Skip to main content
Top
Published in: European Radiology 5/2021

01-05-2021 | Glioblastoma | Magnetic Resonance

Diffusion and perfusion MRI radiomics obtained from deep learning segmentation provides reproducible and comparable diagnostic model to human in post-treatment glioblastoma

Authors: Ji Eun Park, Sungwon Ham, Ho Sung Kim, Seo Young Park, Jihye Yun, Hyunna Lee, Seung Hong Choi, Namkug Kim

Published in: European Radiology | Issue 5/2021

Login to get access

Abstract

Objectives

Deep learning-based automatic segmentation (DLAS) helps the reproducibility of radiomics features, but its effect on radiomics modeling is unknown. We therefore evaluated whether DLAS can robustly extract anatomical and physiological MRI features, thereby assisting in the accurate assessment of treatment response in glioblastoma patients.

Methods

A DLAS model was trained on 238 glioblastomas and validated on an independent set of 98 pre- and 86 post-treatment glioblastomas from two tertiary hospitals. A total of 1618 radiomics features from contrast-enhanced T1-weighted images (CE-T1w) and histogram features from apparent diffusion coefficient (ADC) and cerebral blood volume (CBV) mapping were extracted. The diagnostic performance of radiomics features and ADC and CBV parameters for identifying treatment response was tested using area under the curve (AUC) from receiver operating characteristics analysis. Feature reproducibility was tested using a 0.80 cutoff for concordance correlation coefficients.

Results

Reproducibility was excellent for ADC and CBV features (ICC, 0.82–0.99) and first-order features (pre- and post-treatment, 100% and 94.1% remained), but lower for texture (79.0% and 69.1% remained) and wavelet-transformed (81.8% and 74.9% remained) features of CE-T1w. DLAS-based radiomics showed similar performance to human-performed segmentations in internal validation (AUC, 0.81 [95% CI, 0.64–0.99] vs. AUC, 0.81 [0.60–1.00], p = 0.80), but slightly lower performance in external validation (AUC, 0.78 [0.61–0.95] vs. AUC, 0.65 [0.46–0.84], p = 0.23).

Conclusion

DLAS-based feature extraction showed high reproducibility for first-order features from anatomical and physiological MRI, and comparable diagnostic performance to human manual segmentations in the identification of pseudoprogression, supporting the utility of DLAS in quantitative MRI analysis.

Key Points

Deep learning-based automatic segmentation (DLAS) enables fast and robust feature extraction from diffusion- and perfusion-weighted MRI.
DLAS showed high reproducibility in first-order feature extraction from anatomical, diffusion, and perfusion MRI across two centers.
DLAS-based radiomics features showed comparable diagnostic accuracy to manual segmentations in post-treatment glioblastoma.
Appendix
Available only for authorised users
Literature
1.
go back to reference Wen PY, Chang SM, Van den Bent MJ, Vogelbaum MA, Macdonald DR, Lee EQ (2017) Response assessment in neuro-oncology clinical trials. J Clin Oncol 35:2439–2449CrossRef Wen PY, Chang SM, Van den Bent MJ, Vogelbaum MA, Macdonald DR, Lee EQ (2017) Response assessment in neuro-oncology clinical trials. J Clin Oncol 35:2439–2449CrossRef
2.
go back to reference Kickingereder P, Isensee F, Tursunova I et al (2019) Automated quantitative tumour response assessment of MRI in neuro-oncology with artificial neural networks: a multicentre, retrospective study. Lancet Oncol 20:728–740CrossRef Kickingereder P, Isensee F, Tursunova I et al (2019) Automated quantitative tumour response assessment of MRI in neuro-oncology with artificial neural networks: a multicentre, retrospective study. Lancet Oncol 20:728–740CrossRef
3.
go back to reference Parmar C, Velazquez ER, Leijenaar R et al (2014) Robust radiomics feature quantification using semiautomatic volumetric segmentation. Plos One 9 Parmar C, Velazquez ER, Leijenaar R et al (2014) Robust radiomics feature quantification using semiautomatic volumetric segmentation. Plos One 9
4.
go back to reference Pavic M, Bogowicz M, Wurms X et al (2018) Influence of inter-observer delineation variability on radiomics stability in different tumor sites. Acta Oncol 57:1070–1074CrossRef Pavic M, Bogowicz M, Wurms X et al (2018) Influence of inter-observer delineation variability on radiomics stability in different tumor sites. Acta Oncol 57:1070–1074CrossRef
5.
go back to reference Kumar V, Gu YH, Basu S et al (2012) Radiomics: the process and the challenges. Magn Reson Imaging 30:1234–1248CrossRef Kumar V, Gu YH, Basu S et al (2012) Radiomics: the process and the challenges. Magn Reson Imaging 30:1234–1248CrossRef
6.
go back to reference Lambin P, Leijenaar RTH, Deist TM et al (2017) Radiomics: the bridge between medical imaging and personalized medicine. Nat Rev Clin Oncol 14:749–762CrossRef Lambin P, Leijenaar RTH, Deist TM et al (2017) Radiomics: the bridge between medical imaging and personalized medicine. Nat Rev Clin Oncol 14:749–762CrossRef
7.
go back to reference Lambin P, Rios-Velazquez E, Leijenaar R et al (2012) Radiomics: extracting more information from medical images using advanced feature analysis. Eur J Cancer 48:441–446CrossRef Lambin P, Rios-Velazquez E, Leijenaar R et al (2012) Radiomics: extracting more information from medical images using advanced feature analysis. Eur J Cancer 48:441–446CrossRef
8.
go back to reference Park JE, Kim HS (2018) Radiomics as a quantitative imaging biomarker: practical considerations and the current standpoint in neuro-oncologic studies. Nucl Med Mol Imaging 52:99–108CrossRef Park JE, Kim HS (2018) Radiomics as a quantitative imaging biomarker: practical considerations and the current standpoint in neuro-oncologic studies. Nucl Med Mol Imaging 52:99–108CrossRef
9.
go back to reference Menze BH, Jakab A, Bauer S et al (2015) The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans Med Imaging 34:1993–2024CrossRef Menze BH, Jakab A, Bauer S et al (2015) The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans Med Imaging 34:1993–2024CrossRef
10.
go back to reference Ellingson BM, Cloughesy TF, Zaw T et al (2012) Functional diffusion maps (fDMs) evaluated before and after radiochemotherapy predict progression-free and overall survival in newly diagnosed glioblastoma. Neuro Oncol 14:333–343CrossRef Ellingson BM, Cloughesy TF, Zaw T et al (2012) Functional diffusion maps (fDMs) evaluated before and after radiochemotherapy predict progression-free and overall survival in newly diagnosed glioblastoma. Neuro Oncol 14:333–343CrossRef
11.
go back to reference Law M, Young RJ, Babb JS et al (2008) Gliomas: predicting time to progression or survival with cerebral blood volume measurements at dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging. Radiology 247:490–498CrossRef Law M, Young RJ, Babb JS et al (2008) Gliomas: predicting time to progression or survival with cerebral blood volume measurements at dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging. Radiology 247:490–498CrossRef
12.
go back to reference Kickingereder P, Burth S, Wick A et al (2016) Radiomic profiling of glioblastoma: identifying an imaging predictor of patient survival with improved performance over established clinical and radiologic risk models. Radiology 280:880–889CrossRef Kickingereder P, Burth S, Wick A et al (2016) Radiomic profiling of glioblastoma: identifying an imaging predictor of patient survival with improved performance over established clinical and radiologic risk models. Radiology 280:880–889CrossRef
13.
go back to reference Bae S, Choi YS, Ahn SS et al (2018) Radiomic MRI phenotyping of glioblastoma: improving survival prediction. Radiology 289:797–806CrossRef Bae S, Choi YS, Ahn SS et al (2018) Radiomic MRI phenotyping of glioblastoma: improving survival prediction. Radiology 289:797–806CrossRef
15.
go back to reference Kickingereder P, Gotz M, Muschelli J et al (2016) Large-scale radiomic profiling of recurrent glioblastoma identifies an imaging predictor for stratifying anti-angiogenic treatment response. Clin Cancer Res 22:5765–5771CrossRef Kickingereder P, Gotz M, Muschelli J et al (2016) Large-scale radiomic profiling of recurrent glioblastoma identifies an imaging predictor for stratifying anti-angiogenic treatment response. Clin Cancer Res 22:5765–5771CrossRef
16.
go back to reference Louis DN, Perry A, Reifenberger G et al (2016) The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol 131:803–820CrossRef Louis DN, Perry A, Reifenberger G et al (2016) The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol 131:803–820CrossRef
17.
go back to reference Nolden M, Zelzer S, Seitel A et al (2013) The medical imaging interaction toolkit: challenges and advances : 10 years of open-source development. Int J Comput Assist Radiol Surg 8:607–620CrossRef Nolden M, Zelzer S, Seitel A et al (2013) The medical imaging interaction toolkit: challenges and advances : 10 years of open-source development. Int J Comput Assist Radiol Surg 8:607–620CrossRef
18.
go back to reference Avants BB, Tustison NJ, Song G, Cook PA, Klein A, Gee JC (2011) A reproducible evaluation of ANTs similarity metric performance in brain image registration. Neuroimage 54:2033–2044CrossRef Avants BB, Tustison NJ, Song G, Cook PA, Klein A, Gee JC (2011) A reproducible evaluation of ANTs similarity metric performance in brain image registration. Neuroimage 54:2033–2044CrossRef
19.
go back to reference Shinohara RT, Sweeney EM, Goldsmith J et al (2014) Statistical normalization techniques for magnetic resonance imaging. Neuroimage Clin 6:9–19 Shinohara RT, Sweeney EM, Goldsmith J et al (2014) Statistical normalization techniques for magnetic resonance imaging. Neuroimage Clin 6:9–19
21.
go back to reference Zwanenburg A, Leger S, Vallières M, Löck S (2016) Image biomarker standardisation initiative. arXiv preprint arXiv:1612.07003 Zwanenburg A, Leger S, Vallières M, Löck S (2016) Image biomarker standardisation initiative. arXiv preprint arXiv:1612.07003
22.
go back to reference Weisskoff RM, Boxerman JL, Sorensen AG et al (1994) Simultaneous blood volume and permeability mapping using a single Gd-based contrast injection. In: Proceedings of the Society of Magnetic Resonance, Second Annual Meeting; 1994 Aug 6–12; San Francisco, Calif.; Berkeley, Calif: Society of Magnetic Resonance, 279 Weisskoff RM, Boxerman JL, Sorensen AG et al (1994) Simultaneous blood volume and permeability mapping using a single Gd-based contrast injection. In: Proceedings of the Society of Magnetic Resonance, Second Annual Meeting; 1994 Aug 6–12; San Francisco, Calif.; Berkeley, Calif: Society of Magnetic Resonance, 279
23.
go back to reference Chung WJ, Kim HS, Kim N, Choi CG, Kim SJ (2013) Recurrent glioblastoma: optimum area under the curve method derived from dynamic contrast-enhanced T1-weighted perfusion MR imaging. Radiology 269:561–568CrossRef Chung WJ, Kim HS, Kim N, Choi CG, Kim SJ (2013) Recurrent glioblastoma: optimum area under the curve method derived from dynamic contrast-enhanced T1-weighted perfusion MR imaging. Radiology 269:561–568CrossRef
24.
go back to reference Kim HS, Suh CH, Kim N, Choi CG, Kim SJ (2014) Histogram analysis of intravoxel incoherent motion for differentiating recurrent tumor from treatment effect in patients with glioblastoma: initial clinical experience. AJNR Am J Neuroradiol 35:490–497CrossRef Kim HS, Suh CH, Kim N, Choi CG, Kim SJ (2014) Histogram analysis of intravoxel incoherent motion for differentiating recurrent tumor from treatment effect in patients with glioblastoma: initial clinical experience. AJNR Am J Neuroradiol 35:490–497CrossRef
25.
go back to reference Dice LR (1945) Measures of the amount of ecologic association between species. Ecology 26:297–302CrossRef Dice LR (1945) Measures of the amount of ecologic association between species. Ecology 26:297–302CrossRef
26.
go back to reference Kursa MB (2014) Robustness of Random Forest-based gene selection methods. BMC Bioinformatics 15(1):8 Kursa MB (2014) Robustness of Random Forest-based gene selection methods. BMC Bioinformatics 15(1):8
27.
go back to reference Loh WY (2011) Classification and regression trees. Wiley Interdisciplinary Reviews: Data Min Knowl Discov 1(1):14-23 Loh WY (2011) Classification and regression trees. Wiley Interdisciplinary Reviews: Data Min Knowl Discov 1(1):14-23
28.
go back to reference Lin L, Dou Q, Jin YM et al (2019) Deep learning for automated contouring of primary tumor volumes by MRI for nasopharyngeal carcinoma. Radiology 291:677–686CrossRef Lin L, Dou Q, Jin YM et al (2019) Deep learning for automated contouring of primary tumor volumes by MRI for nasopharyngeal carcinoma. Radiology 291:677–686CrossRef
29.
go back to reference Norman B, Pedoia V, Majumdar S (2018) Use of 2D U-Net convolutional neural networks for automated cartilage and meniscus segmentation of knee MR imaging data to determine relaxometry and morphometry. Radiology 288:177–185CrossRef Norman B, Pedoia V, Majumdar S (2018) Use of 2D U-Net convolutional neural networks for automated cartilage and meniscus segmentation of knee MR imaging data to determine relaxometry and morphometry. Radiology 288:177–185CrossRef
30.
go back to reference Barboriak DP, Zhang Z, Desai P et al (2019) Interreader variability of dynamic contrast-enhanced MRI of recurrent glioblastoma: the multicenter ACRIN 6677/RTOG 0625 study. Radiology 290:467–476CrossRef Barboriak DP, Zhang Z, Desai P et al (2019) Interreader variability of dynamic contrast-enhanced MRI of recurrent glioblastoma: the multicenter ACRIN 6677/RTOG 0625 study. Radiology 290:467–476CrossRef
31.
go back to reference Newitt DC, Zhang Z, Gibbs JE et al (2019) Test-retest repeatability and reproducibility of ADC measures by breast DWI: results from the ACRIN 6698 trial. J Magn Reson Imaging 49:1617–1628CrossRef Newitt DC, Zhang Z, Gibbs JE et al (2019) Test-retest repeatability and reproducibility of ADC measures by breast DWI: results from the ACRIN 6698 trial. J Magn Reson Imaging 49:1617–1628CrossRef
32.
go back to reference Ellingson BM, Bendszus M, Boxerman J et al (2015) Consensus recommendations for a standardized brain tumor imaging protocol in clinical trials. Neuro Oncol 17:1188–1198CrossRef Ellingson BM, Bendszus M, Boxerman J et al (2015) Consensus recommendations for a standardized brain tumor imaging protocol in clinical trials. Neuro Oncol 17:1188–1198CrossRef
33.
go back to reference Baessler B, Weiss K, Pinto Dos Santos D (2019) Robustness and reproducibility of radiomics in magnetic resonance imaging: a phantom study. Invest Radiol 54:221–228CrossRef Baessler B, Weiss K, Pinto Dos Santos D (2019) Robustness and reproducibility of radiomics in magnetic resonance imaging: a phantom study. Invest Radiol 54:221–228CrossRef
34.
go back to reference Milletari F, Navab N, Ahmadi S-A (2016) V-net: fully convolutional neural networks for volumetric medical image segmentation. In 2016 fourth international conference on 3D vision (3DV) (pp. 565-571). IEEE Milletari F, Navab N, Ahmadi S-A (2016) V-net: fully convolutional neural networks for volumetric medical image segmentation. In 2016 fourth international conference on 3D vision (3DV) (pp. 565-571). IEEE
35.
go back to reference Estienne T, Lerousseau M, Vakalopoulou M et al (2020) Deep learning-based concurrent brain registration and tumor segmentation. Front Comput Neurosci 14:17CrossRef Estienne T, Lerousseau M, Vakalopoulou M et al (2020) Deep learning-based concurrent brain registration and tumor segmentation. Front Comput Neurosci 14:17CrossRef
36.
go back to reference Zwanenburg A, Vallieres M, Abdalah MA et al (2020) The image biomarker standardization initiative: standardized quantitative radiomics for high-throughput image-based phenotyping. Radiology 295:328–338CrossRef Zwanenburg A, Vallieres M, Abdalah MA et al (2020) The image biomarker standardization initiative: standardized quantitative radiomics for high-throughput image-based phenotyping. Radiology 295:328–338CrossRef
37.
go back to reference Zhao B, Tan Y, Tsai WY et al (2016) Reproducibility of radiomics for deciphering tumor phenotype with imaging. Sci Rep 6:23428CrossRef Zhao B, Tan Y, Tsai WY et al (2016) Reproducibility of radiomics for deciphering tumor phenotype with imaging. Sci Rep 6:23428CrossRef
Metadata
Title
Diffusion and perfusion MRI radiomics obtained from deep learning segmentation provides reproducible and comparable diagnostic model to human in post-treatment glioblastoma
Authors
Ji Eun Park
Sungwon Ham
Ho Sung Kim
Seo Young Park
Jihye Yun
Hyunna Lee
Seung Hong Choi
Namkug Kim
Publication date
01-05-2021
Publisher
Springer Berlin Heidelberg
Published in
European Radiology / Issue 5/2021
Print ISSN: 0938-7994
Electronic ISSN: 1432-1084
DOI
https://doi.org/10.1007/s00330-020-07414-3

Other articles of this Issue 5/2021

European Radiology 5/2021 Go to the issue