Skip to main content
Top
Published in: Journal of Experimental & Clinical Cancer Research 1/2024

Open Access 01-12-2024 | Glioblastoma | Research

Identification of genetic modifiers enhancing B7-H3-targeting CAR T cell therapy against glioblastoma through large-scale CRISPRi screening

Authors: Xing Li, Shiyu Sun, Wansong Zhang, Ziwei Liang, Yitong Fang, Tianhu Sun, Yong Wan, Xingcong Ma, Shuqun Zhang, Yang Xu, Ruilin Tian

Published in: Journal of Experimental & Clinical Cancer Research | Issue 1/2024

Login to get access

Abstract

Background

Glioblastoma multiforme (GBM) is a highly aggressive brain tumor with a poor prognosis. Current treatment options are limited and often ineffective. CAR T cell therapy has shown success in treating hematologic malignancies, and there is growing interest in its potential application in solid tumors, including GBM. However, current CAR T therapy lacks clinical efficacy against GBM due to tumor-related resistance mechanisms and CAR T cell deficiencies. Therefore, there is a need to improve CAR T cell therapy efficacy in GBM.

Methods

We conducted large-scale CRISPR interference (CRISPRi) screens in GBM cell line U87 MG cells co-cultured with B7-H3 targeting CAR T cells to identify genetic modifiers that can enhance CAR T cell-mediated tumor killing. Flow cytometry-based tumor killing assay and CAR T cell activation assay were performed to validate screening hits. Bioinformatic analyses on bulk and single-cell RNA sequencing data and the TCGA database were employed to elucidate the mechanism underlying enhanced CAR T efficacy upon knocking down the selected screening hits in U87 MG cells.

Results

We established B7-H3 as a targetable antigen for CAR T therapy in GBM. Through large-scale CRISPRi screening, we discovered genetic modifiers in GBM cells, including ARPC4, PI4KA, ATP6V1A, UBA1, and NDUFV1, that regulated the efficacy of CAR T cell-mediated tumor killing. Furthermore, we discovered that TNFSF15 was upregulated in both ARPC4 and NDUFV1 knockdown GBM cells and revealed an immunostimulatory role of TNFSF15 in modulating tumor-CAR T interaction to enhance CAR T cell efficacy.

Conclusions

Our study highlights the power of CRISPR-based genetic screening in investigating tumor-CAR T interaction and identifies potential druggable targets in tumor cells that confer resistance to CAR T cell killing. Furthermore, we devised targeted strategies that synergize with CAR T therapy against GBM. These findings shed light on the development of novel combinatorial strategies for effective immunotherapy of GBM and other solid tumors.
Appendix
Available only for authorised users
Literature
1.
go back to reference Ghaffari-Rafi A, Samandouras G. Effect of treatment modalities on progression-free survival and overall survival in Molecularly Subtyped World Health Organization Grade II diffuse gliomas: a systematic review. World Neurosurg. 2020;133:366 – 80.e2. Ghaffari-Rafi A, Samandouras G. Effect of treatment modalities on progression-free survival and overall survival in Molecularly Subtyped World Health Organization Grade II diffuse gliomas: a systematic review. World Neurosurg. 2020;133:366 – 80.e2.
2.
go back to reference Birk HS, Han SJ, Butowski NA. Treatment options for recurrent high-grade gliomas. CNS Oncol. 2017;6(1):61–70.PubMedCrossRef Birk HS, Han SJ, Butowski NA. Treatment options for recurrent high-grade gliomas. CNS Oncol. 2017;6(1):61–70.PubMedCrossRef
3.
go back to reference Tykocki T, Eltayeb M. Ten-year survival in glioblastoma. A systematic review. J Clin Neurosci. 2018;54:7–13.PubMedCrossRef Tykocki T, Eltayeb M. Ten-year survival in glioblastoma. A systematic review. J Clin Neurosci. 2018;54:7–13.PubMedCrossRef
4.
go back to reference Louis DN, Perry A, Wesseling P, Brat DJ, Cree IA, Figarella-Branger D, et al. The 2021 WHO classification of tumors of the Central Nervous System: a summary. Neuro Oncol. 2021;23(8):1231–51.PubMedPubMedCentralCrossRef Louis DN, Perry A, Wesseling P, Brat DJ, Cree IA, Figarella-Branger D, et al. The 2021 WHO classification of tumors of the Central Nervous System: a summary. Neuro Oncol. 2021;23(8):1231–51.PubMedPubMedCentralCrossRef
5.
go back to reference Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med. 2005;352(10):987–96.PubMedCrossRef Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med. 2005;352(10):987–96.PubMedCrossRef
6.
go back to reference Nabors B, Portnow J, Hattangadi-Gluth J, Horbinski C. NCCN CNS tumor guidelines update for 2023. Neuro Oncol. 2023;25(12):2114–6.PubMedCrossRef Nabors B, Portnow J, Hattangadi-Gluth J, Horbinski C. NCCN CNS tumor guidelines update for 2023. Neuro Oncol. 2023;25(12):2114–6.PubMedCrossRef
7.
go back to reference Ostrom QT, Price M, Ryan K, Edelson J, Neff C, Cioffi G, et al. CBTRUS Statistical Report: Pediatric Brain Tumor Foundation Childhood and adolescent primary brain and other Central Nervous System tumors diagnosed in the United States in 2014–2018. Neuro Oncol. 2022;24(Suppl 3):iii1–38.PubMedPubMedCentralCrossRef Ostrom QT, Price M, Ryan K, Edelson J, Neff C, Cioffi G, et al. CBTRUS Statistical Report: Pediatric Brain Tumor Foundation Childhood and adolescent primary brain and other Central Nervous System tumors diagnosed in the United States in 2014–2018. Neuro Oncol. 2022;24(Suppl 3):iii1–38.PubMedPubMedCentralCrossRef
8.
go back to reference Feins S, Kong W, Williams EF, Milone MC, Fraietta JA. An introduction to chimeric antigen receptor (CAR) T-cell immunotherapy for human cancer. Am J Hematol. 2019;94(S1):S3–9.PubMedCrossRef Feins S, Kong W, Williams EF, Milone MC, Fraietta JA. An introduction to chimeric antigen receptor (CAR) T-cell immunotherapy for human cancer. Am J Hematol. 2019;94(S1):S3–9.PubMedCrossRef
9.
go back to reference Shadman M. Diagnosis and treatment of chronic lymphocytic leukemia: a review. JAMA. 2023;329(11):918–32.PubMedCrossRef Shadman M. Diagnosis and treatment of chronic lymphocytic leukemia: a review. JAMA. 2023;329(11):918–32.PubMedCrossRef
10.
go back to reference Melenhorst JJ, Chen GM, Wang M, Porter DL, Chen C, Collins MA, et al. Decade-long leukaemia remissions with persistence of CD4(+) CAR T cells. Nature. 2022;602(7897):503–9.PubMedPubMedCentralCrossRef Melenhorst JJ, Chen GM, Wang M, Porter DL, Chen C, Collins MA, et al. Decade-long leukaemia remissions with persistence of CD4(+) CAR T cells. Nature. 2022;602(7897):503–9.PubMedPubMedCentralCrossRef
11.
go back to reference Bagley SJ, Desai AS, Linette GP, June CH, O’Rourke DM. CAR T-cell therapy for glioblastoma: recent clinical advances and future challenges. Neuro Oncol. 2018;20(11):1429–38.PubMedPubMedCentralCrossRef Bagley SJ, Desai AS, Linette GP, June CH, O’Rourke DM. CAR T-cell therapy for glioblastoma: recent clinical advances and future challenges. Neuro Oncol. 2018;20(11):1429–38.PubMedPubMedCentralCrossRef
12.
go back to reference Brown CE, Alizadeh D, Starr R, Weng L, Wagner JR, Naranjo A, et al. Regression of Glioblastoma after chimeric Antigen receptor T-Cell therapy. N Engl J Med. 2016;375(26):2561–9.PubMedPubMedCentralCrossRef Brown CE, Alizadeh D, Starr R, Weng L, Wagner JR, Naranjo A, et al. Regression of Glioblastoma after chimeric Antigen receptor T-Cell therapy. N Engl J Med. 2016;375(26):2561–9.PubMedPubMedCentralCrossRef
13.
go back to reference Brown CE, Badie B, Barish ME, Weng L, Ostberg JR, Chang WC, et al. Bioactivity and Safety of IL13Rα2-Redirected chimeric Antigen receptor CD8 + T cells in patients with recurrent glioblastoma. Clin Cancer Res. 2015;21(18):4062–72.PubMedPubMedCentralCrossRef Brown CE, Badie B, Barish ME, Weng L, Ostberg JR, Chang WC, et al. Bioactivity and Safety of IL13Rα2-Redirected chimeric Antigen receptor CD8 + T cells in patients with recurrent glioblastoma. Clin Cancer Res. 2015;21(18):4062–72.PubMedPubMedCentralCrossRef
14.
go back to reference Pituch KC, Miska J, Krenciute G, Panek WK, Li G, Rodriguez-Cruz T, et al. Adoptive transfer of IL13Rα2-Specific Chimeric Antigen Receptor T Cells creates a pro-inflammatory environment in Glioblastoma. Mol Ther. 2018;26(4):986–95.PubMedPubMedCentralCrossRef Pituch KC, Miska J, Krenciute G, Panek WK, Li G, Rodriguez-Cruz T, et al. Adoptive transfer of IL13Rα2-Specific Chimeric Antigen Receptor T Cells creates a pro-inflammatory environment in Glioblastoma. Mol Ther. 2018;26(4):986–95.PubMedPubMedCentralCrossRef
15.
go back to reference O’Rourke DM, Nasrallah MP, Desai A, Melenhorst JJ, Mansfield K, Morrissette JJD et al. A single dose of peripherally infused EGFRvIII-directed CAR T cells mediates antigen loss and induces adaptive resistance in patients with recurrent glioblastoma. Sci Transl Med. 2017;9(399). O’Rourke DM, Nasrallah MP, Desai A, Melenhorst JJ, Mansfield K, Morrissette JJD et al. A single dose of peripherally infused EGFRvIII-directed CAR T cells mediates antigen loss and induces adaptive resistance in patients with recurrent glioblastoma. Sci Transl Med. 2017;9(399).
16.
go back to reference Sampson JH, Choi BD, Sanchez-Perez L, Suryadevara CM, Snyder DJ, Flores CT, et al. EGFRvIII mCAR-modified T-cell therapy cures mice with established intracerebral glioma and generates host immunity against tumor-antigen loss. Clin Cancer Res. 2014;20(4):972–84.PubMedCrossRef Sampson JH, Choi BD, Sanchez-Perez L, Suryadevara CM, Snyder DJ, Flores CT, et al. EGFRvIII mCAR-modified T-cell therapy cures mice with established intracerebral glioma and generates host immunity against tumor-antigen loss. Clin Cancer Res. 2014;20(4):972–84.PubMedCrossRef
17.
go back to reference Abbott RC, Verdon DJ, Gracey FM, Hughes-Parry HE, Iliopoulos M, Watson KA, et al. Novel high-affinity EGFRvIII-specific chimeric antigen receptor T cells effectively eliminate human glioblastoma. Clin Transl Immunol. 2021;10(5):e1283.CrossRef Abbott RC, Verdon DJ, Gracey FM, Hughes-Parry HE, Iliopoulos M, Watson KA, et al. Novel high-affinity EGFRvIII-specific chimeric antigen receptor T cells effectively eliminate human glioblastoma. Clin Transl Immunol. 2021;10(5):e1283.CrossRef
18.
go back to reference Chow KK, Naik S, Kakarla S, Brawley VS, Shaffer DR, Yi Z, et al. T cells redirected to EphA2 for the immunotherapy of glioblastoma. Mol Ther. 2013;21(3):629–37.PubMedCrossRef Chow KK, Naik S, Kakarla S, Brawley VS, Shaffer DR, Yi Z, et al. T cells redirected to EphA2 for the immunotherapy of glioblastoma. Mol Ther. 2013;21(3):629–37.PubMedCrossRef
19.
go back to reference Rodriguez A, Brown C, Badie B. Chimeric antigen receptor T-cell therapy for glioblastoma. Transl Res. 2017;187:93–102.PubMedCrossRef Rodriguez A, Brown C, Badie B. Chimeric antigen receptor T-cell therapy for glioblastoma. Transl Res. 2017;187:93–102.PubMedCrossRef
20.
go back to reference Ahmed N, Brawley V, Hegde M, Bielamowicz K, Kalra M, Landi D, et al. HER2-Specific Chimeric Antigen Receptor-Modified Virus-Specific T Cells for Progressive Glioblastoma: a phase 1 dose-escalation Trial. JAMA Oncol. 2017;3(8):1094–101.PubMedPubMedCentralCrossRef Ahmed N, Brawley V, Hegde M, Bielamowicz K, Kalra M, Landi D, et al. HER2-Specific Chimeric Antigen Receptor-Modified Virus-Specific T Cells for Progressive Glioblastoma: a phase 1 dose-escalation Trial. JAMA Oncol. 2017;3(8):1094–101.PubMedPubMedCentralCrossRef
21.
go back to reference Haydar D, Houke H, Chiang J, Yi Z, Odé Z, Caldwell K, et al. Cell-surface antigen profiling of pediatric brain tumors: B7-H3 is consistently expressed and can be targeted via local or systemic CAR T-cell delivery. Neuro Oncol. 2021;23(6):999–1011.PubMedCrossRef Haydar D, Houke H, Chiang J, Yi Z, Odé Z, Caldwell K, et al. Cell-surface antigen profiling of pediatric brain tumors: B7-H3 is consistently expressed and can be targeted via local or systemic CAR T-cell delivery. Neuro Oncol. 2021;23(6):999–1011.PubMedCrossRef
22.
go back to reference de Billy E, Pellegrino M, Orlando D, Pericoli G, Ferretti R, Businaro P, et al. Dual IGF1R/IR inhibitors in combination with GD2-CAR T-cells display a potent anti-tumor activity in diffuse midline glioma H3K27M-mutant. Neuro Oncol. 2022;24(7):1150–63.PubMedCrossRef de Billy E, Pellegrino M, Orlando D, Pericoli G, Ferretti R, Businaro P, et al. Dual IGF1R/IR inhibitors in combination with GD2-CAR T-cells display a potent anti-tumor activity in diffuse midline glioma H3K27M-mutant. Neuro Oncol. 2022;24(7):1150–63.PubMedCrossRef
23.
go back to reference Jin L, Ge H, Long Y, Yang C, Chang YE, Mu L, et al. CD70, a novel target of CAR T-cell therapy for gliomas. Neuro Oncol. 2018;20(1):55–65.PubMedCrossRef Jin L, Ge H, Long Y, Yang C, Chang YE, Mu L, et al. CD70, a novel target of CAR T-cell therapy for gliomas. Neuro Oncol. 2018;20(1):55–65.PubMedCrossRef
24.
go back to reference Liu M, Zhang L, Zhong M, Long Y, Yang W, Liu T, et al. CRISPR/Cas9-mediated knockout of intracellular molecule SHP-1 enhances tumor-killing ability of CD133-targeted CAR T cells in vitro. Exp Hematol Oncol. 2023;12(1):88.PubMedPubMedCentralCrossRef Liu M, Zhang L, Zhong M, Long Y, Yang W, Liu T, et al. CRISPR/Cas9-mediated knockout of intracellular molecule SHP-1 enhances tumor-killing ability of CD133-targeted CAR T cells in vitro. Exp Hematol Oncol. 2023;12(1):88.PubMedPubMedCentralCrossRef
25.
go back to reference Hänsch L, Peipp M, Mastall M, Villars D, Myburgh R, Silginer M, et al. Chimeric antigen receptor T cell-based targeting of CD317 as a novel immunotherapeutic strategy against glioblastoma. Neuro Oncol. 2023;25(11):2001–14.PubMedPubMedCentralCrossRef Hänsch L, Peipp M, Mastall M, Villars D, Myburgh R, Silginer M, et al. Chimeric antigen receptor T cell-based targeting of CD317 as a novel immunotherapeutic strategy against glioblastoma. Neuro Oncol. 2023;25(11):2001–14.PubMedPubMedCentralCrossRef
26.
go back to reference Rousso-Noori L, Mastandrea I, Talmor S, Waks T, Globerson Levin A, Haugas M, et al. P32-specific CAR T cells with dual antitumor and antiangiogenic therapeutic potential in gliomas. Nat Commun. 2021;12(1):3615.PubMedPubMedCentralCrossRef Rousso-Noori L, Mastandrea I, Talmor S, Waks T, Globerson Levin A, Haugas M, et al. P32-specific CAR T cells with dual antitumor and antiangiogenic therapeutic potential in gliomas. Nat Commun. 2021;12(1):3615.PubMedPubMedCentralCrossRef
27.
go back to reference Majzner RG, Theruvath JL, Nellan A, Heitzeneder S, Cui Y, Mount CW, et al. CAR T cells targeting B7-H3, a Pan-cancer Antigen, Demonstrate Potent Preclinical Activity against Pediatric Solid Tumors and Brain tumors. Clin Cancer Res. 2019;25(8):2560–74.PubMedPubMedCentralCrossRef Majzner RG, Theruvath JL, Nellan A, Heitzeneder S, Cui Y, Mount CW, et al. CAR T cells targeting B7-H3, a Pan-cancer Antigen, Demonstrate Potent Preclinical Activity against Pediatric Solid Tumors and Brain tumors. Clin Cancer Res. 2019;25(8):2560–74.PubMedPubMedCentralCrossRef
28.
go back to reference Theruvath J, Sotillo E, Mount CW, Graef CM, Delaidelli A, Heitzeneder S, et al. Locoregionally administered B7-H3-targeted CAR T cells for treatment of atypical teratoid/rhabdoid tumors. Nat Med. 2020;26(5):712–9.PubMedPubMedCentralCrossRef Theruvath J, Sotillo E, Mount CW, Graef CM, Delaidelli A, Heitzeneder S, et al. Locoregionally administered B7-H3-targeted CAR T cells for treatment of atypical teratoid/rhabdoid tumors. Nat Med. 2020;26(5):712–9.PubMedPubMedCentralCrossRef
29.
go back to reference Choe JH, Watchmaker PB, Simic MS, Gilbert RD, Li AW, Krasnow NA, et al. SynNotch-CAR T cells overcome challenges of specificity, heterogeneity, and persistence in treating glioblastoma. Sci Transl Med. 2021;13:591.CrossRef Choe JH, Watchmaker PB, Simic MS, Gilbert RD, Li AW, Krasnow NA, et al. SynNotch-CAR T cells overcome challenges of specificity, heterogeneity, and persistence in treating glioblastoma. Sci Transl Med. 2021;13:591.CrossRef
30.
go back to reference Nehama D, Di Ianni N, Musio S, Du H, Patané M, Pollo B, et al. B7-H3-redirected chimeric antigen receptor T cells target glioblastoma and neurospheres. EBioMedicine. 2019;47:33–43.PubMedPubMedCentralCrossRef Nehama D, Di Ianni N, Musio S, Du H, Patané M, Pollo B, et al. B7-H3-redirected chimeric antigen receptor T cells target glioblastoma and neurospheres. EBioMedicine. 2019;47:33–43.PubMedPubMedCentralCrossRef
32.
go back to reference Liu G, Rui W, Zhao X, Lin X. Enhancing CAR-T cell efficacy in solid tumors by targeting the tumor microenvironment. Cell Mol Immunol. 2021;18(5):1085–95.PubMedPubMedCentralCrossRef Liu G, Rui W, Zhao X, Lin X. Enhancing CAR-T cell efficacy in solid tumors by targeting the tumor microenvironment. Cell Mol Immunol. 2021;18(5):1085–95.PubMedPubMedCentralCrossRef
33.
go back to reference Qi LS, Larson MH, Gilbert LA, Doudna JA, Weissman JS, Arkin AP, et al. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell. 2013;152(5):1173–83.PubMedPubMedCentralCrossRef Qi LS, Larson MH, Gilbert LA, Doudna JA, Weissman JS, Arkin AP, et al. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell. 2013;152(5):1173–83.PubMedPubMedCentralCrossRef
35.
go back to reference Li K, Ouyang M, Zhan J, Tian R. CRISPR-based functional genomics screening in human-pluripotent-stem-cell-derived cell types. Cell Genom. 2023;3(5):100300.PubMedPubMedCentralCrossRef Li K, Ouyang M, Zhan J, Tian R. CRISPR-based functional genomics screening in human-pluripotent-stem-cell-derived cell types. Cell Genom. 2023;3(5):100300.PubMedPubMedCentralCrossRef
36.
go back to reference MacLeod G, Bozek DA, Rajakulendran N, Monteiro V, Ahmadi M, Steinhart Z, et al. Genome-wide CRISPR-Cas9 screens expose genetic vulnerabilities and mechanisms of Temozolomide Sensitivity in Glioblastoma Stem cells. Cell Rep. 2019;27(3):971–e869.PubMedCrossRef MacLeod G, Bozek DA, Rajakulendran N, Monteiro V, Ahmadi M, Steinhart Z, et al. Genome-wide CRISPR-Cas9 screens expose genetic vulnerabilities and mechanisms of Temozolomide Sensitivity in Glioblastoma Stem cells. Cell Rep. 2019;27(3):971–e869.PubMedCrossRef
37.
go back to reference Huang K, Liu X, Li Y, Wang Q, Zhou J, Wang Y, et al. Genome-wide CRISPR-Cas9 screening identifies NF-κB/E2F6 responsible for EGFRvIII-Associated Temozolomide Resistance in Glioblastoma. Adv Sci (Weinh). 2019;6(17):1900782.PubMedCrossRef Huang K, Liu X, Li Y, Wang Q, Zhou J, Wang Y, et al. Genome-wide CRISPR-Cas9 screening identifies NF-κB/E2F6 responsible for EGFRvIII-Associated Temozolomide Resistance in Glioblastoma. Adv Sci (Weinh). 2019;6(17):1900782.PubMedCrossRef
38.
go back to reference Tong F, Zhao JX, Fang ZY, Cui XT, Su DY, Liu X, et al. MUC1 promotes glioblastoma progression and TMZ resistance by stabilizing EGFRvIII. Pharmacol Res. 2023;187:106606.PubMedCrossRef Tong F, Zhao JX, Fang ZY, Cui XT, Su DY, Liu X, et al. MUC1 promotes glioblastoma progression and TMZ resistance by stabilizing EGFRvIII. Pharmacol Res. 2023;187:106606.PubMedCrossRef
39.
go back to reference Zhu GD, Yu J, Sun ZY, Chen Y, Zheng HM, Lin ML, et al. Genome-wide CRISPR/Cas9 screening identifies CARHSP1 responsible for radiation resistance in glioblastoma. Cell Death Dis. 2021;12(8):724.PubMedPubMedCentralCrossRef Zhu GD, Yu J, Sun ZY, Chen Y, Zheng HM, Lin ML, et al. Genome-wide CRISPR/Cas9 screening identifies CARHSP1 responsible for radiation resistance in glioblastoma. Cell Death Dis. 2021;12(8):724.PubMedPubMedCentralCrossRef
40.
go back to reference Liu SJ, Malatesta M, Lien BV, Saha P, Thombare SS, Hong SJ, et al. CRISPRi-based radiation modifier screen identifies long non-coding RNA therapeutic targets in glioma. Genome Biol. 2020;21(1):83.PubMedPubMedCentralCrossRef Liu SJ, Malatesta M, Lien BV, Saha P, Thombare SS, Hong SJ, et al. CRISPRi-based radiation modifier screen identifies long non-coding RNA therapeutic targets in glioma. Genome Biol. 2020;21(1):83.PubMedPubMedCentralCrossRef
41.
go back to reference Larson RC, Kann MC, Bailey SR, Haradhvala NJ, Llopis PM, Bouffard AA, et al. CAR T cell killing requires the IFNγR pathway in solid but not liquid tumours. Nature. 2022;604(7906):563–70.PubMedCrossRef Larson RC, Kann MC, Bailey SR, Haradhvala NJ, Llopis PM, Bouffard AA, et al. CAR T cell killing requires the IFNγR pathway in solid but not liquid tumours. Nature. 2022;604(7906):563–70.PubMedCrossRef
42.
go back to reference Wang D, Prager BC, Gimple RC, Aguilar B, Alizadeh D, Tang H, et al. CRISPR Screening of CAR T cells and Cancer stem cells reveals critical dependencies for cell-based therapies. Cancer Discov. 2021;11(5):1192–211.PubMedCrossRef Wang D, Prager BC, Gimple RC, Aguilar B, Alizadeh D, Tang H, et al. CRISPR Screening of CAR T cells and Cancer stem cells reveals critical dependencies for cell-based therapies. Cancer Discov. 2021;11(5):1192–211.PubMedCrossRef
43.
go back to reference Bernareggi D, Xie Q, Prager BC, Yun J, Cruz LS, Pham TV, et al. CHMP2A regulates tumor sensitivity to natural killer cell-mediated cytotoxicity. Nat Commun. 2022;13(1):1899.PubMedPubMedCentralCrossRef Bernareggi D, Xie Q, Prager BC, Yun J, Cruz LS, Pham TV, et al. CHMP2A regulates tumor sensitivity to natural killer cell-mediated cytotoxicity. Nat Commun. 2022;13(1):1899.PubMedPubMedCentralCrossRef
44.
go back to reference Vera J, Savoldo B, Vigouroux S, Biagi E, Pule M, Rossig C, et al. T lymphocytes redirected against the kappa light chain of human immunoglobulin efficiently kill mature B lymphocyte-derived malignant cells. Blood. 2006;108(12):3890–7.PubMedPubMedCentralCrossRef Vera J, Savoldo B, Vigouroux S, Biagi E, Pule M, Rossig C, et al. T lymphocytes redirected against the kappa light chain of human immunoglobulin efficiently kill mature B lymphocyte-derived malignant cells. Blood. 2006;108(12):3890–7.PubMedPubMedCentralCrossRef
45.
go back to reference Xu Y, Zhang M, Ramos CA, Durett A, Liu E, Dakhova O, et al. Closely related T-memory stem cells correlate with in vivo expansion of CAR.CD19-T cells and are preserved by IL-7 and IL-15. Blood. 2014;123(24):3750–9.PubMedPubMedCentralCrossRef Xu Y, Zhang M, Ramos CA, Durett A, Liu E, Dakhova O, et al. Closely related T-memory stem cells correlate with in vivo expansion of CAR.CD19-T cells and are preserved by IL-7 and IL-15. Blood. 2014;123(24):3750–9.PubMedPubMedCentralCrossRef
46.
go back to reference Tian R, Gachechiladze MA, Ludwig CH, Laurie MT, Hong JY, Nathaniel D, et al. CRISPR interference-based platform for Multimodal Genetic Screens in Human iPSC-Derived neurons. Neuron. 2019;104(2):239–. – 55.e12.PubMedPubMedCentralCrossRef Tian R, Gachechiladze MA, Ludwig CH, Laurie MT, Hong JY, Nathaniel D, et al. CRISPR interference-based platform for Multimodal Genetic Screens in Human iPSC-Derived neurons. Neuron. 2019;104(2):239–. – 55.e12.PubMedPubMedCentralCrossRef
47.
go back to reference Tian R, Abarientos A, Hong J, Hashemi SH, Yan R, Dräger N, et al. Genome-wide CRISPRi/a screens in human neurons link lysosomal failure to ferroptosis. Nat Neurosci. 2021;24(7):1020–34.PubMedPubMedCentralCrossRef Tian R, Abarientos A, Hong J, Hashemi SH, Yan R, Dräger N, et al. Genome-wide CRISPRi/a screens in human neurons link lysosomal failure to ferroptosis. Nat Neurosci. 2021;24(7):1020–34.PubMedPubMedCentralCrossRef
48.
go back to reference Samelson AJ, Tran QD, Robinot R, Carrau L, Rezelj VV, Kain AM, et al. BRD2 inhibition blocks SARS-CoV-2 infection by reducing transcription of the host cell receptor ACE2. Nat Cell Biol. 2022;24(1):24–34.PubMedPubMedCentralCrossRef Samelson AJ, Tran QD, Robinot R, Carrau L, Rezelj VV, Kain AM, et al. BRD2 inhibition blocks SARS-CoV-2 infection by reducing transcription of the host cell receptor ACE2. Nat Cell Biol. 2022;24(1):24–34.PubMedPubMedCentralCrossRef
49.
go back to reference Horlbeck MA, Gilbert LA, Villalta JE, Adamson B, Pak RA, Chen Y et al. Compact and highly active next-generation libraries for CRISPR-mediated gene repression and activation. Elife. 2016;5. Horlbeck MA, Gilbert LA, Villalta JE, Adamson B, Pak RA, Chen Y et al. Compact and highly active next-generation libraries for CRISPR-mediated gene repression and activation. Elife. 2016;5.
50.
go back to reference Li G, Wang H, Wu H, Chen J. B7-H3-targeted CAR-T cell therapy for solid tumors. Int Rev Immunol. 2022;41(6):625–37.PubMedCrossRef Li G, Wang H, Wu H, Chen J. B7-H3-targeted CAR-T cell therapy for solid tumors. Int Rev Immunol. 2022;41(6):625–37.PubMedCrossRef
51.
go back to reference Du H, Hirabayashi K, Ahn S, Kren NP, Montgomery SA, Wang X, et al. Antitumor responses in the absence of toxicity in solid tumors by targeting B7-H3 via Chimeric Antigen Receptor T Cells. Cancer Cell. 2019;35(2):221–e378.PubMedPubMedCentralCrossRef Du H, Hirabayashi K, Ahn S, Kren NP, Montgomery SA, Wang X, et al. Antitumor responses in the absence of toxicity in solid tumors by targeting B7-H3 via Chimeric Antigen Receptor T Cells. Cancer Cell. 2019;35(2):221–e378.PubMedPubMedCentralCrossRef
52.
go back to reference Hirabayashi K, Du H, Xu Y, Shou P, Zhou X, Fucá G, et al. Dual targeting CAR-T cells with optimal Costimulation and Metabolic Fitness enhance Antitumor Activity and prevent escape in solid tumors. Nat Cancer. 2021;2(9):904–18.PubMedPubMedCentralCrossRef Hirabayashi K, Du H, Xu Y, Shou P, Zhou X, Fucá G, et al. Dual targeting CAR-T cells with optimal Costimulation and Metabolic Fitness enhance Antitumor Activity and prevent escape in solid tumors. Nat Cancer. 2021;2(9):904–18.PubMedPubMedCentralCrossRef
53.
go back to reference Tang X, Wang Y, Huang J, Zhang Z, Liu F, Xu J, et al. Administration of B7-H3 targeted chimeric antigen receptor-T cells induce regression of glioblastoma. Signal Transduct Target Ther. 2021;6(1):125.PubMedPubMedCentralCrossRef Tang X, Wang Y, Huang J, Zhang Z, Liu F, Xu J, et al. Administration of B7-H3 targeted chimeric antigen receptor-T cells induce regression of glioblastoma. Signal Transduct Target Ther. 2021;6(1):125.PubMedPubMedCentralCrossRef
54.
go back to reference Comprehensive genomic characterization. Defines human glioblastoma genes and core pathways. Nature. 2008;455(7216):1061–8.CrossRef Comprehensive genomic characterization. Defines human glioblastoma genes and core pathways. Nature. 2008;455(7216):1061–8.CrossRef
55.
56.
go back to reference Brat DJ, Verhaak RG, Aldape KD, Yung WK, Salama SR, Cooper LA, et al. Comprehensive, Integrative Genomic Analysis of Diffuse Lower-Grade Gliomas. N Engl J Med. 2015;372(26):2481–98.PubMedCrossRef Brat DJ, Verhaak RG, Aldape KD, Yung WK, Salama SR, Cooper LA, et al. Comprehensive, Integrative Genomic Analysis of Diffuse Lower-Grade Gliomas. N Engl J Med. 2015;372(26):2481–98.PubMedCrossRef
57.
go back to reference Zhao Z, Zhang KN, Wang Q, Li G, Zeng F, Zhang Y, et al. Chinese Glioma Genome Atlas (CGGA): a Comprehensive Resource with functional genomic data from Chinese glioma patients. Genomics Proteom Bioinf. 2021;19(1):1–12.CrossRef Zhao Z, Zhang KN, Wang Q, Li G, Zeng F, Zhang Y, et al. Chinese Glioma Genome Atlas (CGGA): a Comprehensive Resource with functional genomic data from Chinese glioma patients. Genomics Proteom Bioinf. 2021;19(1):1–12.CrossRef
58.
59.
go back to reference Bojjireddy N, Botyanszki J, Hammond G, Creech D, Peterson R, Kemp DC, et al. Pharmacological and genetic targeting of the PI4KA enzyme reveals its important role in maintaining plasma membrane phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate levels. J Biol Chem. 2014;289(9):6120–32.PubMedPubMedCentralCrossRef Bojjireddy N, Botyanszki J, Hammond G, Creech D, Peterson R, Kemp DC, et al. Pharmacological and genetic targeting of the PI4KA enzyme reveals its important role in maintaining plasma membrane phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate levels. J Biol Chem. 2014;289(9):6120–32.PubMedPubMedCentralCrossRef
60.
go back to reference Meylan F, Richard AC, Siegel RM. TL1A and DR3, a TNF family ligand-receptor pair that promotes lymphocyte costimulation, mucosal hyperplasia, and autoimmune inflammation. Immunol Rev. 2011;244(1):188–96.PubMedCrossRef Meylan F, Richard AC, Siegel RM. TL1A and DR3, a TNF family ligand-receptor pair that promotes lymphocyte costimulation, mucosal hyperplasia, and autoimmune inflammation. Immunol Rev. 2011;244(1):188–96.PubMedCrossRef
62.
go back to reference Cui A, Huang T, Li S, Ma A, Pérez JL, Sander C et al. Dictionary of immune responses to cytokines at single-cell resolution. Nature. 2023. Cui A, Huang T, Li S, Ma A, Pérez JL, Sander C et al. Dictionary of immune responses to cytokines at single-cell resolution. Nature. 2023.
63.
go back to reference Ramkumar P, Abarientos AB, Tian R, Seyler M, Leong JT, Chen M, et al. CRISPR-based screens uncover determinants of immunotherapy response in multiple myeloma. Blood Adv. 2020;4(13):2899–911.PubMedPubMedCentralCrossRef Ramkumar P, Abarientos AB, Tian R, Seyler M, Leong JT, Chen M, et al. CRISPR-based screens uncover determinants of immunotherapy response in multiple myeloma. Blood Adv. 2020;4(13):2899–911.PubMedPubMedCentralCrossRef
65.
go back to reference Hong M, Talluri S, Chen YY. Advances in promoting chimeric antigen receptor T cell trafficking and infiltration of solid tumors. Curr Opin Biotechnol. 2023;84:103020.PubMedCrossRef Hong M, Talluri S, Chen YY. Advances in promoting chimeric antigen receptor T cell trafficking and infiltration of solid tumors. Curr Opin Biotechnol. 2023;84:103020.PubMedCrossRef
66.
go back to reference Bonaventura P, Shekarian T, Alcazer V, Valladeau-Guilemond J, Valsesia-Wittmann S, Amigorena S, et al. Cold tumors: a therapeutic challenge for Immunotherapy. Front Immunol. 2019;10:168.PubMedPubMedCentralCrossRef Bonaventura P, Shekarian T, Alcazer V, Valladeau-Guilemond J, Valsesia-Wittmann S, Amigorena S, et al. Cold tumors: a therapeutic challenge for Immunotherapy. Front Immunol. 2019;10:168.PubMedPubMedCentralCrossRef
67.
go back to reference Tang X, Zhao S, Zhang Y, Wang Y, Zhang Z, Yang M, et al. B7-H3 as a novel CAR-T therapeutic target for Glioblastoma. Mol Ther Oncolytics. 2019;14:279–87.PubMedPubMedCentralCrossRef Tang X, Zhao S, Zhang Y, Wang Y, Zhang Z, Yang M, et al. B7-H3 as a novel CAR-T therapeutic target for Glioblastoma. Mol Ther Oncolytics. 2019;14:279–87.PubMedPubMedCentralCrossRef
68.
go back to reference Migone TS, Zhang J, Luo X, Zhuang L, Chen C, Hu B, et al. TL1A is a TNF-like ligand for DR3 and TR6/DcR3 and functions as a T cell costimulator. Immunity. 2002;16(3):479–92.PubMedCrossRef Migone TS, Zhang J, Luo X, Zhuang L, Chen C, Hu B, et al. TL1A is a TNF-like ligand for DR3 and TR6/DcR3 and functions as a T cell costimulator. Immunity. 2002;16(3):479–92.PubMedCrossRef
Metadata
Title
Identification of genetic modifiers enhancing B7-H3-targeting CAR T cell therapy against glioblastoma through large-scale CRISPRi screening
Authors
Xing Li
Shiyu Sun
Wansong Zhang
Ziwei Liang
Yitong Fang
Tianhu Sun
Yong Wan
Xingcong Ma
Shuqun Zhang
Yang Xu
Ruilin Tian
Publication date
01-12-2024
Publisher
BioMed Central
Published in
Journal of Experimental & Clinical Cancer Research / Issue 1/2024
Electronic ISSN: 1756-9966
DOI
https://doi.org/10.1186/s13046-024-03027-6

Other articles of this Issue 1/2024

Journal of Experimental & Clinical Cancer Research 1/2024 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine