMedPubMedCentralCrossRef
21.
go back to reference Safari M, Khoshnevisan A. Cancer stem cells and chemoresistance in glioblastoma multiform: a review article. J Stem Cells. 2015;10(4):271–85.PubMed Safari M, Khoshnevisan A. Cancer stem cells and chemoresistance in glioblastoma multiform: a review article. J Stem Cells. 2015;10(4):271–85.PubMed
22.
go back to reference Piccirillo SGM, Reynolds BA, Zanetti N, Lamorte G, Binda E, Broggi G, et al. Bone morphogenetic proteins inhibit the tumorigenic potential of human brain tumour-initiating cells. Nature. 2006;444(7120):761–5.PubMedCrossRef Piccirillo SGM, Reynolds BA, Zanetti N, Lamorte G, Binda E, Broggi G, et al. Bone morphogenetic proteins inhibit the tumorigenic potential of human brain tumour-initiating cells. Nature. 2006;444(7120):761–5.PubMedCrossRef
23.
go back to reference Pérez Castillo A, Aguilar-Morante D, Morales-García JA, Dorado J. Cancer stem cells and brain tumors. Clin Transl Oncol. 2008;10(5):262–7.PubMedCrossRef Pérez Castillo A, Aguilar-Morante D, Morales-García JA, Dorado J. Cancer stem cells and brain tumors. Clin Transl Oncol. 2008;10(5):262–7.PubMedCrossRef
24.
go back to reference Cheng J-X, Liu B-L, Zhang X. How powerful is CD133 as a cancer stem cell marker in brain tumors? Cancer Treat Rev. 2009;35(5):403–8.PubMedCrossRef Cheng J-X, Liu B-L, Zhang X. How powerful is CD133 as a cancer stem cell marker in brain tumors? Cancer Treat Rev. 2009;35(5):403–8.PubMedCrossRef
25.
go back to reference Lee J, Son MJ, Woolard K, Donin NM, Li A, Cheng CH, et al. Epigenetic-mediated dysfunction of the bone morphogenetic protein pathway inhibits differentiation of glioblastoma-initiating cells. Cancer Cell. 2008;13(1):69–80.PubMedPubMedCentralCrossRef Lee J, Son MJ, Woolard K, Donin NM, Li A, Cheng CH, et al. Epigenetic-mediated dysfunction of the bone morphogenetic protein pathway inhibits differentiation of glioblastoma-initiating cells. Cancer Cell. 2008;13(1):69–80.PubMedPubMedCentralCrossRef
26.
go back to reference Wu Y, Wu PY. CD133 as a marker for cancer stem cells: progresses and concerns. Stem Cells Dev. 2009;18(8):1127–34.PubMedCrossRef Wu Y, Wu PY. CD133 as a marker for cancer stem cells: progresses and concerns. Stem Cells Dev. 2009;18(8):1127–34.PubMedCrossRef
27.
go back to reference Sedaghat S, Gheytanchi E, Asgari M, Roudi R, Keymoosi H, Madjd Z. Expression of cancer stem cell markers OCT4 and CD133 in transitional cell carcinomas. Appl Immunohistochem Mol Morphol. 2017;25(3):196–202.PubMedCrossRef Sedaghat S, Gheytanchi E, Asgari M, Roudi R, Keymoosi H, Madjd Z. Expression of cancer stem cell markers OCT4 and CD133 in transitional cell carcinomas. Appl Immunohistochem Mol Morphol. 2017;25(3):196–202.PubMedCrossRef
28.
go back to reference Niwa H, Miyazaki J, Smith AG. Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells. Nat Genet. 2000;24(4):372–6.PubMedCrossRef Niwa H, Miyazaki J, Smith AG. Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells. Nat Genet. 2000;24(4):372–6.PubMedCrossRef
29.
go back to reference Hattermann K, Flüh C, Engel D, Mehdorn HM, Synowitz M, Mentlein R, et al. Stem cell markers in glioma progression and recurrence. Int J Oncol. 2016;49(5):1899–910.PubMedCrossRef Hattermann K, Flüh C, Engel D, Mehdorn HM, Synowitz M, Mentlein R, et al. Stem cell markers in glioma progression and recurrence. Int J Oncol. 2016;49(5):1899–910.PubMedCrossRef
30.
go back to reference Du Y. The role and molecular mechanism of DAZL gene in lung cancer. Changsha: Hunan Normal University; 2019. Du Y. The role and molecular mechanism of DAZL gene in lung cancer. Changsha: Hunan Normal University; 2019.
31.
go back to reference Stefanidis K, Pergialiotis V, Christakis D, Patta J, Stefanidi D, Loutradis D. OCT-4 and DAZL expression in precancerous lesions of the human uterine cervix. J Obstet Gynaecol Res. 2015;41(5):763–7.PubMedCrossRef Stefanidis K, Pergialiotis V, Christakis D, Patta J, Stefanidi D, Loutradis D. OCT-4 and DAZL expression in precancerous lesions of the human uterine cervix. J Obstet Gynaecol Res. 2015;41(5):763–7.PubMedCrossRef
32.
go back to reference Stefanidis K, Loutradis D, Vassiliou L-V, Anastasiadou V, Kiapekou E, Nikas V, et al. Nevirapine induces growth arrest and premature senescence in human cervical carcinoma cells. Gynecol Oncol. 2008;111(2):344–9.PubMedCrossRef Stefanidis K, Loutradis D, Vassiliou L-V, Anastasiadou V, Kiapekou E, Nikas V, et al. Nevirapine induces growth arrest and premature senescence in human cervical carcinoma cells. Gynecol Oncol. 2008;111(2):344–9.PubMedCrossRef
33.
34.
35.
go back to reference Zhang C, Yang M, Li Y, Tang S, Sun X. FOXA1 is upregulated in glioma and promotes proliferation as well as cell cycle through regulation of cyclin D1 expression. Cancer Manag Res. 2018;10:3283–93.PubMedPubMedCentralCrossRef Zhang C, Yang M, Li Y, Tang S, Sun X. FOXA1 is upregulated in glioma and promotes proliferation as well as cell cycle through regulation of cyclin D1 expression. Cancer Manag Res. 2018;10:3283–93.PubMedPubMedCentralCrossRef
36.
go back to reference Srikanth M, Kim J, Das S, Kessler JA. BMP signaling induces astrocytic differentiation of clinically derived oligodendroglioma propagating cells. Mol Cancer Res. 2014;12(2):283–94.PubMedCrossRef Srikanth M, Kim J, Das S, Kessler JA. BMP signaling induces astrocytic differentiation of clinically derived oligodendroglioma propagating cells. Mol Cancer Res. 2014;12(2):283–94.PubMedCrossRef
37.
go back to reference Klose A, Waerzeggers Y, Monfared P, Vukicevic S, Kaijzel EL, Winkeler A, et al. Imaging bone morphogenetic protein 7 induced cell cycle arrest in experimental gliomas. Neoplasia. 2011;13(3):276–85.PubMedPubMedCentralCrossRef Klose A, Waerzeggers Y, Monfared P, Vukicevic S, Kaijzel EL, Winkeler A, et al. Imaging bone morphogenetic protein 7 induced cell cycle arrest in experimental gliomas. Neoplasia. 2011;13(3):276–85.PubMedPubMedCentralCrossRef
38.
go back to reference Gomes WA, Mehler MF, Kessler JA. Transgenic overexpression of BMP4 increases astroglial and decreases oligodendroglial lineage commitment. Dev Biol. 2003;255(1):164–77.PubMedCrossRef Gomes WA, Mehler MF, Kessler JA. Transgenic overexpression of BMP4 increases astroglial and decreases oligodendroglial lineage commitment. Dev Biol. 2003;255(1):164–77.PubMedCrossRef
39.
go back to reference Irish V, Lehmann R, Akam M. The Drosophila posterior-group gene nanos functions by repressing hunchback activity. Nature. 1989;338(6217):646–8.PubMedCrossRef Irish V, Lehmann R, Akam M. The Drosophila posterior-group gene nanos functions by repressing hunchback activity. Nature. 1989;338(6217):646–8.PubMedCrossRef
40.
go back to reference Wang C, Lehmann R. Nanos is the localized posterior determinant in Drosophila. Cell. 1991;66(4):637–47.PubMedCrossRef Wang C, Lehmann R. Nanos is the localized posterior determinant in Drosophila. Cell. 1991;66(4):637–47.PubMedCrossRef
41.
go back to reference Kobayashi S, Yamada M, Asaoka M, Kitamura T. Essential role of the posterior morphogen nanos for germline development in Drosophila. Nature. 1996;380(6576):708–11.PubMedCrossRef Kobayashi S, Yamada M, Asaoka M, Kitamura T. Essential role of the posterior morphogen nanos for germline development in Drosophila. Nature. 1996;380(6576):708–11.PubMedCrossRef
42.
go back to reference De Keuckelaere E, Hulpiau P, Saeys Y, Berx G, van Roy F. Nanos genes and their role in development and beyond. Cell Mol Life Sci. 2018;75(11):1929–46.PubMedCrossRef De Keuckelaere E, Hulpiau P, Saeys Y, Berx G, van Roy F. Nanos genes and their role in development and beyond. Cell Mol Life Sci. 2018;75(11):1929–46.PubMedCrossRef
43.
go back to reference Wang J, Rousseaux S, Khochbin S. Sustaining cancer through addictive ectopic gene activation. Curr Opin Oncol. 2014;26(1):73–7.PubMedCrossRef Wang J, Rousseaux S, Khochbin S. Sustaining cancer through addictive ectopic gene activation. Curr Opin Oncol. 2014;26(1):73–7.PubMedCrossRef
44.
go back to reference Wang T, Birsoy K, Hughes NW, Krupczak KM, Post Y, Wei JJ, et al. Identification and characterization of essential genes in the human genome. Science. 2015;350(6264):1096–101.PubMedPubMedCentralCrossRef Wang T, Birsoy K, Hughes NW, Krupczak KM, Post Y, Wei JJ, et al. Identification and characterization of essential genes in the human genome. Science. 2015;350(6264):1096–101.PubMedPubMedCentralCrossRef
45.
go back to reference Hart T, Chandrashekhar M, Aregger M, Steinhart Z, Brown Kevin R, MacLeod G, et al. High-resolution CRISPR screens reveal fitness genes and genotype-specific cancer liabilities. Cell. 2015;163(6):1515–26.PubMedCrossRef Hart T, Chandrashekhar M, Aregger M, Steinhart Z, Brown Kevin R, MacLeod G, et al. High-resolution CRISPR screens reveal fitness genes and genotype-specific cancer liabilities. Cell. 2015;163(6):1515–26.PubMedCrossRef
46.
go back to reference Chen S, Sanjana Neville E, Zheng K, Shalem O, Lee K, Shi X, et al. Genome-wide CRISPR screen in a mouse model of tumor growth and metastasis. Cell. 2015;160(6):1246–60.PubMedPubMedCentralCrossRef Chen S, Sanjana Neville E, Zheng K, Shalem O, Lee K, Shi X, et al. Genome-wide CRISPR screen in a mouse model of tumor growth and metastasis. Cell. 2015;160(6):1246–60.PubMedPubMedCentralCrossRef
47.
go back to reference Han K, Jeng EE, Hess GT, Morgens DW, Li A, Bassik MC. Synergistic drug combinations for cancer identified in a CRISPR screen for pairwise genetic interactions. Nat Biotechnol. 2017;35(5):463–74.PubMedPubMedCentralCrossRef Han K, Jeng EE, Hess GT, Morgens DW, Li A, Bassik MC. Synergistic drug combinations for cancer identified in a CRISPR screen for pairwise genetic interactions. Nat Biotechnol. 2017;35(5):463–74.PubMedPubMedCentralCrossRef
48.
go back to reference Shi J, Wang E, Milazzo JP, Wang Z, Kinney JB, Vakoc CR. Discovery of cancer drug targets by CRISPR–Cas9 screening of protein domains. Nat Biotechnol. 2015;33(6):661–7.PubMedPubMedCentralCrossRef Shi J, Wang E, Milazzo JP, Wang Z, Kinney JB, Vakoc CR. Discovery of cancer drug targets by CRISPR–Cas9 screening of protein domains. Nat Biotechnol. 2015;33(6):661–7.PubMedPubMedCentralCrossRef
49.
go back to reference Kurata M, Rathe SK, Bailey NJ, Aumann NK, Jones JM, Veldhuijzen GW, et al. Using genome-wide CRISPR library screening with library resistant DCK to find new sources of Ara-C drug resistance in AML. Sci Rep. 2016;6:36199.PubMedPubMedCentralCrossRef Kurata M, Rathe SK, Bailey NJ, Aumann NK, Jones JM, Veldhuijzen GW, et al. Using genome-wide CRISPR library screening with library resistant DCK to find new sources of Ara-C drug resistance in AML. Sci Rep. 2016;6:36199.PubMedPubMedCentralCrossRef
50.
go back to reference Strumane K, Bonnomet A, Stove C, Vandenbroucke R, Nawrocki-Raby B, Bruyneel E, Mareel M, et al. E-cadherin regulates human Nanos1, which interacts with p120ctn and induces tumor cell migration and invasion. Cancer Res. 2006;66(20):10007–15.PubMedCrossRef Strumane K, Bonnomet A, Stove C, Vandenbroucke R, Nawrocki-Raby B, Bruyneel E, Mareel M, et al. E-cadherin regulates human Nanos1, which interacts with p120ctn and induces tumor cell migration and invasion. Cancer Res. 2006;66(20):10007–15.PubMedCrossRef
51.
go back to reference Loriot A, Boon T, De Smet C. Five new human cancer-germline genes identified among 12 genes expressed in spermatogonia. Int J Cancer. 2003;105(3):371–6.PubMedCrossRef Loriot A, Boon T, De Smet C. Five new human cancer-germline genes identified among 12 genes expressed in spermatogonia. Int J Cancer. 2003;105(3):371–6.PubMedCrossRef
52.
go back to reference Rousseaux S, Debernardi A, Jacquiau B, Vitte AL, Vesin A, Nagy-Mignotte H, et al. Ectopic activation of germline and placental genes identifies aggressive metastasis-prone lung cancers. Sci Transl Med. 2013;5(186):186ra166.CrossRef Rousseaux S, Debernardi A, Jacquiau B, Vitte AL, Vesin A, Nagy-Mignotte H, et al. Ectopic activation of germline and placental genes identifies aggressive metastasis-prone lung cancers. Sci Transl Med. 2013;5(186):186ra166.CrossRef
53.
go back to reference Chirasani SR, Sternjak A, Wend P, Momma S, Campos B, Herrmann IM, Graf D, et al. Bone morphogenetic protein-7 release from endogenous neural precursor cells suppresses the tumourigenicity of stem-like glioblastoma cells. Brain. 2010;133(7):1961–72.PubMedCrossRef Chirasani SR, Sternjak A, Wend P, Momma S, Campos B, Herrmann IM, Graf D, et al. Bone morphogenetic protein-7 release from endogenous neural precursor cells suppresses the tumourigenicity of stem-like glioblastoma cells. Brain. 2010;133(7):1961–72.PubMedCrossRef
55.
go back to reference Tate CM, Pallini R, Ricci-Vitiani L, Dowless M, Shiyanova T, D’Alessandris GQ, Morgante L, et al. A BMP7 variant inhibits the tumorigenic potential of glioblastoma stem-like cells. Cell Death Differ. 2012;19(10):1644–54.PubMedPubMedCentralCrossRef Tate CM, Pallini R, Ricci-Vitiani L, Dowless M, Shiyanova T, D’Alessandris GQ, Morgante L, et al. A BMP7 variant inhibits the tumorigenic potential of glioblastoma stem-like cells. Cell Death Differ. 2012;19(10):1644–54.PubMedPubMedCentralCrossRef
56.
go back to reference Voorneveld PW, Kodach LL, Jacobs RJ, van Noesel CJM, Peppelenbosch MP, Korkmaz KS, et al. The BMP pathway either enhances or inhibits the Wnt pathway depending on the SMAD4 and p53 status in CRC. Br J Cancer. 2015;112(1):122–30.PubMedCrossRef Voorneveld PW, Kodach LL, Jacobs RJ, van Noesel CJM, Peppelenbosch MP, Korkmaz KS, et al. The BMP pathway either enhances or inhibits the Wnt pathway depending on the SMAD4 and p53 status in CRC. Br J Cancer. 2015;112(1):122–30.PubMedCrossRef
Metadata
Title
Nanos3, a cancer-germline gene, promotes cell proliferation, migration, chemoresistance, and invasion of human glioblastoma
Authors
Fengyu Zhang
Ruilai Liu
Cheng Liu
Haishi Zhang
Yuan Lu
Publication date
01-12-2020
Publisher
BioMed Central
Published in
Cancer Cell International / Issue 1/2020
Electronic ISSN: 1475-2867
DOI
https://doi.org/10.1186/s12935-020-01272-1

Other articles of this Issue 1/2020

Cancer Cell International 1/2020 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine