Skip to main content
Top
Published in: BMC Medical Informatics and Decision Making 1/2019

Open Access 01-12-2019 | Research article

Design and evaluation of a LIS-based autoverification system for coagulation assays in a core clinical laboratory

Authors: Zhongqing Wang, Cheng Peng, Hui Kang, Xia Fan, Runqing Mu, Liping Zhou, Miao He, Bo Qu

Published in: BMC Medical Informatics and Decision Making | Issue 1/2019

Login to get access

Abstract

Background

The autoverification system for coagulation consists of a series of rules that allow normal data to be released without manual verification. With new advances in medical informatics, the laboratory information system (LIS) has growing potential for the autoverification, allowing rapid and accurate verification of clinical laboratory tests. The purpose of the study is to develop and evaluate a LIS-based autoverification system for validation and efficiency.

Methods

Autoverification decision rules, including quality control, analytical error flag, critical value, limited range check, delta check and logical check, as well as patient’s historical information, were integrated into the LIS. Autoverification limited range was constructed based on 5 and 95% percentiles. The four most commonly used coagulation assays, prothrombin time (PT), activated partial thromboplastin time (APTT), thrombin time (TT), and fibrinogen (FBG), were followed by the autoverification protocols. The validation was assessed by the autoverification passing rate, the true-positive cases, the true-negative cases, the false-positive cases, the false-negative cases, the sensitivity and the specificity; the efficiency was evaluated in the turnaround time (TAT).

Results

A total of 157,079 historical test results of coagulation profiles from January 2016 to December 2016 were collected to determine the distribution intervals. The autoverification passing rate was 77.11% (29,165/37,821) based on historical patient data. In the initial test of the autoverification version in June 2017, the overall autoverification passing rate for the whole sample was 78.75% (11,257/14,295), with 892 true-positive cases, 11,257 true-negative cases, 2146 false-positive cases, no false-negative cases, sensitivity of 100% and specificity of 83.99%. After formal implementation of the autoverification system for 6 months, 83,699 samples were assessed. The average overall autoverification passing rate for the whole sample was 78.86% and the 95% confidence interval (CI) of the passing rate was [78.25, 79.59%]. TAT was reduced from 126 min to 101 min, which was statistically significant (P < 0.001, Mann-Whitney U test).

Conclusions

The autoverification system for coagulation assays based on LIS can halt the samples with abnormal values for manual verification, guarantee medical safety, minimize the requirements for manual work, shorten TAT and raise working efficiency.
Literature
1.
2.
go back to reference Torke N, Boral L, Nguyen T, Perri A, Chakrin A. Process improvement and operational efficiency through test result autoverification. Clin Chem. 2005;51:2406–8.CrossRef Torke N, Boral L, Nguyen T, Perri A, Chakrin A. Process improvement and operational efficiency through test result autoverification. Clin Chem. 2005;51:2406–8.CrossRef
3.
go back to reference Wu J, Pan M, Ouyang H, Yang Z, Zhang Q, Cai Y. Establishing and evaluating autoverification rules with intelligent guidelines for arterial blood gas analysis in a clinical laboratory. SLAS Technol. 2018;23:631-40. Wu J, Pan M, Ouyang H, Yang Z, Zhang Q, Cai Y. Establishing and evaluating autoverification rules with intelligent guidelines for arterial blood gas analysis in a clinical laboratory. SLAS Technol. 2018;23:631-40.
4.
go back to reference Li J, Cheng B, Ouyang H, Xiao T, Hu J, Cai Y. Designing and evaluating autoverification rules for thyroid function profiles and sex hormone tests. Ann Clin Biochem. 2018;55:254–63.CrossRef Li J, Cheng B, Ouyang H, Xiao T, Hu J, Cai Y. Designing and evaluating autoverification rules for thyroid function profiles and sex hormone tests. Ann Clin Biochem. 2018;55:254–63.CrossRef
5.
go back to reference Sediq AM, Abdel-Azeez AG. Designing an autoverification system in Zagazig University hospitals laboratories: preliminary evaluation on thyroid function profile. Ann Saudi Med. 2014;34:427–32.CrossRef Sediq AM, Abdel-Azeez AG. Designing an autoverification system in Zagazig University hospitals laboratories: preliminary evaluation on thyroid function profile. Ann Saudi Med. 2014;34:427–32.CrossRef
6.
go back to reference Randell EW, Short G, Lee N, Beresford A, Spencer M, Kennell M, Moores Z, Parry D. Strategy for 90% autoverification of clinical chemistry and immunoassay test results using six sigma process improvement. Data Brief. 2018;18:1740–9.CrossRef Randell EW, Short G, Lee N, Beresford A, Spencer M, Kennell M, Moores Z, Parry D. Strategy for 90% autoverification of clinical chemistry and immunoassay test results using six sigma process improvement. Data Brief. 2018;18:1740–9.CrossRef
7.
go back to reference Jones JB. A strategic informatics approach to autoverification. Clin Lab Med. 2013;33:161–81.CrossRef Jones JB. A strategic informatics approach to autoverification. Clin Lab Med. 2013;33:161–81.CrossRef
8.
go back to reference Randell EW, Short G, Lee N, Beresford A, Spencer M, Kennell M, Moores Z, Parry D. Autoverification process improvement by six sigma approach: clinical chemistry & immunoassay. Clin Biochem. 2018;55:42–8.CrossRef Randell EW, Short G, Lee N, Beresford A, Spencer M, Kennell M, Moores Z, Parry D. Autoverification process improvement by six sigma approach: clinical chemistry & immunoassay. Clin Biochem. 2018;55:42–8.CrossRef
9.
go back to reference Gomez-Rioja R, Alvarez V, Ventura M, Alsina MJ, Barba N, Cortes M, Llopis MA, Martinez C, Ibarz M. Current status of verification practices in clinical biochemistry in Spain. Clin Chem Lab Med. 2013;51:1739–46.PubMed Gomez-Rioja R, Alvarez V, Ventura M, Alsina MJ, Barba N, Cortes M, Llopis MA, Martinez C, Ibarz M. Current status of verification practices in clinical biochemistry in Spain. Clin Chem Lab Med. 2013;51:1739–46.PubMed
10.
go back to reference Li J, Cheng B, Yang L, Zhao Y, Pan M, Zheng G, Xu X, Hu J, Xiao T, Cai Y. Development and implementation of autoverification rules for ELISA results of HBV serological markers. J Lab Autom. 2016;21:642–51.CrossRef Li J, Cheng B, Yang L, Zhao Y, Pan M, Zheng G, Xu X, Hu J, Xiao T, Cai Y. Development and implementation of autoverification rules for ELISA results of HBV serological markers. J Lab Autom. 2016;21:642–51.CrossRef
11.
go back to reference Marsden NJ, Van M, Dean S, Azzopardi EA, Hemington-Gorse S, Evans PA, Whitaker IS. Measuring coagulation in burns: an evidence-based systematic review. Scars Burn Heal. 2017;3:2059513117728201.PubMedPubMedCentral Marsden NJ, Van M, Dean S, Azzopardi EA, Hemington-Gorse S, Evans PA, Whitaker IS. Measuring coagulation in burns: an evidence-based systematic review. Scars Burn Heal. 2017;3:2059513117728201.PubMedPubMedCentral
12.
go back to reference Barr D, Epps QJ. Direct oral anticoagulants: a review of common medication errors. J Thromb Thrombolysis. 2019;47:146-54.CrossRef Barr D, Epps QJ. Direct oral anticoagulants: a review of common medication errors. J Thromb Thrombolysis. 2019;47:146-54.CrossRef
13.
go back to reference Favaloro EJ. Optimizing the verification of mean Normal prothrombin time (MNPT) and international sensitivity index (ISI) for accurate conversion of prothrombin time (PT) to international normalized ratio (INR). Methods Mol Biol. 2017;1646:59–74.CrossRef Favaloro EJ. Optimizing the verification of mean Normal prothrombin time (MNPT) and international sensitivity index (ISI) for accurate conversion of prothrombin time (PT) to international normalized ratio (INR). Methods Mol Biol. 2017;1646:59–74.CrossRef
14.
go back to reference Gutierrez Garcia I, Perez Canadas P, Martinez Uriarte J, Garcia Izquierdo O, Angeles Jodar Perez M, Garcia de Guadiana Romualdo L. D-dimer during pregnancy: establishing trimester-specific reference intervals. Scand J Clin Lab Invest. 2018;78:439-42.CrossRef Gutierrez Garcia I, Perez Canadas P, Martinez Uriarte J, Garcia Izquierdo O, Angeles Jodar Perez M, Garcia de Guadiana Romualdo L. D-dimer during pregnancy: establishing trimester-specific reference intervals. Scand J Clin Lab Invest. 2018;78:439-42.CrossRef
15.
go back to reference Papageorgiou C, Jourdi G, Adjambri E, Walborn A, Patel P, Fareed J, Elalamy I, Gerotziafas GT, Hoppensteadt D. Disseminated intravascular coagulation: an update on pathogenesis, diagnosis, and therapeutic strategies. Clin Appl Thromb Hemost. 2018:1076029618806424. https://doi.org/10.1177/1076029618806424. Epub ahead of print.CrossRef Papageorgiou C, Jourdi G, Adjambri E, Walborn A, Patel P, Fareed J, Elalamy I, Gerotziafas GT, Hoppensteadt D. Disseminated intravascular coagulation: an update on pathogenesis, diagnosis, and therapeutic strategies. Clin Appl Thromb Hemost. 2018:1076029618806424. https://​doi.​org/​10.​1177/​1076029618806424​. Epub ahead of print.CrossRef
16.
go back to reference Zhao Y, Yang L, Zheng G, Cai Y. Building and evaluating the autoverification of coagulation items in the laboratory information system. Clin Lab. 2014;60:143–50.PubMed Zhao Y, Yang L, Zheng G, Cai Y. Building and evaluating the autoverification of coagulation items in the laboratory information system. Clin Lab. 2014;60:143–50.PubMed
17.
go back to reference CLSI. Autoverification of clinical laboratory test result; approved guideline (AUTO 10-A). Wayne: Clinical and Laboratory Standards Institute (CLSI); 2006. CLSI. Autoverification of clinical laboratory test result; approved guideline (AUTO 10-A). Wayne: Clinical and Laboratory Standards Institute (CLSI); 2006.
18.
go back to reference Westgard JO. Internal quality control: planning and implementation strategies. Ann Clin Biochem. 2003;40:593–611.CrossRef Westgard JO. Internal quality control: planning and implementation strategies. Ann Clin Biochem. 2003;40:593–611.CrossRef
19.
go back to reference Ovens K, Naugler C. How useful are delta checks in the 21 century? A stochastic-dynamic model of specimen mix-up and detection. J Pathol Inform. 2012;3:5.CrossRef Ovens K, Naugler C. How useful are delta checks in the 21 century? A stochastic-dynamic model of specimen mix-up and detection. J Pathol Inform. 2012;3:5.CrossRef
20.
go back to reference Randell EW, Yenice S. Delta checks in the clinical laboratory. Crit Rev Clin Lab Sci. 2019;56:75-97.CrossRef Randell EW, Yenice S. Delta checks in the clinical laboratory. Crit Rev Clin Lab Sci. 2019;56:75-97.CrossRef
21.
go back to reference Garner AE, Lewington AJ, Barth JH. Detection of patients with acute kidney injury by the clinical laboratory using rises in serum creatinine: comparison of proposed definitions and a laboratory delta check. Ann Clin Biochem. 2012;49:59–62.CrossRef Garner AE, Lewington AJ, Barth JH. Detection of patients with acute kidney injury by the clinical laboratory using rises in serum creatinine: comparison of proposed definitions and a laboratory delta check. Ann Clin Biochem. 2012;49:59–62.CrossRef
22.
go back to reference Park SH, Kim SY, Lee W, Chun S, Min WK. New decision criteria for selecting delta check methods based on the ratio of the delta difference to the width of the reference range can be generally applicable for each clinical chemistry test item. Ann Lab Med. 2012;32:345–54.CrossRef Park SH, Kim SY, Lee W, Chun S, Min WK. New decision criteria for selecting delta check methods based on the ratio of the delta difference to the width of the reference range can be generally applicable for each clinical chemistry test item. Ann Lab Med. 2012;32:345–54.CrossRef
23.
go back to reference Strathmann FG, Baird GS, Hoffman NG. Simulations of delta check rule performance to detect specimen mislabeling using historical laboratory data. Clin Chim Acta. 2011;412:1973–7.CrossRef Strathmann FG, Baird GS, Hoffman NG. Simulations of delta check rule performance to detect specimen mislabeling using historical laboratory data. Clin Chim Acta. 2011;412:1973–7.CrossRef
24.
go back to reference Yamashita T, Ichihara K, Miyamoto A. A novel weighted cumulative delta-check method for highly sensitive detection of specimen mix-up in the clinical laboratory. Clin Chem Lab Med. 2013;51:781–9.CrossRef Yamashita T, Ichihara K, Miyamoto A. A novel weighted cumulative delta-check method for highly sensitive detection of specimen mix-up in the clinical laboratory. Clin Chem Lab Med. 2013;51:781–9.CrossRef
25.
go back to reference Tran DV, Cembrowski GS, Lee T, Higgins TN. Application of 3-D Delta check graphs to HbA1c quality control and HbA1c utilization. Am J Clin Pathol. 2008;130:292–8.CrossRef Tran DV, Cembrowski GS, Lee T, Higgins TN. Application of 3-D Delta check graphs to HbA1c quality control and HbA1c utilization. Am J Clin Pathol. 2008;130:292–8.CrossRef
26.
go back to reference Lacher DA, Connelly DP. Rate and delta checks compared for selected chemistry tests. Clin Chem. 1988;34:1966–70.PubMed Lacher DA, Connelly DP. Rate and delta checks compared for selected chemistry tests. Clin Chem. 1988;34:1966–70.PubMed
27.
go back to reference Xia LY, Cheng XQ, Liu Q, Liu L, Qin XZ, Zhang L, Ding JW, Xu EM, Qiu L. Developing and application of an autoverification system for clinical chemistry and immunology test results. Zhonghua Yi Xue Za Zhi. 2017;97:616–21.PubMed Xia LY, Cheng XQ, Liu Q, Liu L, Qin XZ, Zhang L, Ding JW, Xu EM, Qiu L. Developing and application of an autoverification system for clinical chemistry and immunology test results. Zhonghua Yi Xue Za Zhi. 2017;97:616–21.PubMed
28.
go back to reference Krasowski MD, Davis SR, Drees D, Morris C, Kulhavy J, Crone C, Bebber T, Clark I, Nelson DL, Teul S, et al. Autoverification in a core clinical chemistry laboratory at an academic medical center. J Pathol Inform. 2014;5:13.CrossRef Krasowski MD, Davis SR, Drees D, Morris C, Kulhavy J, Crone C, Bebber T, Clark I, Nelson DL, Teul S, et al. Autoverification in a core clinical chemistry laboratory at an academic medical center. J Pathol Inform. 2014;5:13.CrossRef
29.
go back to reference Palmieri R, Falbo R, Cappellini F, Soldi C, Limonta G, Brambilla P. The development of autoverification rules applied to urinalysis performed on the AutionMAX-SediMAX platform. Clin Chim Acta. 2018;485:275–81.CrossRef Palmieri R, Falbo R, Cappellini F, Soldi C, Limonta G, Brambilla P. The development of autoverification rules applied to urinalysis performed on the AutionMAX-SediMAX platform. Clin Chim Acta. 2018;485:275–81.CrossRef
Metadata
Title
Design and evaluation of a LIS-based autoverification system for coagulation assays in a core clinical laboratory
Authors
Zhongqing Wang
Cheng Peng
Hui Kang
Xia Fan
Runqing Mu
Liping Zhou
Miao He
Bo Qu
Publication date
01-12-2019
Publisher
BioMed Central
Published in
BMC Medical Informatics and Decision Making / Issue 1/2019
Electronic ISSN: 1472-6947
DOI
https://doi.org/10.1186/s12911-019-0848-2

Other articles of this Issue 1/2019

BMC Medical Informatics and Decision Making 1/2019 Go to the issue