Skip to main content
Top
Published in: Investigational New Drugs 5/2020

01-10-2020 | Glioblastoma | PRECLINICAL STUDIES

Microarray expression profiles and bioinformatics analysis of mRNAs, lncRNAs, and circRNAs in the secondary temozolomide-resistant glioblastoma

Authors: Chengbin Zhao, Yuyuan Gao, Ruiming Guo, Hongwei Li, Bo Yang

Published in: Investigational New Drugs | Issue 5/2020

Login to get access

Abstract

Temozolomide is a first line anti-tumor drug used for the treatment of patients with Glioblastoma multiforme (GBM). However, the drug resistance to temozolomide limits its clinical application. Therefore, novel strategies to overcome chemoresistance are desperately needed for improved treatment of human GBM. Here, we simultaneously detected, for the first time, the expression profiles of mRNAs, lncRNAs, and circRNAs in three pairs of secondary temozolomide-resistant glioblastoma (STRG) and matched primary glioblastoma tissues by microarrays. Using these data, we discovered a total of 92 mRNA, 299 lncRNAs and 53 circRNAs were altered in human glioma tissue after chemotherapy with temozolomide. The functions of differentially expressed lncRNAs, circRNAs were annotated by analysis of Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG). The results showed that the highest enriched GO terms of the upregulated lncRNAs were embryonic forelimb morphogenesis (BP), extracellular space (CC), and serine-type endopeptidase activity (MF). Meanwhile, GO:0035360(BP), PRC1 complex (CC), and ubiquitin-protein transferase activity (MF) were the highest enriched GO terms targeted by downregulated lncRNAs. The NF-kappa B signaling pathway were significantly enriched in the STRG. However, circRNAs highest enriched GO term was viral process, chromosome, and protein transporter activity, respectively. KEGG pathway analysis showed that circRNAs in the network were enriched in ErbB signaling pathway. Furthermore, we also predicted the potential role of these differentially expressed ncRNAs and constructed a network of lncRNAs-mRNAs and circRNAs-miRNAs to show their interactions. After a series of bioinformatics analyses, we found that low expression of NONHSAT163779 and high expression of circ_0043949 are closely related to the chemoresistance of STRG. Our findings revealed the alteration of expression patterns of mRNAs, lncRNAs, and circRNAs in the secondary temozolomide-resistant glioblastoma for the first time. NONHSAT163779 and hsa_circ_0043949 might be potential therapeutic targets and prognostic biomarkers for the treatment of glioblastoma.
Appendix
Available only for authorised users
Literature
1.
go back to reference Puchalski RB, Shah N, Miller J, Dalley R, Nomura SR, Yoon JG, Smith KA, Lankerovich M, Bertagnolli D, Bickley K, Boe AF, Brouner K, Butler S, Caldejon S, Chapin M, Datta S, Dee N, Desta T, Dolbeare T, Dotson N, Ebbert A, Feng D, Feng X, Fisher M, Gee G, Goldy J, Gourley L, Gregor BW, Gu G, Hejazinia N, Hohmann J, Hothi P, Howard R, Joines K, Kriedberg A, Kuan L, Lau C, Lee F, Lee H, Lemon T, Long F, Mastan N, Mott E, Murthy C, Ngo K, Olson E, Reding M, Riley Z, Rosen D, Sandman D, Shapovalova N, Slaughterbeck CR, Sodt A, Stockdale G, Szafer A, Wakeman W, Wohnoutka PE, White SJ, Marsh D, Rostomily RC, Ng L, Dang C, Jones A, Keogh B, Gittleman HR, Barnholtz-Sloan JS, Cimino PJ, Uppin MS, Keene CD, Farrokhi FR, Lathia JD, Berens ME, Iavarone A, Bernard A, Lein E, Phillips JW, Rostad SW, Cobbs C, Hawrylycz MJ, Foltz GD (2018) An anatomic transcriptional atlas of human glioblastoma[J]. SCIENCE 360(6389):660–663CrossRef Puchalski RB, Shah N, Miller J, Dalley R, Nomura SR, Yoon JG, Smith KA, Lankerovich M, Bertagnolli D, Bickley K, Boe AF, Brouner K, Butler S, Caldejon S, Chapin M, Datta S, Dee N, Desta T, Dolbeare T, Dotson N, Ebbert A, Feng D, Feng X, Fisher M, Gee G, Goldy J, Gourley L, Gregor BW, Gu G, Hejazinia N, Hohmann J, Hothi P, Howard R, Joines K, Kriedberg A, Kuan L, Lau C, Lee F, Lee H, Lemon T, Long F, Mastan N, Mott E, Murthy C, Ngo K, Olson E, Reding M, Riley Z, Rosen D, Sandman D, Shapovalova N, Slaughterbeck CR, Sodt A, Stockdale G, Szafer A, Wakeman W, Wohnoutka PE, White SJ, Marsh D, Rostomily RC, Ng L, Dang C, Jones A, Keogh B, Gittleman HR, Barnholtz-Sloan JS, Cimino PJ, Uppin MS, Keene CD, Farrokhi FR, Lathia JD, Berens ME, Iavarone A, Bernard A, Lein E, Phillips JW, Rostad SW, Cobbs C, Hawrylycz MJ, Foltz GD (2018) An anatomic transcriptional atlas of human glioblastoma[J]. SCIENCE 360(6389):660–663CrossRef
2.
go back to reference Northcott PA (2017) Cancer: keeping it real to kill glioblastoma[J]. Nature 547(7663):291–292CrossRef Northcott PA (2017) Cancer: keeping it real to kill glioblastoma[J]. Nature 547(7663):291–292CrossRef
3.
go back to reference Hilf N, Kuttruff-Coqui S, Frenzel K, Bukur V, Stevanović S, Gouttefangeas C, Platten M, Tabatabai G, Dutoit V, van der Burg S, Thor Straten P, Martínez-Ricarte F, Ponsati B, Okada H, Lassen U, Admon A, Ottensmeier CH, Ulges A, Kreiter S, von Deimling A, Skardelly M, Migliorini D, Kroep JR, Idorn M, Rodon J, Piró J, Poulsen HS, Shraibman B, McCann K, Mendrzyk R, Löwer M, Stieglbauer M, Britten CM, Capper D, Welters MJP, Sahuquillo J, Kiesel K, Derhovanessian E, Rusch E, Bunse L, Song C, Heesch S, Wagner C, Kemmer-Brück A, Ludwig J, Castle JC, Schoor O, Tadmor AD, Green E, Fritsche J, Meyer M, Pawlowski N, Dorner S, Hoffgaard F, Rössler B, Maurer D, Weinschenk T, Reinhardt C, Huber C, Rammensee HG, Singh-Jasuja H, Sahin U, Dietrich PY, Wick W (2019) Actively personalized vaccination trial for newly diagnosed glioblastoma[J]. Nature 565(7738):240–245CrossRef Hilf N, Kuttruff-Coqui S, Frenzel K, Bukur V, Stevanović S, Gouttefangeas C, Platten M, Tabatabai G, Dutoit V, van der Burg S, Thor Straten P, Martínez-Ricarte F, Ponsati B, Okada H, Lassen U, Admon A, Ottensmeier CH, Ulges A, Kreiter S, von Deimling A, Skardelly M, Migliorini D, Kroep JR, Idorn M, Rodon J, Piró J, Poulsen HS, Shraibman B, McCann K, Mendrzyk R, Löwer M, Stieglbauer M, Britten CM, Capper D, Welters MJP, Sahuquillo J, Kiesel K, Derhovanessian E, Rusch E, Bunse L, Song C, Heesch S, Wagner C, Kemmer-Brück A, Ludwig J, Castle JC, Schoor O, Tadmor AD, Green E, Fritsche J, Meyer M, Pawlowski N, Dorner S, Hoffgaard F, Rössler B, Maurer D, Weinschenk T, Reinhardt C, Huber C, Rammensee HG, Singh-Jasuja H, Sahin U, Dietrich PY, Wick W (2019) Actively personalized vaccination trial for newly diagnosed glioblastoma[J]. Nature 565(7738):240–245CrossRef
4.
go back to reference Desjardins A, Gromeier M, Herndon JE 2nd et al (2018) Recurrent Glioblastoma treated with recombinant poliovirus[J]. N Engl J Med 379(2):150–161CrossRef Desjardins A, Gromeier M, Herndon JE 2nd et al (2018) Recurrent Glioblastoma treated with recombinant poliovirus[J]. N Engl J Med 379(2):150–161CrossRef
5.
go back to reference Banelli B, Forlani A, Allemanni G et al (2017) MicroRNA in Glioblastoma: an overview[J]. Int J Genomics 2017:7639084CrossRef Banelli B, Forlani A, Allemanni G et al (2017) MicroRNA in Glioblastoma: an overview[J]. Int J Genomics 2017:7639084CrossRef
6.
go back to reference Lei B, Yu L, Jung TA, Deng Y, Xiang W, Liu Y, Qi S (2018) Prospective series of nine Long noncoding RNAs associated with survival of patients with Glioblastoma[J]. J Neurol Surg A Cent Eur Neurosurg 79(6):471–478CrossRef Lei B, Yu L, Jung TA, Deng Y, Xiang W, Liu Y, Qi S (2018) Prospective series of nine Long noncoding RNAs associated with survival of patients with Glioblastoma[J]. J Neurol Surg A Cent Eur Neurosurg 79(6):471–478CrossRef
7.
go back to reference Gao WZ, Guo LM, Xu TQ, Yin YH, Jia F (2018) Identification of a multidimensional transcriptome signature for survival prediction of postoperative glioblastoma multiforme patients[J]. J Transl Med 16(1):368CrossRef Gao WZ, Guo LM, Xu TQ, Yin YH, Jia F (2018) Identification of a multidimensional transcriptome signature for survival prediction of postoperative glioblastoma multiforme patients[J]. J Transl Med 16(1):368CrossRef
8.
go back to reference Sanchez Calle A, Kawamura Y, Yamamoto Y, Takeshita F, Ochiya T (2018) Emerging roles of long non-coding RNA in cancer[J]. Cancer Sci 109(7):2093–2100CrossRef Sanchez Calle A, Kawamura Y, Yamamoto Y, Takeshita F, Ochiya T (2018) Emerging roles of long non-coding RNA in cancer[J]. Cancer Sci 109(7):2093–2100CrossRef
9.
go back to reference Chen L, Dzakah EE, Shan G (2018) Targetable long non-coding RNAs in cancer treatments[J]. Cancer Lett 418:119–124CrossRef Chen L, Dzakah EE, Shan G (2018) Targetable long non-coding RNAs in cancer treatments[J]. Cancer Lett 418:119–124CrossRef
10.
go back to reference Arun G, Diermeier SD, Spector DL (2018) Therapeutic targeting of Long non-coding RNAs in Cancer[J]. Trends Mol Med 24(3):257–277CrossRef Arun G, Diermeier SD, Spector DL (2018) Therapeutic targeting of Long non-coding RNAs in Cancer[J]. Trends Mol Med 24(3):257–277CrossRef
11.
go back to reference Murugan AK, Munirajan AK, Alzahrani AS (2018) Long noncoding RNAs: emerging players in thyroid cancer pathogenesis[J]. Endocr Relat Cancer 25(2):R59–R82CrossRef Murugan AK, Munirajan AK, Alzahrani AS (2018) Long noncoding RNAs: emerging players in thyroid cancer pathogenesis[J]. Endocr Relat Cancer 25(2):R59–R82CrossRef
12.
go back to reference Zhao J, Du P, Cui P et al (2018) LncRNA PVT1 promotes angiogenesis via activating the STAT3/VEGFA axis in gastric cancer[J]. Oncogene 37(30):4094–4109CrossRef Zhao J, Du P, Cui P et al (2018) LncRNA PVT1 promotes angiogenesis via activating the STAT3/VEGFA axis in gastric cancer[J]. Oncogene 37(30):4094–4109CrossRef
13.
go back to reference Wang SH, Zhang MD, Wu XC, Weng MZ, Zhou D, Quan ZW (2016) Overexpression of LncRNA-ROR predicts a poor outcome in gallbladder cancer patients and promotes the tumor cells proliferation, migration, and invasion[J]. Tumour Biol 37(9):12867–12875CrossRef Wang SH, Zhang MD, Wu XC, Weng MZ, Zhou D, Quan ZW (2016) Overexpression of LncRNA-ROR predicts a poor outcome in gallbladder cancer patients and promotes the tumor cells proliferation, migration, and invasion[J]. Tumour Biol 37(9):12867–12875CrossRef
14.
go back to reference Chen F, Li Z, Deng C, Yan H (2019) Integrated analysis identifying new lncRNA markers revealed in ceRNA network for tumor recurrence in papillary thyroid carcinoma and build of nomogram[J]. J Cell Biochem 120(12):19673–19683CrossRef Chen F, Li Z, Deng C, Yan H (2019) Integrated analysis identifying new lncRNA markers revealed in ceRNA network for tumor recurrence in papillary thyroid carcinoma and build of nomogram[J]. J Cell Biochem 120(12):19673–19683CrossRef
15.
go back to reference Huang MJ, Zhao JY, Xu JJ et al (2019) lncRNA ADAMTS9-AS2 controls human Mesenchymal stem cell Chondrogenic differentiation and functions AS a ceRNA[J]. Mol Ther Nucleic Acids 18:533–545CrossRef Huang MJ, Zhao JY, Xu JJ et al (2019) lncRNA ADAMTS9-AS2 controls human Mesenchymal stem cell Chondrogenic differentiation and functions AS a ceRNA[J]. Mol Ther Nucleic Acids 18:533–545CrossRef
16.
go back to reference Zang J, Lu D, Xu A (2020) The interaction of circRNAs and RNA binding proteins: an important part of circRNA maintenance and function[J]. J Neurosci Res 98(1):87–97CrossRef Zang J, Lu D, Xu A (2020) The interaction of circRNAs and RNA binding proteins: an important part of circRNA maintenance and function[J]. J Neurosci Res 98(1):87–97CrossRef
17.
go back to reference Verduci L, Strano S, Yarden Y, Blandino G (2019) The circRNA-microRNA code: emerging implications for cancer diagnosis and treatment[J]. Mol Oncol 13(4):669–680CrossRef Verduci L, Strano S, Yarden Y, Blandino G (2019) The circRNA-microRNA code: emerging implications for cancer diagnosis and treatment[J]. Mol Oncol 13(4):669–680CrossRef
18.
go back to reference Zhang HD, Jiang LH, Sun DW, Hou JC, Ji ZL (2018) CircRNA: a novel type of biomarker for cancer[J]. Breast Cancer 25(1):1–7CrossRef Zhang HD, Jiang LH, Sun DW, Hou JC, Ji ZL (2018) CircRNA: a novel type of biomarker for cancer[J]. Breast Cancer 25(1):1–7CrossRef
19.
go back to reference Yin Y, Long J, He Q, Li Y, Liao Y, He P, Zhu W (2019) Emerging roles of circRNA in formation and progression of cancer[J]. J Cancer 10(21):5015–5021CrossRef Yin Y, Long J, He Q, Li Y, Liao Y, He P, Zhu W (2019) Emerging roles of circRNA in formation and progression of cancer[J]. J Cancer 10(21):5015–5021CrossRef
20.
go back to reference Wang ZL, Wang C, Liu W et al (2019) Emerging roles of the long non-coding RNA 01296/microRNA-143-3p/MSI2 axis in development of thyroid cancer[J]. Biosci Rep Wang ZL, Wang C, Liu W et al (2019) Emerging roles of the long non-coding RNA 01296/microRNA-143-3p/MSI2 axis in development of thyroid cancer[J]. Biosci Rep
21.
go back to reference Li Q, Jia H, Li H, Dong C, Wang Y, Zou Z (2016) LncRNA and mRNA expression profiles of glioblastoma multiforme (GBM) reveal the potential roles of lncRNAs in GBM pathogenesis[J]. Tumour Biol 37(11):14537–14552CrossRef Li Q, Jia H, Li H, Dong C, Wang Y, Zou Z (2016) LncRNA and mRNA expression profiles of glioblastoma multiforme (GBM) reveal the potential roles of lncRNAs in GBM pathogenesis[J]. Tumour Biol 37(11):14537–14552CrossRef
22.
go back to reference Bissar-Tadmouri N, Donahue WL, Al-Gazali L et al (2014) X chromosome exome sequencing reveals a novel ALG13 mutation in a nonsyndromic intellectual disability family with multiple affected male siblings[J]. Am J Med Genet A 164A(1):164–169CrossRef Bissar-Tadmouri N, Donahue WL, Al-Gazali L et al (2014) X chromosome exome sequencing reveals a novel ALG13 mutation in a nonsyndromic intellectual disability family with multiple affected male siblings[J]. Am J Med Genet A 164A(1):164–169CrossRef
23.
go back to reference Hamici S, Bastaki F, Khalifa M (2017) Exome sequence identified a c.320A > G ALG13 variant in a female with infantile epileptic encephalopathy with normal glycosylation and random X inactivation: review of the literature[J]. European Journal of Medical Genetics 60(10):541–547CrossRef Hamici S, Bastaki F, Khalifa M (2017) Exome sequence identified a c.320A > G ALG13 variant in a female with infantile epileptic encephalopathy with normal glycosylation and random X inactivation: review of the literature[J]. European Journal of Medical Genetics 60(10):541–547CrossRef
24.
go back to reference Gao P, Wang F, Huo J, Wan D, Zhang J, Niu J, Wu J, Yu B, Sun T (2019) ALG13 deficiency associated with increased seizure susceptibility and severity[J]. NEUROSCIENCE 409:204–221CrossRef Gao P, Wang F, Huo J, Wan D, Zhang J, Niu J, Wu J, Yu B, Sun T (2019) ALG13 deficiency associated with increased seizure susceptibility and severity[J]. NEUROSCIENCE 409:204–221CrossRef
25.
go back to reference Zhang F, Cui Y (2019) Dysregulation of DNA methylation patterns may identify patients with breast cancer resistant to endocrine therapy: a predictive classifier based on differentially methylated regions[J]. Oncol Lett 18(2):1287–1303PubMedPubMedCentral Zhang F, Cui Y (2019) Dysregulation of DNA methylation patterns may identify patients with breast cancer resistant to endocrine therapy: a predictive classifier based on differentially methylated regions[J]. Oncol Lett 18(2):1287–1303PubMedPubMedCentral
26.
go back to reference De Antonellis P, Carotenuto M, Vandenbussche J et al (2014) Early targets of miR-34a in neuroblastoma[J]. Mol Cell Proteomics 13(8):2114–2131CrossRef De Antonellis P, Carotenuto M, Vandenbussche J et al (2014) Early targets of miR-34a in neuroblastoma[J]. Mol Cell Proteomics 13(8):2114–2131CrossRef
27.
go back to reference Luo J, Liu H, Luan S, Li Z (2019) Guidance of circular RNAs to proteins' behavior as binding partners[J]. Cell Mol Life Sci 76(21):4233–4243CrossRef Luo J, Liu H, Luan S, Li Z (2019) Guidance of circular RNAs to proteins' behavior as binding partners[J]. Cell Mol Life Sci 76(21):4233–4243CrossRef
28.
go back to reference Zaiou M (2019) Circular RNAs in hypertension: challenges and clinical promise[J]. Hypertens Res 42(11):1653–1663CrossRef Zaiou M (2019) Circular RNAs in hypertension: challenges and clinical promise[J]. Hypertens Res 42(11):1653–1663CrossRef
29.
go back to reference Wang KW, Dong M (2019) Role of circular RNAs in gastric cancer: recent advances and prospects[J]. World J Gastrointest Oncol 11(6):459–469CrossRef Wang KW, Dong M (2019) Role of circular RNAs in gastric cancer: recent advances and prospects[J]. World J Gastrointest Oncol 11(6):459–469CrossRef
30.
go back to reference Zhang QY, Men CJ, Ding XW (2019) Upregulation of microRNA-140-3p inhibits epithelial-mesenchymal transition, invasion, and metastasis of hepatocellular carcinoma through inactivation of the MAPK signaling pathway by targeting GRN[J]. J Cell Biochem 120(9):14885–14898CrossRef Zhang QY, Men CJ, Ding XW (2019) Upregulation of microRNA-140-3p inhibits epithelial-mesenchymal transition, invasion, and metastasis of hepatocellular carcinoma through inactivation of the MAPK signaling pathway by targeting GRN[J]. J Cell Biochem 120(9):14885–14898CrossRef
31.
go back to reference Zhao K, Li X, Chen X, Zhu Q, Yin F, Ruan Q, Xia J, Niu Z (2019) Inhibition of miR-140-3p or miR-155-5p by antagomir treatment sensitize chordoma cells to chemotherapy drug treatment by increasing PTEN expression[J]. Eur J Pharmacol 854:298–306CrossRef Zhao K, Li X, Chen X, Zhu Q, Yin F, Ruan Q, Xia J, Niu Z (2019) Inhibition of miR-140-3p or miR-155-5p by antagomir treatment sensitize chordoma cells to chemotherapy drug treatment by increasing PTEN expression[J]. Eur J Pharmacol 854:298–306CrossRef
32.
go back to reference Ho KH, Cheng CH, Chou CM et al (2019) miR-140 targeting CTSB signaling suppresses the mesenchymal transition and enhances temozolomide cytotoxicity in glioblastoma multiforme[J]. Pharmacol Res 147:104390CrossRef Ho KH, Cheng CH, Chou CM et al (2019) miR-140 targeting CTSB signaling suppresses the mesenchymal transition and enhances temozolomide cytotoxicity in glioblastoma multiforme[J]. Pharmacol Res 147:104390CrossRef
Metadata
Title
Microarray expression profiles and bioinformatics analysis of mRNAs, lncRNAs, and circRNAs in the secondary temozolomide-resistant glioblastoma
Authors
Chengbin Zhao
Yuyuan Gao
Ruiming Guo
Hongwei Li
Bo Yang
Publication date
01-10-2020
Publisher
Springer US
Published in
Investigational New Drugs / Issue 5/2020
Print ISSN: 0167-6997
Electronic ISSN: 1573-0646
DOI
https://doi.org/10.1007/s10637-019-00884-3

Other articles of this Issue 5/2020

Investigational New Drugs 5/2020 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine