Skip to main content
Top
Published in: BMC Medical Informatics and Decision Making 1/2019

Open Access 01-12-2019 | Glaucoma | Research article

Two-stage framework for optic disc localization and glaucoma classification in retinal fundus images using deep learning

Authors: Muhammad Naseer Bajwa, Muhammad Imran Malik, Shoaib Ahmed Siddiqui, Andreas Dengel, Faisal Shafait, Wolfgang Neumeier, Sheraz Ahmed

Published in: BMC Medical Informatics and Decision Making | Issue 1/2019

Login to get access

Abstract

Background

With the advancement of powerful image processing and machine learning techniques, Computer Aided Diagnosis has become ever more prevalent in all fields of medicine including ophthalmology. These methods continue to provide reliable and standardized large scale screening of various image modalities to assist clinicians in identifying diseases. Since optic disc is the most important part of retinal fundus image for glaucoma detection, this paper proposes a two-stage framework that first detects and localizes optic disc and then classifies it into healthy or glaucomatous.

Methods

The first stage is based on Regions with Convolutional Neural Network (RCNN) and is responsible for localizing and extracting optic disc from a retinal fundus image while the second stage uses Deep Convolutional Neural Network to classify the extracted disc into healthy or glaucomatous. Unfortunately, none of the publicly available retinal fundus image datasets provides any bounding box ground truth required for disc localization. Therefore, in addition to the proposed solution, we also developed a rule-based semi-automatic ground truth generation method that provides necessary annotations for training RCNN based model for automated disc localization.

Results

The proposed method is evaluated on seven publicly available datasets for disc localization and on ORIGA dataset, which is the largest publicly available dataset with healthy and glaucoma labels, for glaucoma classification. The results of automatic localization mark new state-of-the-art on six datasets with accuracy reaching 100% on four of them. For glaucoma classification we achieved Area Under the Receiver Operating Characteristic Curve equal to 0.874 which is 2.7% relative improvement over the state-of-the-art results previously obtained for classification on ORIGA dataset.

Conclusion

Once trained on carefully annotated data, Deep Learning based methods for optic disc detection and localization are not only robust, accurate and fully automated but also eliminates the need for dataset-dependent heuristic algorithms. Our empirical evaluation of glaucoma classification on ORIGA reveals that reporting only Area Under the Curve, for datasets with class imbalance and without pre-defined train and test splits, does not portray true picture of the classifier’s performance and calls for additional performance metrics to substantiate the results.
Literature
1.
go back to reference Dervisevic E, Pavljasevic S, Dervisevic A, Kasumovic SS. Challenges in early glaucoma detection. Mediev Archaeol. 2016;70(3):203. Dervisevic E, Pavljasevic S, Dervisevic A, Kasumovic SS. Challenges in early glaucoma detection. Mediev Archaeol. 2016;70(3):203.
2.
go back to reference Jackson, A., Radhakrishnan, S.: Understanding and living with Glaucoma. Glaucoma Research Foundation. Jackson, A., Radhakrishnan, S.: Understanding and living with Glaucoma. Glaucoma Research Foundation.
3.
go back to reference Dervisevic E, editor. In: Myopia impact on morphometric parameters of the optical disc in glaucoma patients. PhD thesis, University of Tuzla; 2015. Dervisevic E, editor. In: Myopia impact on morphometric parameters of the optical disc in glaucoma patients. PhD thesis, University of Tuzla; 2015.
4.
go back to reference Bourne RR, Flaxman SR, Braithwaite T, Cicinelli MV, Das A, Jonas JB, et al. Magnitude, temporal trends, and projections of the global prevalence of blindness and distance and near vision impairment: a systematic review and meta-analysis. Lancet Glob Health. 2017;5(9):888–97.CrossRef Bourne RR, Flaxman SR, Braithwaite T, Cicinelli MV, Das A, Jonas JB, et al. Magnitude, temporal trends, and projections of the global prevalence of blindness and distance and near vision impairment: a systematic review and meta-analysis. Lancet Glob Health. 2017;5(9):888–97.CrossRef
5.
go back to reference Chen X, Xu Y, Wong DWK, Wong TY, Liu J. Glaucoma detection based on deep convolutional neural network. In: Engineering in medicine and biology society (EMBC), 2015 37th annual international conference of the IEEE; 2015. p. 715–8. IEEE. Chen X, Xu Y, Wong DWK, Wong TY, Liu J. Glaucoma detection based on deep convolutional neural network. In: Engineering in medicine and biology society (EMBC), 2015 37th annual international conference of the IEEE; 2015. p. 715–8. IEEE.
6.
go back to reference Chen X, Xu Y, Yan S, Wong DWK, Wong TY, Liu J. Automatic feature learning for glaucoma detection based on deep learning. In: International conference on medical image computing and computer-assisted intervention: Springer; 2015. p. 669–77. Chen X, Xu Y, Yan S, Wong DWK, Wong TY, Liu J. Automatic feature learning for glaucoma detection based on deep learning. In: International conference on medical image computing and computer-assisted intervention: Springer; 2015. p. 669–77.
7.
go back to reference Xu Y, Liu J, Lin S, Xu D, Cheung CY, Aung T, Wong TY. Efficient optic cup detection from intra-image learning with retinal structure priors. In: International conference on medical image computing and computer-assisted intervention: Springer; 2012. p. 58–65. Xu Y, Liu J, Lin S, Xu D, Cheung CY, Aung T, Wong TY. Efficient optic cup detection from intra-image learning with retinal structure priors. In: International conference on medical image computing and computer-assisted intervention: Springer; 2012. p. 58–65.
8.
go back to reference Fumero F, Alayón S, Sanchez J, Sigut J, Gonzalez-Hernandez M. RIM-ONE: an open retinal image database for optic nerve evaluation. In: Computer-based medical systems (CBMS), 2011 24th international symposium on; 2011. p. 1–6. IEEE. Fumero F, Alayón S, Sanchez J, Sigut J, Gonzalez-Hernandez M. RIM-ONE: an open retinal image database for optic nerve evaluation. In: Computer-based medical systems (CBMS), 2011 24th international symposium on; 2011. p. 1–6. IEEE.
9.
go back to reference Abbas Q. Glaucoma-deep: detection of glaucoma eye disease on retinal fundus images using deep learning. Int J Adv Comput Sci Appl. 2017;8(6):41–5. Abbas Q. Glaucoma-deep: detection of glaucoma eye disease on retinal fundus images using deep learning. Int J Adv Comput Sci Appl. 2017;8(6):41–5.
10.
go back to reference Mookiah MRK, Acharya UR, Lim CM, Petznick A, Suri JS. Data mining technique for automated diagnosis of glaucoma using higher order spectra and wavelet energy features. Knowledge-BasedSystems. 2012;33:73–82. Mookiah MRK, Acharya UR, Lim CM, Petznick A, Suri JS. Data mining technique for automated diagnosis of glaucoma using higher order spectra and wavelet energy features. Knowledge-BasedSystems. 2012;33:73–82.
11.
go back to reference Bengio Y, Courville A, Vincent P. Representation learning: a review and new perspectives. IEEE Trans Pattern Anal Mach Intell. 2013;35(8):1798–828.CrossRefPubMed Bengio Y, Courville A, Vincent P. Representation learning: a review and new perspectives. IEEE Trans Pattern Anal Mach Intell. 2013;35(8):1798–828.CrossRefPubMed
12.
go back to reference Eswaran C, Reza AW, Hati S. Extraction of the contours of optic disc and exudates based on marker-controlled watershed segmentation. In: Computer science and information technology, 2008. ICCSIT’08. International conference on; 2008. p. 719–23. IEEE.CrossRef Eswaran C, Reza AW, Hati S. Extraction of the contours of optic disc and exudates based on marker-controlled watershed segmentation. In: Computer science and information technology, 2008. ICCSIT’08. International conference on; 2008. p. 719–23. IEEE.CrossRef
13.
go back to reference Chràstek R, Wolf M, Donath K, Michelson G, Niemann H. Optic disc segmentation in retinal images. In: Bildverarbeitung Für die Medizin 2002: Springer; 2002. p. 263–6. Chràstek R, Wolf M, Donath K, Michelson G, Niemann H. Optic disc segmentation in retinal images. In: Bildverarbeitung Für die Medizin 2002: Springer; 2002. p. 263–6.
14.
go back to reference Canny J. A computational approach to edge detection. In: Readings in computer vision: Elsevier; 1987. p. 184–203. Canny J. A computational approach to edge detection. In: Readings in computer vision: Elsevier; 1987. p. 184–203.
16.
go back to reference Liu, J., Wong, D., Lim, J., Jia, X., Yin, F., Li, H., Xiong, W., Wong, T.: Optic cup and disk extraction from retinal fundus images for determination of cup-to-disc ratio. In: Industrial electronics and applications, 2008. ICIEA 2008. 3rd IEEE Conference On, pp.1828–1832 (2008). IEEE. Liu, J., Wong, D., Lim, J., Jia, X., Yin, F., Li, H., Xiong, W., Wong, T.: Optic cup and disk extraction from retinal fundus images for determination of cup-to-disc ratio. In: Industrial electronics and applications, 2008. ICIEA 2008. 3rd IEEE Conference On, pp.1828–1832 (2008). IEEE.
17.
go back to reference Nyúl LG. Retinal image analysis for automated glaucoma risk evaluation. Proc of SPIE Vol. 2009;7497:74971.CrossRef Nyúl LG. Retinal image analysis for automated glaucoma risk evaluation. Proc of SPIE Vol. 2009;7497:74971.CrossRef
18.
go back to reference Siddalingaswamy P, Prabhu KG. Automatic localization and boundary detection of optic disc using implicit active contours. Int J Comput Appl. 2010;1(6):1–5. Siddalingaswamy P, Prabhu KG. Automatic localization and boundary detection of optic disc using implicit active contours. Int J Comput Appl. 2010;1(6):1–5.
19.
go back to reference Harangi, B., Qureshi, R.J., Csutak, A., Peto, T., Hajdu, A.: Automatic detection of the optic disc using majority voting in a collection of optic disc detectors. In: Biomedical imaging: from Nano to macro, 2010. IEEE international symposium on, pp. 1329–1332 (2010). IEEE. Harangi, B., Qureshi, R.J., Csutak, A., Peto, T., Hajdu, A.: Automatic detection of the optic disc using majority voting in a collection of optic disc detectors. In: Biomedical imaging: from Nano to macro, 2010. IEEE international symposium on, pp. 1329–1332 (2010). IEEE.
20.
go back to reference Kovacs, L., Qureshi, R.J., Nagy, B., Harangi, B., Hajdu, A.: Graph based detection of optic disc and fovea in retinal images. In: Soft computing applications (SOFA), 2010 4th International workshop on, pp. 143–148 (2010). IEEE. Kovacs, L., Qureshi, R.J., Nagy, B., Harangi, B., Hajdu, A.: Graph based detection of optic disc and fovea in retinal images. In: Soft computing applications (SOFA), 2010 4th International workshop on, pp. 143–148 (2010). IEEE.
21.
go back to reference Goatman KA, Fleming AD, Philip S, Williams GJ, Olson JA, Sharp PF. Detection of new vessels on the optic disc using retinal photographs. IEEE Trans Med Imaging. 2011;30(4):972–9.CrossRefPubMed Goatman KA, Fleming AD, Philip S, Williams GJ, Olson JA, Sharp PF. Detection of new vessels on the optic disc using retinal photographs. IEEE Trans Med Imaging. 2011;30(4):972–9.CrossRefPubMed
22.
go back to reference Cheng S-C, Huang Y-M. A novel approach to diagnose diabetes based on the fractal characteristics of retinal images. IEEE Trans Inf Technol Biomed. 2003;7(3):163–70.CrossRefPubMed Cheng S-C, Huang Y-M. A novel approach to diagnose diabetes based on the fractal characteristics of retinal images. IEEE Trans Inf Technol Biomed. 2003;7(3):163–70.CrossRefPubMed
23.
go back to reference Dashtbozorg B, Mendonça AM, Campilho A. Optic disc segmentation using the sliding band filter. Comput Biol Med. 2015;56:1–12.CrossRefPubMed Dashtbozorg B, Mendonça AM, Campilho A. Optic disc segmentation using the sliding band filter. Comput Biol Med. 2015;56:1–12.CrossRefPubMed
24.
go back to reference Kobatake H. A convergence index filter for vector fields and its application to medical image processing. Electron Commun Jpn. 2006;89(6):34–46.CrossRef Kobatake H. A convergence index filter for vector fields and its application to medical image processing. Electron Commun Jpn. 2006;89(6):34–46.CrossRef
25.
go back to reference Zhang D, Zhao Y. Novel accurate and fast optic disc detection in retinal images with vessel distribution and directional characteristics. IEEE J Biomed Health Inform. 2016;20(1):333–42.CrossRefPubMed Zhang D, Zhao Y. Novel accurate and fast optic disc detection in retinal images with vessel distribution and directional characteristics. IEEE J Biomed Health Inform. 2016;20(1):333–42.CrossRefPubMed
26.
go back to reference Mary MCVS, Rajsingh EB, Jacob JKK, Anandhi D, Amato U, Selvan SE. An empirical study on optic disc segmentation using an active contour model. Biomed Signal Process Control. 2015;18:19–29.CrossRef Mary MCVS, Rajsingh EB, Jacob JKK, Anandhi D, Amato U, Selvan SE. An empirical study on optic disc segmentation using an active contour model. Biomed Signal Process Control. 2015;18:19–29.CrossRef
27.
go back to reference Samanta, S., Saha, S.K., Chanda, B.: A simple and fast algorithm to detect the fovea region in fundus retinal image. In: Emerging applications of information technology (EAIT), 2011 second international conference on, pp. 206–209 (2011). IEEE. Samanta, S., Saha, S.K., Chanda, B.: A simple and fast algorithm to detect the fovea region in fundus retinal image. In: Emerging applications of information technology (EAIT), 2011 second international conference on, pp. 206–209 (2011). IEEE.
28.
go back to reference Akyol K, Şen B, Bayır Ş. Automatic detection of optic disc in retinal image by using keypoint detection, texture analysis, and visual dictionary techniques. In: Computational and mathematical methods in medicine 2016; 2016. Akyol K, Şen B, Bayır Ş. Automatic detection of optic disc in retinal image by using keypoint detection, texture analysis, and visual dictionary techniques. In: Computational and mathematical methods in medicine 2016; 2016.
29.
go back to reference Ho TK. Random decision forests. In: Document analysis and recognition, 1995, Proceedings of the third international conference on, vol. 1; 1995. p. 278–82. IEEE. Ho TK. Random decision forests. In: Document analysis and recognition, 1995, Proceedings of the third international conference on, vol. 1; 1995. p. 278–82. IEEE.
30.
go back to reference Mary MCVS, Rajsingh EB, Naik GR. Retinal fundus image analysis for diagnosis of glaucoma: a comprehensive survey. IEEE Access. 2016;4:4327–54.CrossRef Mary MCVS, Rajsingh EB, Naik GR. Retinal fundus image analysis for diagnosis of glaucoma: a comprehensive survey. IEEE Access. 2016;4:4327–54.CrossRef
31.
go back to reference Khalil T, Khalid S, Syed AM. Review of machine learning techniques for glaucoma detection and prediction. In: Science and information conference (SAI), 2014; 2014. p. 438–42. IEEE.CrossRef Khalil T, Khalid S, Syed AM. Review of machine learning techniques for glaucoma detection and prediction. In: Science and information conference (SAI), 2014; 2014. p. 438–42. IEEE.CrossRef
32.
go back to reference Khan MW, Sharif M, Yasmin M, Saba T. CDR based glaucoma detection using fundus images: a review. Int J Appl Pattern Recog. 2017;4(3):261–306.CrossRef Khan MW, Sharif M, Yasmin M, Saba T. CDR based glaucoma detection using fundus images: a review. Int J Appl Pattern Recog. 2017;4(3):261–306.CrossRef
33.
go back to reference De La Fuente-Arriaga JA, Felipe-Riverón EM, Garduño-Calderón E. Application of vascular bundle displacement in the optic disc for glaucoma detection using fundus images. Comput Biol Med. 2014;47:27–35.CrossRefPubMed De La Fuente-Arriaga JA, Felipe-Riverón EM, Garduño-Calderón E. Application of vascular bundle displacement in the optic disc for glaucoma detection using fundus images. Comput Biol Med. 2014;47:27–35.CrossRefPubMed
34.
go back to reference Ahmad H, Yamin A, Shakeel A, Gillani SO, Ansari U. Detection of glaucoma using retinal fundus images. In: Robotics and emerging allied Technologies in Engineering (iCREATE), 2014 international conference; 2014. p. 321–4. IEEE.CrossRef Ahmad H, Yamin A, Shakeel A, Gillani SO, Ansari U. Detection of glaucoma using retinal fundus images. In: Robotics and emerging allied Technologies in Engineering (iCREATE), 2014 international conference; 2014. p. 321–4. IEEE.CrossRef
35.
go back to reference Khan F, Khan SA, Yasin UU, ul Haq I, Qamar U. Detection of glaucoma using retinal fundus images. In: Biomedical engineering international conference (BMEiCON), 2013 6th; 2013. p. 1–5. IEEE. Khan F, Khan SA, Yasin UU, ul Haq I, Qamar U. Detection of glaucoma using retinal fundus images. In: Biomedical engineering international conference (BMEiCON), 2013 6th; 2013. p. 1–5. IEEE.
36.
go back to reference Zhang Z, Yin FS, Liu J, Wong WK, Tan NM, Lee BH, Cheng J, Wong TY. ORIGA-light: an online retinal fundus image database for glaucoma analysis and research. In: Engineering in medicine and biology society (EMBC), 2010 annual international conference of the IEEE; 2010. p. 3065–8. IEEE.CrossRef Zhang Z, Yin FS, Liu J, Wong WK, Tan NM, Lee BH, Cheng J, Wong TY. ORIGA-light: an online retinal fundus image database for glaucoma analysis and research. In: Engineering in medicine and biology society (EMBC), 2010 annual international conference of the IEEE; 2010. p. 3065–8. IEEE.CrossRef
37.
go back to reference Xu Y, Lin S, Wong DWK, Liu J, Xu D. Efficient reconstruction-based optic cup localization for glaucoma screening. In: International conference on medical image computing and computer-assisted intervention: Springer; 2013. p. 445–52. Xu Y, Lin S, Wong DWK, Liu J, Xu D. Efficient reconstruction-based optic cup localization for glaucoma screening. In: International conference on medical image computing and computer-assisted intervention: Springer; 2013. p. 445–52.
38.
go back to reference Li A, Cheng J, Wong DWK, Liu J. Integrating holistic and local deep features for glaucoma classification. In: Engineering in medicine and biology society (EMBC), 2016 IEEE 38th annual international conference of the; 2016. p. 1328–31. IEEE. Li A, Cheng J, Wong DWK, Liu J. Integrating holistic and local deep features for glaucoma classification. In: Engineering in medicine and biology society (EMBC), 2016 IEEE 38th annual international conference of the; 2016. p. 1328–31. IEEE.
39.
go back to reference Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition. CoRRabs/1409. 2014;1556:1409. Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition. CoRRabs/1409. 2014;1556:1409.
40.
go back to reference Al-Bander B, Williams BM, Al-Nuaimy W, Al-Taee MA, Pratt H, Zheng Y. Dense fully convolutional segmentation of the optic disc and cup in colour fundus for glaucoma diagnosis. Symmetry. 2018;10(4):87.CrossRef Al-Bander B, Williams BM, Al-Nuaimy W, Al-Taee MA, Pratt H, Zheng Y. Dense fully convolutional segmentation of the optic disc and cup in colour fundus for glaucoma diagnosis. Symmetry. 2018;10(4):87.CrossRef
41.
go back to reference Ronneberger O, Fischer P, Brox T. U-net: convolutional networks for biomedical image segmentation. In: International conference on medical image computing and computer-assisted intervention: Springer; 2015. p. 234–41. Ronneberger O, Fischer P, Brox T. U-net: convolutional networks for biomedical image segmentation. In: International conference on medical image computing and computer-assisted intervention: Springer; 2015. p. 234–41.
42.
go back to reference Huang G, Liu Z, Van Der Maaten L, Weinberger KQ. Densely connected convolutional networks. CVPR. 2017;1:3. Huang G, Liu Z, Van Der Maaten L, Weinberger KQ. Densely connected convolutional networks. CVPR. 2017;1:3.
43.
go back to reference Fu H, Cheng J, Xu Y, Wong DWK, Liu J, Cao X. Joint optic disc and cup segmentation based on multi-label deep network and polar transformation. CoRRabs/1801.00926. 2018;1801:00926. Fu H, Cheng J, Xu Y, Wong DWK, Liu J, Cao X. Joint optic disc and cup segmentation based on multi-label deep network and polar transformation. CoRRabs/1801.00926. 2018;1801:00926.
45.
go back to reference Mahmudi T, Kafieh R, Rabbani H, Akhlagi M, et al. Comparison of macular OCTs in right and left eyes of normal people. In: Medical imaging 2014: biomedical applications in molecular, structural, and functional imaging, vol. 9038: International Society for Optics and Photonics; 2014. p. 90381. Mahmudi T, Kafieh R, Rabbani H, Akhlagi M, et al. Comparison of macular OCTs in right and left eyes of normal people. In: Medical imaging 2014: biomedical applications in molecular, structural, and functional imaging, vol. 9038: International Society for Optics and Photonics; 2014. p. 90381.
46.
go back to reference Kauppi T, Kalesnykiene V, Kamarainen J-K, Lensu L, Sorri I, Raninen A, Voutilainen R, Kalviainen H, Pietila J. DIARETDB1 diabetic retinopathy database and evaluation protocol. In: Medical image understanding and analysis, 2007, proceedings of 11th conference; 2007. Kauppi T, Kalesnykiene V, Kamarainen J-K, Lensu L, Sorri I, Raninen A, Voutilainen R, Kalviainen H, Pietila J. DIARETDB1 diabetic retinopathy database and evaluation protocol. In: Medical image understanding and analysis, 2007, proceedings of 11th conference; 2007.
47.
go back to reference Staal JJ, Abramoff MD, Niemeijer M, Viergever MA, van Ginneken B. Ridge based vessel segmentation in color images of the retina. IEEE Trans Med Imaging. 2004;23(4):501–9.CrossRefPubMed Staal JJ, Abramoff MD, Niemeijer M, Viergever MA, van Ginneken B. Ridge based vessel segmentation in color images of the retina. IEEE Trans Med Imaging. 2004;23(4):501–9.CrossRefPubMed
48.
go back to reference Carmona EJ, Rincón M, García-Feijoó J, Martínez-de-la-Casa JM. Identification of the optic nerve head with genetic algorithms. Artif Intell Med. 2008;43(3):243–59.CrossRefPubMed Carmona EJ, Rincón M, García-Feijoó J, Martínez-de-la-Casa JM. Identification of the optic nerve head with genetic algorithms. Artif Intell Med. 2008;43(3):243–59.CrossRefPubMed
49.
go back to reference Decencire E, Zhang X, Cazuguel G, Lay B, Cochener B, Trone C, Gain P, Ordonez R, Massin P, Erginay A, Charton B, Klein J-C. Feedback on a publicly distributed image database: the messidor database. Image Anal Stereol. 2014;33(3):231–4. https://doi.org/10.5566/ias.1155.CrossRef Decencire E, Zhang X, Cazuguel G, Lay B, Cochener B, Trone C, Gain P, Ordonez R, Massin P, Erginay A, Charton B, Klein J-C. Feedback on a publicly distributed image database: the messidor database. Image Anal Stereol. 2014;33(3):231–4. https://​doi.​org/​10.​5566/​ias.​1155.CrossRef
50.
go back to reference Otsu N. A threshold selection method from gray-level histograms. IEEE Trans Syst Man Cybern. 1979;9(1):62–6.CrossRef Otsu N. A threshold selection method from gray-level histograms. IEEE Trans Syst Man Cybern. 1979;9(1):62–6.CrossRef
51.
go back to reference Giachetti A, Ballerini L, Trucco E. Accurate and reliable segmentation of the optic disc in digital fundus images. J Med Imag. 2014;1(2):024001.CrossRef Giachetti A, Ballerini L, Trucco E. Accurate and reliable segmentation of the optic disc in digital fundus images. J Med Imag. 2014;1(2):024001.CrossRef
52.
go back to reference Yu H, Barriga ES, Agurto C, Echegaray S, Pattichis MS, Bauman W, et al. Fast localization and segmentation of optic disk in retinal images using directional matched filtering and level sets. IEEE Trans Inf Technol Biomed. 2012;16(4):644–57.CrossRefPubMed Yu H, Barriga ES, Agurto C, Echegaray S, Pattichis MS, Bauman W, et al. Fast localization and segmentation of optic disk in retinal images using directional matched filtering and level sets. IEEE Trans Inf Technol Biomed. 2012;16(4):644–57.CrossRefPubMed
53.
go back to reference Aquino A, Gegúndez-Arias ME, Marín D. Detecting the optic disc boundary in digital fundus images using morphological, edge detection, and feature extraction techniques. IEEE Trans Med Imaging. 2010;29(11):1860–9.CrossRefPubMed Aquino A, Gegúndez-Arias ME, Marín D. Detecting the optic disc boundary in digital fundus images using morphological, edge detection, and feature extraction techniques. IEEE Trans Med Imaging. 2010;29(11):1860–9.CrossRefPubMed
54.
go back to reference Ren S, He K, Girshick R, Sun J. Faster R-CNN: towards real-time object detection with region proposal networks. In: Advances in neural information processing systems; 2015. p. 91–9. Ren S, He K, Girshick R, Sun J. Faster R-CNN: towards real-time object detection with region proposal networks. In: Advances in neural information processing systems; 2015. p. 91–9.
56.
go back to reference Qureshi RJ, Kovacs L, Harangi B, Nagy B, Peto T, Hajdu A. Combining algorithms for automatic detection of optic disc and macula in fundus images. Comput Vis Image Underst. 2012;116(1):138–45.CrossRef Qureshi RJ, Kovacs L, Harangi B, Nagy B, Peto T, Hajdu A. Combining algorithms for automatic detection of optic disc and macula in fundus images. Comput Vis Image Underst. 2012;116(1):138–45.CrossRef
57.
go back to reference Godse DA, Bormane DS. Automated localization of optic disc in retinal images. Int J Adv Comput Sci Appl. 2013;4(2):65–71. Godse DA, Bormane DS. Automated localization of optic disc in retinal images. Int J Adv Comput Sci Appl. 2013;4(2):65–71.
58.
go back to reference Lu S, Lim JH. Automatic optic disc detection through background estimation. In: Image processing (ICIP), 2010 17th IEEE international conference on; 2010. p. 833–6. IEEE.CrossRef Lu S, Lim JH. Automatic optic disc detection through background estimation. In: Image processing (ICIP), 2010 17th IEEE international conference on; 2010. p. 833–6. IEEE.CrossRef
Metadata
Title
Two-stage framework for optic disc localization and glaucoma classification in retinal fundus images using deep learning
Authors
Muhammad Naseer Bajwa
Muhammad Imran Malik
Shoaib Ahmed Siddiqui
Andreas Dengel
Faisal Shafait
Wolfgang Neumeier
Sheraz Ahmed
Publication date
01-12-2019
Publisher
BioMed Central
Keyword
Glaucoma
Published in
BMC Medical Informatics and Decision Making / Issue 1/2019
Electronic ISSN: 1472-6947
DOI
https://doi.org/10.1186/s12911-019-0842-8

Other articles of this Issue 1/2019

BMC Medical Informatics and Decision Making 1/2019 Go to the issue