Skip to main content
Top
Published in: BMC Cancer 1/2023

Open Access 01-12-2023 | Glioblastoma | Research

Circ_0021350 plays an oncogene role by regulating miR-1207-3p/PIK3R3 in glioblastoma

Authors: Cheng Tan, Jun Wei, Zhaohui Li, Nan Tian, Zhengming Wang, Guan Wang, Liang Han, Yu Tian

Published in: BMC Cancer | Issue 1/2023

Login to get access

Abstract

Background

Glioblastoma (GBM) is the most malignant glioma, with poor survival rates and prognosis. Several studies have reported the abnormal expression of circular RNAs (circRNAs) and their functions in the malignant biological behavior of GBM. However, such research is still in the preliminary stages, and further study is needed to confirm the therapeutic potential of circRNAs in GBM.

Methods

RNA-seq was performed using four tumor tissues from patients with GBM and their adjacent non-tumor brain tissues to screen differentially expressed circRNAs. Fluorescence in situ hybridization assay was used to examine the location of circ_0021350 in glioma cells. In addition, a series of biological function assays were employed to verify the oncogenic role of circ_0021350 in GBM. Quantitative reverse transcription PCR was used to examine circular, micro- (miRNA), and messenger RNA (mRNA) levels. Furthermore, dual-luciferase reporter, RNA pull-down, and RNA binding protein immunoprecipitation assays were applied to verify the interaction between circ_0021350 and its downstream effectors.

Results

Circ_0021350 was significantly elevated in GBM tissues and glioma cells. Overexpression of circ_0021350 promoted glioma cell proliferation and metastatic ability; silencing of circ_0021350 had the opposite effect. Mechanistic analysis revealed that circ_0021350 sponged miR-1207-3p to regulate PIK3R3, whose overexpression reversed the reduction in the malignant biological behavior of glioma cells caused by silencing circ_0021350.

Conclusion

Our findings suggest that circ_0021350 is an oncogenic circRNA in GBM, and the circ_0021350/miR-1207-3p/PIK3R3 axis may serve as a potential therapeutic target in GBM treatment.
Appendix
Available only for authorised users
Literature
5.
go back to reference Chen LL. The expanding regulatory mechanisms and cellular functions of circular RNAs. Nat Rev Mol Cell Biol. 2020;21(8):475–90.CrossRefPubMed Chen LL. The expanding regulatory mechanisms and cellular functions of circular RNAs. Nat Rev Mol Cell Biol. 2020;21(8):475–90.CrossRefPubMed
6.
go back to reference Chen J, Chen T, Zhu Y, Li Y, Zhang Y, Wang Y, et al. circPTN sponges miR-145-5p/miR-330-5p to promote proliferation and stemness in glioma. J Exp Clin Cancer Res. 2019;38(1):398.CrossRefPubMedPubMedCentral Chen J, Chen T, Zhu Y, Li Y, Zhang Y, Wang Y, et al. circPTN sponges miR-145-5p/miR-330-5p to promote proliferation and stemness in glioma. J Exp Clin Cancer Res. 2019;38(1):398.CrossRefPubMedPubMedCentral
7.
go back to reference Liu Y, Liu S, Li G, Li Y, Chen L, Feng J, et al. Association of high-dose radiotherapy with improved survival in patients with newly diagnosed low-grade gliomas. Cancer. 2022;128(5):1085–92.CrossRefPubMed Liu Y, Liu S, Li G, Li Y, Chen L, Feng J, et al. Association of high-dose radiotherapy with improved survival in patients with newly diagnosed low-grade gliomas. Cancer. 2022;128(5):1085–92.CrossRefPubMed
8.
go back to reference Aldape K, Brindle KM, Chesler L, Chopra R, Gajjar A, Gilbert MR, et al. Challenges to curing primary brain tumours. Nat Rev Clin Oncol. 2019;16(8):509–20.CrossRefPubMedPubMedCentral Aldape K, Brindle KM, Chesler L, Chopra R, Gajjar A, Gilbert MR, et al. Challenges to curing primary brain tumours. Nat Rev Clin Oncol. 2019;16(8):509–20.CrossRefPubMedPubMedCentral
9.
go back to reference Papavassiliou KA, Papavassiliou AG. Transcription factors in glioblastoma- molecular pathogenesis and clinical implications. Biochim Biophys Acta Rev Cancer. 2022;1877(1):188667.CrossRefPubMed Papavassiliou KA, Papavassiliou AG. Transcription factors in glioblastoma- molecular pathogenesis and clinical implications. Biochim Biophys Acta Rev Cancer. 2022;1877(1):188667.CrossRefPubMed
12.
go back to reference Zhu J, Ye J, Zhang L, Xia L, Hu H, Jiang H, et al. Differential expression of circular RNAs in Glioblastoma Multiforme and its correlation with prognosis. Transl Oncol. 2017;10(2):271–9.CrossRefPubMedPubMedCentral Zhu J, Ye J, Zhang L, Xia L, Hu H, Jiang H, et al. Differential expression of circular RNAs in Glioblastoma Multiforme and its correlation with prognosis. Transl Oncol. 2017;10(2):271–9.CrossRefPubMedPubMedCentral
13.
go back to reference Wei Y, Lu C, Zhou P, Zhao L, Lyu X, Yin J, et al. EIF4A3-induced circular RNA ASAP1 promotes tumorigenesis and temozolomide resistance of glioblastoma via NRAS/MEK1/ERK1-2 signaling. Neuro Oncol. 2021;23(4):611–24.CrossRefPubMed Wei Y, Lu C, Zhou P, Zhao L, Lyu X, Yin J, et al. EIF4A3-induced circular RNA ASAP1 promotes tumorigenesis and temozolomide resistance of glioblastoma via NRAS/MEK1/ERK1-2 signaling. Neuro Oncol. 2021;23(4):611–24.CrossRefPubMed
14.
go back to reference Pan Z, Zhao R, Li B, Qi Y, Qiu W, Guo Q, et al. EWSR1-induced circNEIL3 promotes glioma progression and exosome-mediated macrophage immunosuppressive polarization via stabilizing IGF2BP3. Mol Cancer. 2022;21(1):16.CrossRefPubMedPubMedCentral Pan Z, Zhao R, Li B, Qi Y, Qiu W, Guo Q, et al. EWSR1-induced circNEIL3 promotes glioma progression and exosome-mediated macrophage immunosuppressive polarization via stabilizing IGF2BP3. Mol Cancer. 2022;21(1):16.CrossRefPubMedPubMedCentral
15.
go back to reference Louis DN, Perry A, Wesseling P, Brat DJ, Cree IA, Figarella-Branger D, et al. The 2021 WHO classification of tumors of the Central Nervous System: a summary. Neuro Oncol. 2021;23(8):1231–51.CrossRefPubMedPubMedCentral Louis DN, Perry A, Wesseling P, Brat DJ, Cree IA, Figarella-Branger D, et al. The 2021 WHO classification of tumors of the Central Nervous System: a summary. Neuro Oncol. 2021;23(8):1231–51.CrossRefPubMedPubMedCentral
16.
go back to reference Lv X, Sun J, Hu L, Qian Y, Fan C, Tian N. Curcumol inhibits malignant biological behaviors and TMZ-resistance in glioma cells by inhibiting long noncoding RNA FOXD2-As1-promoted EZH2 activation. Aging. 2021;13(21):24101–16.CrossRefPubMedPubMedCentral Lv X, Sun J, Hu L, Qian Y, Fan C, Tian N. Curcumol inhibits malignant biological behaviors and TMZ-resistance in glioma cells by inhibiting long noncoding RNA FOXD2-As1-promoted EZH2 activation. Aging. 2021;13(21):24101–16.CrossRefPubMedPubMedCentral
17.
go back to reference Song X, Zhang N, Han P, Moon BS, Lai RK, Wang K, et al. Circular RNA profile in gliomas revealed by identification tool UROBORUS. Nucleic Acids Res. 2016;44(9):e87.CrossRefPubMedPubMedCentral Song X, Zhang N, Han P, Moon BS, Lai RK, Wang K, et al. Circular RNA profile in gliomas revealed by identification tool UROBORUS. Nucleic Acids Res. 2016;44(9):e87.CrossRefPubMedPubMedCentral
18.
go back to reference Papatsirou M, Artemaki PI, Karousi P, Scorilas A, Kontos CK. Circular RNAs: emerging regulators of the Major Signaling Pathways involved in Cancer Progression. Cancers (Basel). 2021;13(11):2744.CrossRefPubMed Papatsirou M, Artemaki PI, Karousi P, Scorilas A, Kontos CK. Circular RNAs: emerging regulators of the Major Signaling Pathways involved in Cancer Progression. Cancers (Basel). 2021;13(11):2744.CrossRefPubMed
19.
20.
go back to reference Zheng J, Liu X, Xue Y, Gong W, Ma J, Xi Z, et al. TTBK2 circular RNA promotes glioma malignancy by regulating miR-217/HNF1β/Derlin-1 pathway. J Hematol Oncol. 2017;10(1):52.CrossRefPubMedPubMedCentral Zheng J, Liu X, Xue Y, Gong W, Ma J, Xi Z, et al. TTBK2 circular RNA promotes glioma malignancy by regulating miR-217/HNF1β/Derlin-1 pathway. J Hematol Oncol. 2017;10(1):52.CrossRefPubMedPubMedCentral
21.
go back to reference Barbagallo D, Caponnetto A, Cirnigliaro M, Brex D, Barbagallo C, D’Angeli F, et al. CircSMARCA5 inhibits Migration of Glioblastoma Multiforme cells by regulating a molecular Axis Involving splicing factors SRSF1/SRSF3/PTB. Int J Mol Sci. 2018;19(2):480.CrossRefPubMedPubMedCentral Barbagallo D, Caponnetto A, Cirnigliaro M, Brex D, Barbagallo C, D’Angeli F, et al. CircSMARCA5 inhibits Migration of Glioblastoma Multiforme cells by regulating a molecular Axis Involving splicing factors SRSF1/SRSF3/PTB. Int J Mol Sci. 2018;19(2):480.CrossRefPubMedPubMedCentral
22.
go back to reference Jiang Y, Zhou J, Zhao J, Zhang H, Li L, Li H, et al. The U2AF2 /circRNA ARF1/miR-342-3p/ISL2 feedback loop regulates angiogenesis in glioma stem cells. J Exp Clin Cancer Res. 2020;39(1):182.CrossRefPubMedPubMedCentral Jiang Y, Zhou J, Zhao J, Zhang H, Li L, Li H, et al. The U2AF2 /circRNA ARF1/miR-342-3p/ISL2 feedback loop regulates angiogenesis in glioma stem cells. J Exp Clin Cancer Res. 2020;39(1):182.CrossRefPubMedPubMedCentral
23.
go back to reference Long N, Chu L, Jia J, Peng S, Gao Y, Yang H, et al. CircPOSTN/miR-361-5p/TPX2 axis regulates cell growth, apoptosis and aerobic glycolysis in glioma cells. Cancer Cell Int. 2020;20:374.CrossRefPubMedPubMedCentral Long N, Chu L, Jia J, Peng S, Gao Y, Yang H, et al. CircPOSTN/miR-361-5p/TPX2 axis regulates cell growth, apoptosis and aerobic glycolysis in glioma cells. Cancer Cell Int. 2020;20:374.CrossRefPubMedPubMedCentral
24.
go back to reference Zhong Y, Du Y, Yang X, Mo Y, Fan C, Xiong F, et al. Circular RNAs function as ceRNAs to regulate and control human cancer progression. Mol Cancer. 2018;17(1):79.CrossRefPubMedPubMedCentral Zhong Y, Du Y, Yang X, Mo Y, Fan C, Xiong F, et al. Circular RNAs function as ceRNAs to regulate and control human cancer progression. Mol Cancer. 2018;17(1):79.CrossRefPubMedPubMedCentral
25.
26.
go back to reference Fang J, Hong H, Xue X, Zhu X, Jiang L, Qin M, et al. A novel circular RNA, circFAT1(e2), inhibits gastric cancer progression by targeting miR-548 g in the cytoplasm and interacting with YBX1 in the nucleus. Cancer Lett. 2019;442:222–32.CrossRefPubMed Fang J, Hong H, Xue X, Zhu X, Jiang L, Qin M, et al. A novel circular RNA, circFAT1(e2), inhibits gastric cancer progression by targeting miR-548 g in the cytoplasm and interacting with YBX1 in the nucleus. Cancer Lett. 2019;442:222–32.CrossRefPubMed
27.
go back to reference Lin W, Wang K, Mo J, Wang L, Song Z, Jiang H et al. PIK3R3 is upregulated in liver cancer and activates akt signaling to control cancer growth by regulation of CDKN1C and SMC1A. Cancer Med. 2023. Lin W, Wang K, Mo J, Wang L, Song Z, Jiang H et al. PIK3R3 is upregulated in liver cancer and activates akt signaling to control cancer growth by regulation of CDKN1C and SMC1A. Cancer Med. 2023.
28.
go back to reference Ibrahim S, Li G, Hu F, Hou Z, Chen Q, Li G, et al. PIK3R3 promotes chemotherapeutic sensitivity of colorectal cancer through PIK3R3/NF-kB/TP pathway. Cancer Biol Ther. 2018;19(3):222–9.CrossRefPubMedPubMedCentral Ibrahim S, Li G, Hu F, Hou Z, Chen Q, Li G, et al. PIK3R3 promotes chemotherapeutic sensitivity of colorectal cancer through PIK3R3/NF-kB/TP pathway. Cancer Biol Ther. 2018;19(3):222–9.CrossRefPubMedPubMedCentral
29.
go back to reference Yoon C, Lu J, Ryeom SW, Simon MC, Yoon SS. PIK3R3, part of the regulatory domain of PI3K, is upregulated in sarcoma stem-like cells and promotes invasion, migration, and chemotherapy resistance. Cell Death Dis. 2021;12(8):749.CrossRefPubMedPubMedCentral Yoon C, Lu J, Ryeom SW, Simon MC, Yoon SS. PIK3R3, part of the regulatory domain of PI3K, is upregulated in sarcoma stem-like cells and promotes invasion, migration, and chemotherapy resistance. Cell Death Dis. 2021;12(8):749.CrossRefPubMedPubMedCentral
30.
go back to reference Sohn EJ. PIK3R3, a regulatory subunit of PI3K, modulates ovarian cancer stem cells and ovarian cancer development and progression by integrative analysis. BMC Cancer. 2022;22(1):708.CrossRefPubMedPubMedCentral Sohn EJ. PIK3R3, a regulatory subunit of PI3K, modulates ovarian cancer stem cells and ovarian cancer development and progression by integrative analysis. BMC Cancer. 2022;22(1):708.CrossRefPubMedPubMedCentral
Metadata
Title
Circ_0021350 plays an oncogene role by regulating miR-1207-3p/PIK3R3 in glioblastoma
Authors
Cheng Tan
Jun Wei
Zhaohui Li
Nan Tian
Zhengming Wang
Guan Wang
Liang Han
Yu Tian
Publication date
01-12-2023
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2023
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/s12885-023-11263-w

Other articles of this Issue 1/2023

BMC Cancer 1/2023 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine