Skip to main content
Top

23-04-2024 | Glioblastoma

Immunotherapy for Brain Tumors: Where We Have Been, and Where Do We Go From Here?

Authors: Alexander F. Wang, BS, Brian Hsueh, MD, PhD, Bryan D. Choi, MD, PhD, Elizabeth R. Gerstner, MD, Gavin P. Dunn, MD, PhD

Published in: Current Treatment Options in Oncology

Login to get access

Opinion statement

Immunotherapy for glioblastoma (GBM) remains an intensive area of investigation. Given the seismic impact of cancer immunotherapy across a range of malignancies, there is optimism that harnessing the power of immunity will influence GBM as well. However, despite several phase 3 studies, there are still no FDA-approved immunotherapies for GBM. Importantly, the field has learned a great deal from the randomized studies to date. Today, we are continuing to better understand the disease-specific features of the microenvironment in GBM—as well as the exploitable antigenic characteristic of the tumor cells themselves—that are informing the next generation of immune-based therapeutic strategies. The coming phase of next-generation immunotherapies is thus poised to bring us closer to treatments that will improve the lives of patients with GBM.
Literature
1.
go back to reference Wen PY, Weller M, Lee EQ, et al. Glioblastoma in adults: a Society for Neuro-Oncology (SNO) and European Society of Neuro-Oncology (EANO) consensus review on current management and future directions. Neuro Oncol. 2020;22:1073–113.PubMedPubMedCentralCrossRef Wen PY, Weller M, Lee EQ, et al. Glioblastoma in adults: a Society for Neuro-Oncology (SNO) and European Society of Neuro-Oncology (EANO) consensus review on current management and future directions. Neuro Oncol. 2020;22:1073–113.PubMedPubMedCentralCrossRef
2.
go back to reference Ye F, Dewanjee S, Li Y, Jha NK, Chen Z-S, Kumar A, Vishakha BT, Jha SK, Tang H. Advancements in clinical aspects of targeted therapy and immunotherapy in breast cancer. Mol Cancer. 2023;22:1–40.CrossRef Ye F, Dewanjee S, Li Y, Jha NK, Chen Z-S, Kumar A, Vishakha BT, Jha SK, Tang H. Advancements in clinical aspects of targeted therapy and immunotherapy in breast cancer. Mol Cancer. 2023;22:1–40.CrossRef
3.
go back to reference Lahiri A, Maji A, Potdar PD, Singh N, Parikh P, Bisht B, Mukherjee A, Paul MK. Lung cancer immunotherapy: progress, pitfalls, and promises. Mol Cancer. 2023;22:1–37.CrossRef Lahiri A, Maji A, Potdar PD, Singh N, Parikh P, Bisht B, Mukherjee A, Paul MK. Lung cancer immunotherapy: progress, pitfalls, and promises. Mol Cancer. 2023;22:1–37.CrossRef
4.
go back to reference Huang AC, Zappasodi R. A decade of checkpoint blockade immunotherapy in melanoma: understanding the molecular basis for immune sensitivity and resistance. Nat Immunol. 2022;23:660–70.PubMedPubMedCentralCrossRef Huang AC, Zappasodi R. A decade of checkpoint blockade immunotherapy in melanoma: understanding the molecular basis for immune sensitivity and resistance. Nat Immunol. 2022;23:660–70.PubMedPubMedCentralCrossRef
5.
go back to reference Alexopoulos G, Zhang J, Karampelas I, Patel M, Kemp J, Coppens J, Mattei TA, Mercier P. Long-term time series forecasting and updates on survival analysis of glioblastoma multiforme: a 1975–2018 Population-Based Study. Neuroepidemiology. 2022;56:75–89.PubMedCrossRef Alexopoulos G, Zhang J, Karampelas I, Patel M, Kemp J, Coppens J, Mattei TA, Mercier P. Long-term time series forecasting and updates on survival analysis of glioblastoma multiforme: a 1975–2018 Population-Based Study. Neuroepidemiology. 2022;56:75–89.PubMedCrossRef
6.
go back to reference Stupp R, Mason WP, van den Bent MJ, et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med. 2005;352:987–96.PubMedCrossRef Stupp R, Mason WP, van den Bent MJ, et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med. 2005;352:987–96.PubMedCrossRef
7.
go back to reference Hegi ME, Diserens A-C, Gorlia T, et al. MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med. 2005;352:997–1003.PubMedCrossRef Hegi ME, Diserens A-C, Gorlia T, et al. MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med. 2005;352:997–1003.PubMedCrossRef
8.
go back to reference Mancini A, Xavier-Magalhães A, Woods WS, et al. Disruption of the β1L isoform of GABP reverses glioblastoma replicative immortality in a TERT promoter mutation-dependent manner. Cancer Cell. 2018;34:513-528.e8.PubMedPubMedCentralCrossRef Mancini A, Xavier-Magalhães A, Woods WS, et al. Disruption of the β1L isoform of GABP reverses glioblastoma replicative immortality in a TERT promoter mutation-dependent manner. Cancer Cell. 2018;34:513-528.e8.PubMedPubMedCentralCrossRef
9.
go back to reference Dunn GP, Bruce AT, Ikeda H, Old LJ, Schreiber RD. Cancer immunoediting: from immunosurveillance to tumor escape. Nat Immunol. 2002;3:991–8.PubMedCrossRef Dunn GP, Bruce AT, Ikeda H, Old LJ, Schreiber RD. Cancer immunoediting: from immunosurveillance to tumor escape. Nat Immunol. 2002;3:991–8.PubMedCrossRef
10.
go back to reference Dunn GP, Old LJ, Schreiber RD. The three Es of cancer immunoediting. Annu Rev Immunol. 2004;22:329–60.PubMedCrossRef Dunn GP, Old LJ, Schreiber RD. The three Es of cancer immunoediting. Annu Rev Immunol. 2004;22:329–60.PubMedCrossRef
11.
go back to reference Dunn GP, Koebel CM, Schreiber RD. Interferons, immunity and cancer immunoediting. Nat Rev Immunol. 2006;6:836–48.PubMedCrossRef Dunn GP, Koebel CM, Schreiber RD. Interferons, immunity and cancer immunoediting. Nat Rev Immunol. 2006;6:836–48.PubMedCrossRef
12.
go back to reference Dunn GP, Fecci PE, Curry WT. Cancer immunoediting in malignant glioma. Neurosurgery. 2012;71:201–22 (discussion 222–3).PubMedCrossRef Dunn GP, Fecci PE, Curry WT. Cancer immunoediting in malignant glioma. Neurosurgery. 2012;71:201–22 (discussion 222–3).PubMedCrossRef
13.
go back to reference Rong Y, Durden DL, Van Meir EG, Brat DJ. “Pseudopalisading” necrosis in glioblastoma: a familiar morphologic feature that links vascular pathology, hypoxia, and angiogenesis. J Neuropathol Exp Neurol. 2006;65:529–39.PubMedCrossRef Rong Y, Durden DL, Van Meir EG, Brat DJ. “Pseudopalisading” necrosis in glioblastoma: a familiar morphologic feature that links vascular pathology, hypoxia, and angiogenesis. J Neuropathol Exp Neurol. 2006;65:529–39.PubMedCrossRef
14.
go back to reference Geindreau M, Ghiringhelli F, Bruchard M. Vascular endothelial growth factor, a key modulator of the anti-tumor immune response. Int J Mol Sci. 2021;22:4871.PubMedPubMedCentralCrossRef Geindreau M, Ghiringhelli F, Bruchard M. Vascular endothelial growth factor, a key modulator of the anti-tumor immune response. Int J Mol Sci. 2021;22:4871.PubMedPubMedCentralCrossRef
15.
go back to reference Gillette JS, Wang EJ, Dowd RS, Toms SA. Barriers to overcoming immunotherapy resistance in glioblastoma. Front Med. 2023;10:1175507.CrossRef Gillette JS, Wang EJ, Dowd RS, Toms SA. Barriers to overcoming immunotherapy resistance in glioblastoma. Front Med. 2023;10:1175507.CrossRef
16.
go back to reference Dubinski D, Wölfer J, Hasselblatt M, Schneider-Hohendorf T, Bogdahn U, Stummer W, Wiendl H, Grauer OM. CD4+ T effector memory cell dysfunction is associated with the accumulation of granulocytic myeloid-derived suppressor cells in glioblastoma patients. Neuro Oncol. 2015;18:807–18.PubMedPubMedCentralCrossRef Dubinski D, Wölfer J, Hasselblatt M, Schneider-Hohendorf T, Bogdahn U, Stummer W, Wiendl H, Grauer OM. CD4+ T effector memory cell dysfunction is associated with the accumulation of granulocytic myeloid-derived suppressor cells in glioblastoma patients. Neuro Oncol. 2015;18:807–18.PubMedPubMedCentralCrossRef
17.
go back to reference Chongsathidkiet P, Jackson C, Koyama S, et al. Sequestration of T cells in bone marrow in the setting of glioblastoma and other intracranial tumors. Nat Med. 2018;24:1459–68.PubMedPubMedCentralCrossRef Chongsathidkiet P, Jackson C, Koyama S, et al. Sequestration of T cells in bone marrow in the setting of glioblastoma and other intracranial tumors. Nat Med. 2018;24:1459–68.PubMedPubMedCentralCrossRef
18.
go back to reference Schaettler M, Richters M, Griffith M, Dunn G. Characterization of the genomic and immunological diversity of malignant human brain tumors through multi-sector analysis. J Immunol. 2020;204:242.45-242.45.CrossRef Schaettler M, Richters M, Griffith M, Dunn G. Characterization of the genomic and immunological diversity of malignant human brain tumors through multi-sector analysis. J Immunol. 2020;204:242.45-242.45.CrossRef
19.
go back to reference Mahlokozera T, Vellimana AK, Li T, et al. Biological and therapeutic implications of multisector sequencing in newly diagnosed glioblastoma. Neuro Oncol. 2018;20:472–83.PubMedCrossRef Mahlokozera T, Vellimana AK, Li T, et al. Biological and therapeutic implications of multisector sequencing in newly diagnosed glioblastoma. Neuro Oncol. 2018;20:472–83.PubMedCrossRef
20.
21.
go back to reference Gerlinger M, Swanton C. How Darwinian models inform therapeutic failure initiated by clonal heterogeneity in cancer medicine. Br J Cancer. 2010;103:1139–43.PubMedPubMedCentralCrossRef Gerlinger M, Swanton C. How Darwinian models inform therapeutic failure initiated by clonal heterogeneity in cancer medicine. Br J Cancer. 2010;103:1139–43.PubMedPubMedCentralCrossRef
22.
go back to reference Anandasabapathy N, Victora GD, Meredith M, et al. Flt3L controls the development of radiosensitive dendritic cells in the meninges and choroid plexus of the steady-state mouse brain. J Exp Med. 2011;208:1695–705.PubMedPubMedCentralCrossRef Anandasabapathy N, Victora GD, Meredith M, et al. Flt3L controls the development of radiosensitive dendritic cells in the meninges and choroid plexus of the steady-state mouse brain. J Exp Med. 2011;208:1695–705.PubMedPubMedCentralCrossRef
23.
go back to reference Sung S-SJ. Monocyte-derived dendritic cells as antigen-presenting cells in T-cell proliferation and cytokine production. Methods Mol Biol. 2019;2020:131–41.PubMedCrossRef Sung S-SJ. Monocyte-derived dendritic cells as antigen-presenting cells in T-cell proliferation and cytokine production. Methods Mol Biol. 2019;2020:131–41.PubMedCrossRef
24.
go back to reference McMahon EJ, Bailey SL, Miller SD. CNS dendritic cells: critical participants in CNS inflammation? Neurochem Int. 2006;49:195–203.PubMedCrossRef McMahon EJ, Bailey SL, Miller SD. CNS dendritic cells: critical participants in CNS inflammation? Neurochem Int. 2006;49:195–203.PubMedCrossRef
25.
go back to reference Bowman-Kirigin JA, Desai R, Saunders BT, et al. The conventional dendritic cell 1 subset primes CD8+ T cells and traffics tumor antigen to drive antitumor immunity in the brain. Cancer Immunol Res. 2023;11:20–37.PubMedPubMedCentralCrossRef Bowman-Kirigin JA, Desai R, Saunders BT, et al. The conventional dendritic cell 1 subset primes CD8+ T cells and traffics tumor antigen to drive antitumor immunity in the brain. Cancer Immunol Res. 2023;11:20–37.PubMedPubMedCentralCrossRef
26.
go back to reference Mrdjen D, Pavlovic A, Hartmann FJ, et al. High-dimensional single-cell mapping of central nervous system immune cells reveals distinct myeloid subsets in health, aging, and disease. Immunity. 2018;48:380-395.e6.PubMedCrossRef Mrdjen D, Pavlovic A, Hartmann FJ, et al. High-dimensional single-cell mapping of central nervous system immune cells reveals distinct myeloid subsets in health, aging, and disease. Immunity. 2018;48:380-395.e6.PubMedCrossRef
27.
go back to reference Jackson CM, Kochel CM, Nirschl CJ, et al. Systemic tolerance mediated by melanoma brain tumors is reversible by radiotherapy and vaccination. Clin Cancer Res. 2016;22:1161–72.PubMedCrossRef Jackson CM, Kochel CM, Nirschl CJ, et al. Systemic tolerance mediated by melanoma brain tumors is reversible by radiotherapy and vaccination. Clin Cancer Res. 2016;22:1161–72.PubMedCrossRef
28.
go back to reference Coxon AT, Desai R, Patel PR, et al. A pilot study of lymphoscintigraphy with tracer injection into the human brain. J Cereb Blood Flow Metab. 2023;43:1382–9.PubMedPubMedCentralCrossRef Coxon AT, Desai R, Patel PR, et al. A pilot study of lymphoscintigraphy with tracer injection into the human brain. J Cereb Blood Flow Metab. 2023;43:1382–9.PubMedPubMedCentralCrossRef
30.
go back to reference Ghouzlani A, Kandoussi S, Tall M, Reddy KP, Rafii S, Badou A. Immune checkpoint inhibitors in human glioma microenvironment. Front Immunol. 2021;12:679425.PubMedPubMedCentralCrossRef Ghouzlani A, Kandoussi S, Tall M, Reddy KP, Rafii S, Badou A. Immune checkpoint inhibitors in human glioma microenvironment. Front Immunol. 2021;12:679425.PubMedPubMedCentralCrossRef
32.
go back to reference Drake CG, Jaffee E, Pardoll DM. Mechanisms of immune evasion by tumors. Adv Immunol. 2006;90:51–81.PubMed Drake CG, Jaffee E, Pardoll DM. Mechanisms of immune evasion by tumors. Adv Immunol. 2006;90:51–81.PubMed
33.
go back to reference Qin S, Xu L, Yi M, Yu S, Wu K, Luo S. Novel immune checkpoint targets: moving beyond PD-1 and CTLA-4. Mol Cancer. 2019;18:1–14.CrossRef Qin S, Xu L, Yi M, Yu S, Wu K, Luo S. Novel immune checkpoint targets: moving beyond PD-1 and CTLA-4. Mol Cancer. 2019;18:1–14.CrossRef
34.
go back to reference Khasraw M, Reardon DA, Weller M, Sampson JH. PD-1 Inhibitors: do they have a future in the treatment of glioblastoma? Clin Cancer Res. 2020;26:5287–96.PubMedPubMedCentralCrossRef Khasraw M, Reardon DA, Weller M, Sampson JH. PD-1 Inhibitors: do they have a future in the treatment of glioblastoma? Clin Cancer Res. 2020;26:5287–96.PubMedPubMedCentralCrossRef
36.
go back to reference Reardon DA, Brandes AA, Omuro A, et al. Effect of nivolumab vs bevacizumab in patients with recurrent glioblastoma: the CheckMate 143 phase 3 randomized clinical trial. JAMA Oncol. 2020;6:1003–10.PubMedCrossRef Reardon DA, Brandes AA, Omuro A, et al. Effect of nivolumab vs bevacizumab in patients with recurrent glioblastoma: the CheckMate 143 phase 3 randomized clinical trial. JAMA Oncol. 2020;6:1003–10.PubMedCrossRef
37.
go back to reference Omuro A, Brandes AA, Carpentier AF, et al. Radiotherapy combined with nivolumab or temozolomide for newly diagnosed glioblastoma with unmethylated MGMT promoter: An international randomized phase III trial. Neuro Oncol. 2022;25:123–34.PubMedCentralCrossRef Omuro A, Brandes AA, Carpentier AF, et al. Radiotherapy combined with nivolumab or temozolomide for newly diagnosed glioblastoma with unmethylated MGMT promoter: An international randomized phase III trial. Neuro Oncol. 2022;25:123–34.PubMedCentralCrossRef
38.
go back to reference Weller M, Lim M, Idbaih A, et al. Ctim-25. A randomized phase 3 study of nivolumab or placebo combined with radiotherapy plus temozolomide in patients with newly diagnosed glioblastoma with methylated mgmt promoter: CheckMate 548. Neuro Oncol. 2021;23:vi55–6.PubMedCentralCrossRef Weller M, Lim M, Idbaih A, et al. Ctim-25. A randomized phase 3 study of nivolumab or placebo combined with radiotherapy plus temozolomide in patients with newly diagnosed glioblastoma with methylated mgmt promoter: CheckMate 548. Neuro Oncol. 2021;23:vi55–6.PubMedCentralCrossRef
40.
go back to reference Das A, Sudhaman S, Morgenstern D, et al. Genomic predictors of response to PD-1 inhibition in children with germline DNA replication repair deficiency. Nat Med. 2022;28:125–35.PubMedPubMedCentralCrossRef Das A, Sudhaman S, Morgenstern D, et al. Genomic predictors of response to PD-1 inhibition in children with germline DNA replication repair deficiency. Nat Med. 2022;28:125–35.PubMedPubMedCentralCrossRef
41.
go back to reference Johanns TM, Miller CA, Dorward IG, et al. Immunogenomics of Hypermutated glioblastoma: a patient with germline POLE deficiency treated with checkpoint blockade immunotherapy. Cancer Discov. 2016;6:1230–6.PubMedPubMedCentralCrossRef Johanns TM, Miller CA, Dorward IG, et al. Immunogenomics of Hypermutated glioblastoma: a patient with germline POLE deficiency treated with checkpoint blockade immunotherapy. Cancer Discov. 2016;6:1230–6.PubMedPubMedCentralCrossRef
43.
go back to reference Peri A, Salomon N, Wolf Y, Kreiter S, Diken M, Samuels Y. The landscape of T cell antigens for cancer immunotherapy. Nat Cancer. 2023;4:937–54.PubMedCrossRef Peri A, Salomon N, Wolf Y, Kreiter S, Diken M, Samuels Y. The landscape of T cell antigens for cancer immunotherapy. Nat Cancer. 2023;4:937–54.PubMedCrossRef
44.
go back to reference Chistiakov DA, Chekhonin IV, Chekhonin VP. The EGFR variant III mutant as a target for immunotherapy of glioblastoma multiforme. Eur J Pharmacol. 2017;810:70–82.PubMedCrossRef Chistiakov DA, Chekhonin IV, Chekhonin VP. The EGFR variant III mutant as a target for immunotherapy of glioblastoma multiforme. Eur J Pharmacol. 2017;810:70–82.PubMedCrossRef
45.
go back to reference Weller M, Kaulich K, Hentschel B, et al. Assessment and prognostic significance of the epidermal growth factor receptor vIII mutation in glioblastoma patients treated with concurrent and adjuvant temozolomide radiochemotherapy. Int J Cancer. 2014;134:2437–47.PubMedCrossRef Weller M, Kaulich K, Hentschel B, et al. Assessment and prognostic significance of the epidermal growth factor receptor vIII mutation in glioblastoma patients treated with concurrent and adjuvant temozolomide radiochemotherapy. Int J Cancer. 2014;134:2437–47.PubMedCrossRef
47.
go back to reference Heimberger AB, Archer GE, Crotty LE, McLendon RE, Friedman AH, Friedman HS, Bigner DD, Sampson JH. Dendritic cells pulsed with a tumor-specific peptide induce long-lasting immunity and are effective against murine intracerebral melanoma. Neurosurgery. 2002;50:158–64 (discussion 164–6).PubMed Heimberger AB, Archer GE, Crotty LE, McLendon RE, Friedman AH, Friedman HS, Bigner DD, Sampson JH. Dendritic cells pulsed with a tumor-specific peptide induce long-lasting immunity and are effective against murine intracerebral melanoma. Neurosurgery. 2002;50:158–64 (discussion 164–6).PubMed
48.
go back to reference Schuster J, Lai RK, Recht LD, et al. A phase II, multicenter trial of Rindopepimut (CDX-110) in newly diagnosed glioblastoma: the ACT III study. Neuro Oncol. 2015;17:854–61.PubMedPubMedCentralCrossRef Schuster J, Lai RK, Recht LD, et al. A phase II, multicenter trial of Rindopepimut (CDX-110) in newly diagnosed glioblastoma: the ACT III study. Neuro Oncol. 2015;17:854–61.PubMedPubMedCentralCrossRef
49.
go back to reference Gatson NTN, Weathers S-PS, de Groot JF. ReACT phase II trial: a critical evaluation of the use of Rindopepimut plus bevacizumab to treat EGFRvIII-positive recurrent glioblastoma. CNS Oncol. 2016;5:11–26.PubMedCrossRef Gatson NTN, Weathers S-PS, de Groot JF. ReACT phase II trial: a critical evaluation of the use of Rindopepimut plus bevacizumab to treat EGFRvIII-positive recurrent glioblastoma. CNS Oncol. 2016;5:11–26.PubMedCrossRef
50.
go back to reference Weller M, Butowski N, Tran DD, et al. Rindopepimut with temozolomide for patients with newly diagnosed, EGFRvIII-expressing glioblastoma (ACT IV): a randomised, double-blind, international phase 3 trial. Lancet Oncol. 2017;18:1373–85.PubMedCrossRef Weller M, Butowski N, Tran DD, et al. Rindopepimut with temozolomide for patients with newly diagnosed, EGFRvIII-expressing glioblastoma (ACT IV): a randomised, double-blind, international phase 3 trial. Lancet Oncol. 2017;18:1373–85.PubMedCrossRef
52.
go back to reference Nathanson DA, Gini B, Mottahedeh J, et al. Targeted therapy resistance mediated by dynamic regulation of extrachromosomal mutant EGFR DNA. Science. 2014;343:72–6.PubMedCrossRef Nathanson DA, Gini B, Mottahedeh J, et al. Targeted therapy resistance mediated by dynamic regulation of extrachromosomal mutant EGFR DNA. Science. 2014;343:72–6.PubMedCrossRef
54.
go back to reference Liau LM, Ashkan K, Brem S, et al. Association of autologous tumor lysate-loaded dendritic cell vaccination with extension of survival among patients with newly diagnosed and recurrent glioblastoma: a phase 3 prospective externally controlled cohort trial. JAMA Oncol. 2023;9:112–21.PubMedCrossRef Liau LM, Ashkan K, Brem S, et al. Association of autologous tumor lysate-loaded dendritic cell vaccination with extension of survival among patients with newly diagnosed and recurrent glioblastoma: a phase 3 prospective externally controlled cohort trial. JAMA Oncol. 2023;9:112–21.PubMedCrossRef
56.
go back to reference Dunn GP, Cloughesy TF, Maus MV, Prins RM, Reardon DA, Sonabend AM. Emerging immunotherapies for malignant glioma: from immunogenomics to cell therapy. Neuro Oncol. 2020;22:1425–38.PubMedPubMedCentralCrossRef Dunn GP, Cloughesy TF, Maus MV, Prins RM, Reardon DA, Sonabend AM. Emerging immunotherapies for malignant glioma: from immunogenomics to cell therapy. Neuro Oncol. 2020;22:1425–38.PubMedPubMedCentralCrossRef
57.
go back to reference Topalian SL, Forde PM, Emens LA, Yarchoan M, Smith KN, Pardoll DM. Neoadjuvant immune checkpoint blockade: a window of opportunity to advance cancer immunotherapy. Cancer Cell. 2023;41:1551–66.PubMedCrossRef Topalian SL, Forde PM, Emens LA, Yarchoan M, Smith KN, Pardoll DM. Neoadjuvant immune checkpoint blockade: a window of opportunity to advance cancer immunotherapy. Cancer Cell. 2023;41:1551–66.PubMedCrossRef
58.
go back to reference Cloughesy TF, Mochizuki AY, Orpilla JR, et al. Neoadjuvant anti-PD-1 immunotherapy promotes a survival benefit with intratumoral and systemic immune responses in recurrent glioblastoma. Nat Med. 2019;25:477–86.PubMedPubMedCentralCrossRef Cloughesy TF, Mochizuki AY, Orpilla JR, et al. Neoadjuvant anti-PD-1 immunotherapy promotes a survival benefit with intratumoral and systemic immune responses in recurrent glioblastoma. Nat Med. 2019;25:477–86.PubMedPubMedCentralCrossRef
59.
go back to reference Schalper KA, Rodriguez-Ruiz ME, Diez-Valle R, et al. Neoadjuvant nivolumab modifies the tumor immune microenvironment in resectable glioblastoma. Nat Med. 2019;25:470–6.PubMedCrossRef Schalper KA, Rodriguez-Ruiz ME, Diez-Valle R, et al. Neoadjuvant nivolumab modifies the tumor immune microenvironment in resectable glioblastoma. Nat Med. 2019;25:470–6.PubMedCrossRef
60.
go back to reference Arrieta VA, Chen AX, Kane JR, et al. ERK1/2 phosphorylation predicts survival following anti-PD-1 immunotherapy in recurrent glioblastoma. Nat Cancer. 2021;2:1372–86.PubMedPubMedCentralCrossRef Arrieta VA, Chen AX, Kane JR, et al. ERK1/2 phosphorylation predicts survival following anti-PD-1 immunotherapy in recurrent glioblastoma. Nat Cancer. 2021;2:1372–86.PubMedPubMedCentralCrossRef
62.
go back to reference Das A, Tabori U, Sambira Nahum LC, et al. Efficacy of nivolumab in pediatric cancers with high mutation burden and mismatch repair deficiency. Clin Cancer Res. 2023;29:4770–83.PubMedPubMedCentralCrossRef Das A, Tabori U, Sambira Nahum LC, et al. Efficacy of nivolumab in pediatric cancers with high mutation burden and mismatch repair deficiency. Clin Cancer Res. 2023;29:4770–83.PubMedPubMedCentralCrossRef
63.
go back to reference (2021) Inhibitory CD161 receptor identified in glioma-infiltrating T cells by single-cell analysis. Cell 184:1281–1298.e26 (2021) Inhibitory CD161 receptor identified in glioma-infiltrating T cells by single-cell analysis. Cell 184:1281–1298.e26
64.
go back to reference Harris-Bookman S, Mathios D, Martin AM, et al. Expression of LAG-3 and efficacy of combination treatment with anti-LAG-3 and anti-PD-1 monoclonal antibodies in glioblastoma. Int J Cancer. 2018;143:3201–8.PubMedPubMedCentralCrossRef Harris-Bookman S, Mathios D, Martin AM, et al. Expression of LAG-3 and efficacy of combination treatment with anti-LAG-3 and anti-PD-1 monoclonal antibodies in glioblastoma. Int J Cancer. 2018;143:3201–8.PubMedPubMedCentralCrossRef
65.
go back to reference Kraehenbuehl L, Weng C-H, Eghbali S, Wolchok JD, Merghoub T. Enhancing immunotherapy in cancer by targeting emerging immunomodulatory pathways. Nat Rev Clin Oncol. 2022;19:37–50.PubMedCrossRef Kraehenbuehl L, Weng C-H, Eghbali S, Wolchok JD, Merghoub T. Enhancing immunotherapy in cancer by targeting emerging immunomodulatory pathways. Nat Rev Clin Oncol. 2022;19:37–50.PubMedCrossRef
66.
go back to reference Hacohen N, Fritsch EF, Carter TA, Lander ES, Wu CJ. Getting personal with neoantigen-based therapeutic cancer vaccines. Cancer Immunol Res. 2013;1:11–5.PubMedPubMedCentralCrossRef Hacohen N, Fritsch EF, Carter TA, Lander ES, Wu CJ. Getting personal with neoantigen-based therapeutic cancer vaccines. Cancer Immunol Res. 2013;1:11–5.PubMedPubMedCentralCrossRef
67.
go back to reference •• Dunn GP, Sherpa N, Manyanga J, Johanns TM. Considerations for personalized neoantigen vaccination in malignant glioma. Adv Drug Deliv Rev. 2022;186:114312. This review outlines the potential for personalized neoantigen vaccination in malignant glioma. •• Dunn GP, Sherpa N, Manyanga J, Johanns TM. Considerations for personalized neoantigen vaccination in malignant glioma. Adv Drug Deliv Rev. 2022;186:114312. This review outlines the potential for personalized neoantigen vaccination in malignant glioma.
69.
go back to reference Gubin MM, Artyomov MN, Mardis ER, Schreiber RD. Tumor neoantigens: building a framework for personalized cancer immunotherapy. J Clin Invest. 2015;125:3413–21.PubMedPubMedCentralCrossRef Gubin MM, Artyomov MN, Mardis ER, Schreiber RD. Tumor neoantigens: building a framework for personalized cancer immunotherapy. J Clin Invest. 2015;125:3413–21.PubMedPubMedCentralCrossRef
70.
go back to reference Desrichard A, Snyder A, Chan TA. Cancer neoantigens and applications for immunotherapy. Clin Cancer Res. 2016;22:807–12.PubMedCrossRef Desrichard A, Snyder A, Chan TA. Cancer neoantigens and applications for immunotherapy. Clin Cancer Res. 2016;22:807–12.PubMedCrossRef
71.
go back to reference Wells DK, van Buuren MM, Dang KK, et al. Key parameters of tumor epitope immunogenicity revealed through a consortium approach improve neoantigen prediction. Cell. 2020;183:818-834.e13.PubMedPubMedCentralCrossRef Wells DK, van Buuren MM, Dang KK, et al. Key parameters of tumor epitope immunogenicity revealed through a consortium approach improve neoantigen prediction. Cell. 2020;183:818-834.e13.PubMedPubMedCentralCrossRef
72.
go back to reference Johanns TM, Miller CA, Liu CJ, et al. Detection of neoantigen-specific T cells following a personalized vaccine in a patient with glioblastoma. Oncoimmunology. 2019;8:e1561106.PubMedPubMedCentralCrossRef Johanns TM, Miller CA, Liu CJ, et al. Detection of neoantigen-specific T cells following a personalized vaccine in a patient with glioblastoma. Oncoimmunology. 2019;8:e1561106.PubMedPubMedCentralCrossRef
73.
go back to reference Keskin DB, Anandappa AJ, Sun J, et al. Neoantigen vaccine generates intratumoral T cell responses in phase Ib glioblastoma trial. Nature. 2019;565:234–9.PubMedCrossRef Keskin DB, Anandappa AJ, Sun J, et al. Neoantigen vaccine generates intratumoral T cell responses in phase Ib glioblastoma trial. Nature. 2019;565:234–9.PubMedCrossRef
74.
go back to reference Hilf N, Kuttruff-Coqui S, Frenzel K, et al. Publisher correction: actively personalized vaccination trial for newly diagnosed glioblastoma. Nature. 2019;566:E13.PubMedCrossRef Hilf N, Kuttruff-Coqui S, Frenzel K, et al. Publisher correction: actively personalized vaccination trial for newly diagnosed glioblastoma. Nature. 2019;566:E13.PubMedCrossRef
75.
go back to reference Schaettler MO, Richters MM, Wang AZ, et al. Characterization of the genomic and immunologic diversity of malignant brain tumors through multisector analysis. Cancer Discov. 2022;12:154–71.PubMedCrossRef Schaettler MO, Richters MM, Wang AZ, et al. Characterization of the genomic and immunologic diversity of malignant brain tumors through multisector analysis. Cancer Discov. 2022;12:154–71.PubMedCrossRef
76.
go back to reference Ahluwalia MS, Reardon DA, Abad AP, et al. Phase IIa study of SurVaxM plus adjuvant temozolomide for newly diagnosed glioblastoma. J Clin Oncol. 2023;41:1453–65.PubMedCrossRef Ahluwalia MS, Reardon DA, Abad AP, et al. Phase IIa study of SurVaxM plus adjuvant temozolomide for newly diagnosed glioblastoma. J Clin Oncol. 2023;41:1453–65.PubMedCrossRef
78.
go back to reference •• Cappell KM, Kochenderfer JN. Long-term outcomes following CAR T cell therapy: what we know so far. Nat Rev Clin Oncol. 2023;20:359–71. This review discusses the state of CAR-T therapies and the ongoing investigational strategies designed to improve the length of remission following CAR-T cell therapy. •• Cappell KM, Kochenderfer JN. Long-term outcomes following CAR T cell therapy: what we know so far. Nat Rev Clin Oncol. 2023;20:359–71. This review discusses the state of CAR-T therapies and the ongoing investigational strategies designed to improve the length of remission following CAR-T cell therapy.
79.
go back to reference Mount CW, Majzner RG, Sundaresh S, et al. Potent antitumor efficacy of anti-GD2 CAR T cells in H3–K27M diffuse midline gliomas. Nat Med. 2018;24:572–9.PubMedPubMedCentralCrossRef Mount CW, Majzner RG, Sundaresh S, et al. Potent antitumor efficacy of anti-GD2 CAR T cells in H3–K27M diffuse midline gliomas. Nat Med. 2018;24:572–9.PubMedPubMedCentralCrossRef
81.
go back to reference Lin Q, Ba T, Ho J, et al. First-in-human trial of EphA2-redirected CAR T-cells in patients with recurrent glioblastoma: a preliminary report of three cases at the starting dose. Front Oncol. 2021;11:694941.PubMedPubMedCentralCrossRef Lin Q, Ba T, Ho J, et al. First-in-human trial of EphA2-redirected CAR T-cells in patients with recurrent glioblastoma: a preliminary report of three cases at the starting dose. Front Oncol. 2021;11:694941.PubMedPubMedCentralCrossRef
82.
go back to reference Ahmed N, Brawley V, Hegde M, et al. HER2-specific chimeric antigen receptor-modified virus-specific T cells for progressive glioblastoma: a phase 1 dose-escalation trial. JAMA Oncol. 2017;3:1094–101.PubMedPubMedCentralCrossRef Ahmed N, Brawley V, Hegde M, et al. HER2-specific chimeric antigen receptor-modified virus-specific T cells for progressive glioblastoma: a phase 1 dose-escalation trial. JAMA Oncol. 2017;3:1094–101.PubMedPubMedCentralCrossRef
83.
84.
go back to reference Brown CE, Rodriguez A, Palmer J, et al. Off-the-shelf, steroid-resistant, IL13Rα2-specific CAR T cells for treatment of glioblastoma. Neuro Oncol. 2022;24:1318–30.PubMedPubMedCentralCrossRef Brown CE, Rodriguez A, Palmer J, et al. Off-the-shelf, steroid-resistant, IL13Rα2-specific CAR T cells for treatment of glioblastoma. Neuro Oncol. 2022;24:1318–30.PubMedPubMedCentralCrossRef
86.
go back to reference Goff SL, Morgan RA, Yang JC, et al. Pilot trial of adoptive transfer of chimeric antigen receptor-transduced T cells targeting EGFRvIII in patients with glioblastoma. J Immunother. 2019;42:126–35.PubMedPubMedCentralCrossRef Goff SL, Morgan RA, Yang JC, et al. Pilot trial of adoptive transfer of chimeric antigen receptor-transduced T cells targeting EGFRvIII in patients with glioblastoma. J Immunother. 2019;42:126–35.PubMedPubMedCentralCrossRef
88.
go back to reference Barish ME, Weng L, Awabdeh D, et al. Spatial organization of heterogeneous immunotherapy target antigen expression in high-grade glioma. Neoplasia. 2022;30:100801.PubMedPubMedCentralCrossRef Barish ME, Weng L, Awabdeh D, et al. Spatial organization of heterogeneous immunotherapy target antigen expression in high-grade glioma. Neoplasia. 2022;30:100801.PubMedPubMedCentralCrossRef
89.
go back to reference Gao TA, Chen YY. Engineering next-generation CAR-T cells: overcoming tumor hypoxia and metabolism. Annu Rev Chem Biomol Eng. 2022;13:193–216.PubMedCrossRef Gao TA, Chen YY. Engineering next-generation CAR-T cells: overcoming tumor hypoxia and metabolism. Annu Rev Chem Biomol Eng. 2022;13:193–216.PubMedCrossRef
90.
go back to reference Schmidts A, Srivastava AA, Ramapriyan R, et al. Tandem chimeric antigen receptor (CAR) T cells targeting EGFRvIII and IL-13Rα2 are effective against heterogeneous glioblastoma. Neurooncol Adv. 2023;5:vdac185.PubMed Schmidts A, Srivastava AA, Ramapriyan R, et al. Tandem chimeric antigen receptor (CAR) T cells targeting EGFRvIII and IL-13Rα2 are effective against heterogeneous glioblastoma. Neurooncol Adv. 2023;5:vdac185.PubMed
92.
93.
go back to reference Choi BD, Yu X, Castano AP, et al. CAR-T cells secreting BiTEs circumvent antigen escape without detectable toxicity. Nat Biotechnol. 2019;37:1049–58.PubMedCrossRef Choi BD, Yu X, Castano AP, et al. CAR-T cells secreting BiTEs circumvent antigen escape without detectable toxicity. Nat Biotechnol. 2019;37:1049–58.PubMedCrossRef
94.
go back to reference Klebanoff CA, Chandran SS, Baker BM, Quezada SA, Ribas A. T cell receptor therapeutics: immunological targeting of the intracellular cancer proteome. Nat Rev Drug Discov. 2023;22:996–1017.PubMedCrossRef Klebanoff CA, Chandran SS, Baker BM, Quezada SA, Ribas A. T cell receptor therapeutics: immunological targeting of the intracellular cancer proteome. Nat Rev Drug Discov. 2023;22:996–1017.PubMedCrossRef
96.
go back to reference Rohaan MW, Borch TH, van den Berg JH, et al. Tumor-infiltrating lymphocyte therapy or ipilimumab in advanced melanoma. N Engl J Med. 2022;387:2113–25.PubMedCrossRef Rohaan MW, Borch TH, van den Berg JH, et al. Tumor-infiltrating lymphocyte therapy or ipilimumab in advanced melanoma. N Engl J Med. 2022;387:2113–25.PubMedCrossRef
97.
go back to reference Mahmoud AB, Ajina R, Aref S, Darwish M, Alsayb M, Taher M, AlSharif SA, Hashem AM, Alkayyal AA. Advances in immunotherapy for glioblastoma multiforme. Front Immunol. 2022;13:944452.PubMedPubMedCentralCrossRef Mahmoud AB, Ajina R, Aref S, Darwish M, Alsayb M, Taher M, AlSharif SA, Hashem AM, Alkayyal AA. Advances in immunotherapy for glioblastoma multiforme. Front Immunol. 2022;13:944452.PubMedPubMedCentralCrossRef
98.
99.
go back to reference Martuza RL, Malick A, Markert JM, Ruffner KL, Coen DM. Experimental therapy of human glioma by means of a genetically engineered virus mutant. Science. 1991;252:854–6.PubMedCrossRef Martuza RL, Malick A, Markert JM, Ruffner KL, Coen DM. Experimental therapy of human glioma by means of a genetically engineered virus mutant. Science. 1991;252:854–6.PubMedCrossRef
100.
go back to reference Andtbacka RHI, Kaufman HL, Collichio F, et al. Talimogene laherparepvec improves durable response rate in patients with advanced melanoma. J Clin Oncol. 2015;33:2780–8.PubMedCrossRef Andtbacka RHI, Kaufman HL, Collichio F, et al. Talimogene laherparepvec improves durable response rate in patients with advanced melanoma. J Clin Oncol. 2015;33:2780–8.PubMedCrossRef
102.
go back to reference Alessandrini F, Menotti L, Avitabile E, Appolloni I, Ceresa D, Marubbi D, Campadelli-Fiume G, Malatesta P. Eradication of glioblastoma by immuno-virotherapy with a retargeted oncolytic HSV in a preclinical model. Oncogene. 2019;38:4467–79.PubMedCrossRef Alessandrini F, Menotti L, Avitabile E, Appolloni I, Ceresa D, Marubbi D, Campadelli-Fiume G, Malatesta P. Eradication of glioblastoma by immuno-virotherapy with a retargeted oncolytic HSV in a preclinical model. Oncogene. 2019;38:4467–79.PubMedCrossRef
103.
go back to reference Kiyokawa J, Wakimoto H. Preclinical and clinical development of oncolytic adenovirus For the treatment of malignant glioma. Oncolytic Virother. 2019;8:27–37.PubMedPubMedCentralCrossRef Kiyokawa J, Wakimoto H. Preclinical and clinical development of oncolytic adenovirus For the treatment of malignant glioma. Oncolytic Virother. 2019;8:27–37.PubMedPubMedCentralCrossRef
104.
go back to reference Rajaraman S, Canjuga D, Ghosh M, et al. Measles virus-based treatments trigger a pro-inflammatory cascade and a distinctive immunopeptidome in glioblastoma. Mol Ther Oncolytics. 2019;12:147–61.PubMedCrossRef Rajaraman S, Canjuga D, Ghosh M, et al. Measles virus-based treatments trigger a pro-inflammatory cascade and a distinctive immunopeptidome in glioblastoma. Mol Ther Oncolytics. 2019;12:147–61.PubMedCrossRef
105.
go back to reference Todo T, Ito H, Ino Y, Ohtsu H, Ota Y, Shibahara J, Tanaka M. Intratumoral oncolytic herpes virus G47∆ for residual or recurrent glioblastoma: a phase 2 trial. Nat Med. 2022;28:1630–9.PubMedPubMedCentralCrossRef Todo T, Ito H, Ino Y, Ohtsu H, Ota Y, Shibahara J, Tanaka M. Intratumoral oncolytic herpes virus G47∆ for residual or recurrent glioblastoma: a phase 2 trial. Nat Med. 2022;28:1630–9.PubMedPubMedCentralCrossRef
106.
107.
go back to reference Miller KE, Cassady KA, Roth JC, et al. Immune activity and response differences of oncolytic viral therapy in recurrent glioblastoma: gene expression analyses of a phase IB study. Clin Cancer Res. 2022;28:498–506.PubMedPubMedCentralCrossRef Miller KE, Cassady KA, Roth JC, et al. Immune activity and response differences of oncolytic viral therapy in recurrent glioblastoma: gene expression analyses of a phase IB study. Clin Cancer Res. 2022;28:498–506.PubMedPubMedCentralCrossRef
108.
go back to reference •• Ling AL, Solomon IH, Landivar AM, et al. Clinical trial links oncolytic immunoactivation to survival in glioblastoma. Nature. 2023;623:157–66. This review discusses a clinical trial that showed intralesional oncolytic virus treatment enhanced anticancer immune responses within immunosuppressive microenvironments. •• Ling AL, Solomon IH, Landivar AM, et al. Clinical trial links oncolytic immunoactivation to survival in glioblastoma. Nature. 2023;623:157–66. This review discusses a clinical trial that showed intralesional oncolytic virus treatment enhanced anticancer immune responses within immunosuppressive microenvironments.
109.
go back to reference Nassiri F, Patil V, Yefet LS, et al. Oncolytic DNX-2401 virotherapy plus pembrolizumab in recurrent glioblastoma: a phase 1/2 trial. Nat Med. 2023;29:1370–8.PubMedPubMedCentralCrossRef Nassiri F, Patil V, Yefet LS, et al. Oncolytic DNX-2401 virotherapy plus pembrolizumab in recurrent glioblastoma: a phase 1/2 trial. Nat Med. 2023;29:1370–8.PubMedPubMedCentralCrossRef
110.
go back to reference Galanis E, Dooley KE, Keith Anderson S, et al. Carcinoembryonic antigen-expressing oncolytic measles virus derivative in recurrent glioblastoma: a phase 1 trial. Nat Commun. 2024;15:493.PubMedPubMedCentralCrossRef Galanis E, Dooley KE, Keith Anderson S, et al. Carcinoembryonic antigen-expressing oncolytic measles virus derivative in recurrent glioblastoma: a phase 1 trial. Nat Commun. 2024;15:493.PubMedPubMedCentralCrossRef
Metadata
Title
Immunotherapy for Brain Tumors: Where We Have Been, and Where Do We Go From Here?
Authors
Alexander F. Wang, BS
Brian Hsueh, MD, PhD
Bryan D. Choi, MD, PhD
Elizabeth R. Gerstner, MD
Gavin P. Dunn, MD, PhD
Publication date
23-04-2024
Publisher
Springer US
Published in
Current Treatment Options in Oncology
Print ISSN: 1527-2729
Electronic ISSN: 1534-6277
DOI
https://doi.org/10.1007/s11864-024-01200-9
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine