Skip to main content
Top
Published in: Advances in Therapy 1/2020

Open Access 01-01-2020 | Glaucoma | Review

Nanotechnology for Medical and Surgical Glaucoma Therapy—A Review

Authors: Marcelo Luís Occhiutto, Raul C. Maranhão, Vital Paulino Costa, Anastasios G. Konstas

Published in: Advances in Therapy | Issue 1/2020

Login to get access

Abstract

Glaucoma is the second leading cause of blindness worldwide. Even though significant advances have been made in its management, currently available antiglaucoma therapies suffer from considerable drawbacks. Typically, the success and efficacy of glaucoma medications are undermined by their limited bioavailability to target tissues and the inadequate adherence demonstrated by patients with glaucoma. The latter is due to a gradual decrease in tolerability of lifelong topical therapies and the significant burden to patients of prescribed stepwise antiglaucoma regimens with frequent dosing which impact quality of life. On the other hand, glaucoma surgery is restricted by the inability of antifibrotic agents to efficiently control the wound healing process without causing severe collateral damage and long-term complications. Evolution of the treatment paradigm for patients with glaucoma will ideally include prevention of retinal ganglion cell degeneration by the successful delivery of neurotrophic factors, anti-inflammatory drugs, and gene therapies. Nanotechnology-based treatments may surpass the limitations of currently available glaucoma therapies through optimized targeted drug delivery, increased bioavailability, and controlled release. This review addresses the recent advances in glaucoma treatment strategies employing nanotechnology, including medical and surgical management, neuroregeneration, and neuroprotection.
Literature
2.
go back to reference Resnikoff S, Pascolini D, Etya’ale D, et al. Global data on visual impairment in the year 2002. Bull World Health Organ. 2004;82(11):844–51.PubMedPubMedCentral Resnikoff S, Pascolini D, Etya’ale D, et al. Global data on visual impairment in the year 2002. Bull World Health Organ. 2004;82(11):844–51.PubMedPubMedCentral
4.
go back to reference Stein JD, Lee PP. Screening for glaucoma. In: Yanoff M, Duker JS, editors. Ophthalmology. Amsterdan, The Netherlands: Elsevier Sanders; 2009, p. 1007. Stein JD, Lee PP. Screening for glaucoma. In: Yanoff M, Duker JS, editors. Ophthalmology. Amsterdan, The Netherlands: Elsevier Sanders; 2009, p. 1007.
5.
go back to reference Heiji A, Leske MC, Bengtsson B, et al. Reduction of intraocular pressure and glaucoma progression: results from the Early Manifest Glaucoma Trial. Arch Ophthalmol. 2002;120(10):1268–79. Heiji A, Leske MC, Bengtsson B, et al. Reduction of intraocular pressure and glaucoma progression: results from the Early Manifest Glaucoma Trial. Arch Ophthalmol. 2002;120(10):1268–79.
6.
go back to reference The AGIS Investigators. The Advanced Glaucoma Intervention Study (AGIS): 7. The relationship between control of intraocular pressure and visual field deterioration Am J Ophthalmol. 2000;130(4):429–40. The AGIS Investigators. The Advanced Glaucoma Intervention Study (AGIS): 7. The relationship between control of intraocular pressure and visual field deterioration Am J Ophthalmol. 2000;130(4):429–40.
7.
go back to reference Medeiros FA, Weinreb RN. Medical backgrounders: glaucoma. Drugs Today (Barc). 2002;38(8):563–70. Medeiros FA, Weinreb RN. Medical backgrounders: glaucoma. Drugs Today (Barc). 2002;38(8):563–70.
9.
go back to reference Abrams KL. Medical and surgical management of the glaucoma patient. Clin Tech Small Anim Pract. 2001;16(1):71–6.PubMed Abrams KL. Medical and surgical management of the glaucoma patient. Clin Tech Small Anim Pract. 2001;16(1):71–6.PubMed
10.
go back to reference Levin LA, Crowe ME, Quigley HA. Lasker/IRRF initiative on astrocytes and glaucomatous neurodegeneration participants. Neuroprotection for glaucoma: requirements for clinical translation. Exp Eye Res. 2017;157:34–7.PubMed Levin LA, Crowe ME, Quigley HA. Lasker/IRRF initiative on astrocytes and glaucomatous neurodegeneration participants. Neuroprotection for glaucoma: requirements for clinical translation. Exp Eye Res. 2017;157:34–7.PubMed
11.
go back to reference Cetinel S, Montemagno C. Nanotechnology applications for glaucoma. Asia Pac J Ophthalmol (Phila). 2016;5(1):70–8. Cetinel S, Montemagno C. Nanotechnology applications for glaucoma. Asia Pac J Ophthalmol (Phila). 2016;5(1):70–8.
12.
go back to reference Goyal G, Garg T, Rath G, et al. Current nanotechnological strategies for treating glaucoma. Crit Rev Ther Drug Carrier Syst. 2014;31(5):365–405.PubMed Goyal G, Garg T, Rath G, et al. Current nanotechnological strategies for treating glaucoma. Crit Rev Ther Drug Carrier Syst. 2014;31(5):365–405.PubMed
13.
go back to reference Cardigos J, Ferreira Q, Crisóstomo S, et al. Nanotechnology-ocular devices for glaucoma treatment: a literature review. Curr Eye Res. 2019;44(2):111–7.PubMed Cardigos J, Ferreira Q, Crisóstomo S, et al. Nanotechnology-ocular devices for glaucoma treatment: a literature review. Curr Eye Res. 2019;44(2):111–7.PubMed
14.
go back to reference Foldvari M. Noninvasive ocular drug delivery: potential transcorneal and other alternative delivery routes for therapeutic molecules in glaucoma. J Glaucoma. 2014;23(8 Suppl 1):S80–2.PubMed Foldvari M. Noninvasive ocular drug delivery: potential transcorneal and other alternative delivery routes for therapeutic molecules in glaucoma. J Glaucoma. 2014;23(8 Suppl 1):S80–2.PubMed
15.
go back to reference Kim NJ, Harris A, Gerber A, et al. Nanotechnology and glaucoma: a review of the potential implications of glaucoma nanomedicine. Br J Ophthalmol. 2014;98(4):427–31.PubMed Kim NJ, Harris A, Gerber A, et al. Nanotechnology and glaucoma: a review of the potential implications of glaucoma nanomedicine. Br J Ophthalmol. 2014;98(4):427–31.PubMed
16.
go back to reference Chang EE, Goldberg JL. Glaucoma 2.0: neuroprotection, neuroregeneration, neuroenhancement. Ophthalmology. 2012;119:979–86.PubMed Chang EE, Goldberg JL. Glaucoma 2.0: neuroprotection, neuroregeneration, neuroenhancement. Ophthalmology. 2012;119:979–86.PubMed
17.
18.
go back to reference Agarwal R, Gupta SK, Agarwal P, et al. Current concepts in the pathophysiology of glaucoma. Indian J Ophthalmol. 2009;57(4):257–66.PubMedPubMedCentral Agarwal R, Gupta SK, Agarwal P, et al. Current concepts in the pathophysiology of glaucoma. Indian J Ophthalmol. 2009;57(4):257–66.PubMedPubMedCentral
19.
go back to reference Weinreb RN, Khaw PT. Primary open-angle glaucoma. Lancet. 2004;363:1711–20.PubMed Weinreb RN, Khaw PT. Primary open-angle glaucoma. Lancet. 2004;363:1711–20.PubMed
20.
go back to reference Reardon G, Kotak S, Schwartz GF. Objective assessment of compliance and persistence among patients treated for glaucoma and ocular hypertension: a systematic review. Patient Prefer Adherence. 2011;5:441–63.PubMedPubMedCentral Reardon G, Kotak S, Schwartz GF. Objective assessment of compliance and persistence among patients treated for glaucoma and ocular hypertension: a systematic review. Patient Prefer Adherence. 2011;5:441–63.PubMedPubMedCentral
21.
go back to reference Gurwitz JH, Glynn RJ, Monane M, et al. Treatment for glaucoma: adherence by the elderly. Am J Public Health. 1993;83:711–6.PubMedPubMedCentral Gurwitz JH, Glynn RJ, Monane M, et al. Treatment for glaucoma: adherence by the elderly. Am J Public Health. 1993;83:711–6.PubMedPubMedCentral
22.
go back to reference Sleath B, Robin AL, Covert D, et al. Patient-reported behavior and problems in using glaucoma medications. Ophthalmology. 2006;113(3):431–6.PubMed Sleath B, Robin AL, Covert D, et al. Patient-reported behavior and problems in using glaucoma medications. Ophthalmology. 2006;113(3):431–6.PubMed
23.
go back to reference Loch C, Zakelj S, Kristl A, et al. Determination of permeability coefficients of ophthalmic drugs through different layers of porcine, rabbit and bovine eyes. Eur J Pharm Sci. 2012;47:131–8.PubMed Loch C, Zakelj S, Kristl A, et al. Determination of permeability coefficients of ophthalmic drugs through different layers of porcine, rabbit and bovine eyes. Eur J Pharm Sci. 2012;47:131–8.PubMed
24.
go back to reference Chiang CH, Schoenwald RD. Ocular pharmacokinetic models of clonidine-3H hydrochloride. J Pharmacokinet Biopharm. 1986;14(2):175–211.PubMed Chiang CH, Schoenwald RD. Ocular pharmacokinetic models of clonidine-3H hydrochloride. J Pharmacokinet Biopharm. 1986;14(2):175–211.PubMed
25.
go back to reference Schoenwald RD. Ocular pharmacokinetics/pharmacodynamics. In: Mitra AK, editor. Ophthalmic drug delivery systems. 2nd ed. New York: Dekker, Inc.; 2003. Schoenwald RD. Ocular pharmacokinetics/pharmacodynamics. In: Mitra AK, editor. Ophthalmic drug delivery systems. 2nd ed. New York: Dekker, Inc.; 2003.
26.
go back to reference Cunha-Vaz J. The blood-ocular barriers. Surv Ophthalmol. 1979;23(5):279–96.PubMed Cunha-Vaz J. The blood-ocular barriers. Surv Ophthalmol. 1979;23(5):279–96.PubMed
27.
go back to reference Del Amo EM, Rimpela AK, Heikkinen E, et al. Pharmacokinetic aspects of retinal drug delivery. Prog Retin Eye Res. 2017;57:134–85.PubMed Del Amo EM, Rimpela AK, Heikkinen E, et al. Pharmacokinetic aspects of retinal drug delivery. Prog Retin Eye Res. 2017;57:134–85.PubMed
28.
go back to reference Shikamura Y, Yamazaki Y, Matsunaga T, et al. Hydrogel ring for topical drug delivery to the ocular posterior segment. Curr Eye Res. 2016;41:653–61.PubMed Shikamura Y, Yamazaki Y, Matsunaga T, et al. Hydrogel ring for topical drug delivery to the ocular posterior segment. Curr Eye Res. 2016;41:653–61.PubMed
29.
go back to reference Agrahari V, Mandal A, Agrahari V, et al. A comprehensive insight on ocular pharmacokinetics. Drug Deliv Transl Res. 2016;6:735–54.PubMedPubMedCentral Agrahari V, Mandal A, Agrahari V, et al. A comprehensive insight on ocular pharmacokinetics. Drug Deliv Transl Res. 2016;6:735–54.PubMedPubMedCentral
30.
go back to reference Pelkonen L, Tengvall-Unadike U, Ruponen M, et al. Melanin binding study of clinical drugs with cassette dosing and rapid equilibrium dialysis inserts. Eur J Pharm Sci. 2017;109:162–8.PubMed Pelkonen L, Tengvall-Unadike U, Ruponen M, et al. Melanin binding study of clinical drugs with cassette dosing and rapid equilibrium dialysis inserts. Eur J Pharm Sci. 2017;109:162–8.PubMed
31.
go back to reference Carreon TA, Edwards G, Wang H, et al. Segmental outflow of aqueous humor in mouse and human. Exp Eye Res. 2017;158:59–66.PubMed Carreon TA, Edwards G, Wang H, et al. Segmental outflow of aqueous humor in mouse and human. Exp Eye Res. 2017;158:59–66.PubMed
32.
go back to reference Johnson M, McLaren JW, Overby DR. Unconventional aqueous humor outflow: a review. Exp Eye Res. 2017;158:94–111.PubMed Johnson M, McLaren JW, Overby DR. Unconventional aqueous humor outflow: a review. Exp Eye Res. 2017;158:94–111.PubMed
33.
go back to reference Yücel YH. Discovery of lymphatics in the human eye and implications. Can J Ophthalmol. 2010;45(2):115–7.PubMed Yücel YH. Discovery of lymphatics in the human eye and implications. Can J Ophthalmol. 2010;45(2):115–7.PubMed
34.
go back to reference Tomczyk-Socha M, Turno-Kręcicka A. A novel uveolymphatic drainage pathway-possible new target for glaucoma treatment. Lymphat Res Biol. 2017;15(4):360–3.PubMed Tomczyk-Socha M, Turno-Kręcicka A. A novel uveolymphatic drainage pathway-possible new target for glaucoma treatment. Lymphat Res Biol. 2017;15(4):360–3.PubMed
35.
go back to reference Yücel Y, Gupta N. Lymphatic drainage from the eye: a new target for therapy. Prog Brain Res. 2015;220:185–98.PubMed Yücel Y, Gupta N. Lymphatic drainage from the eye: a new target for therapy. Prog Brain Res. 2015;220:185–98.PubMed
36.
go back to reference Lee SJ, Kim SJ, Kim ES, et al. Trans-scleral permeability of Oregon Green 488. J Ocul Pharmacol Ther. 2008;24:579–86.PubMedPubMedCentral Lee SJ, Kim SJ, Kim ES, et al. Trans-scleral permeability of Oregon Green 488. J Ocul Pharmacol Ther. 2008;24:579–86.PubMedPubMedCentral
37.
go back to reference Del Amo EM, Urtti A. Rabbit as an animal model for intravitreal pharmacokinetics: clinical predictability and quality of the published data. Exp Eye Res. 2015;137:111–24.PubMed Del Amo EM, Urtti A. Rabbit as an animal model for intravitreal pharmacokinetics: clinical predictability and quality of the published data. Exp Eye Res. 2015;137:111–24.PubMed
38.
go back to reference Ahmed I, Patton TF. Importance of the noncorneal absorption route in topical ophthalmic drug delivery. Invest Ophthalmol Vis Sci. 1985;26:584–7.PubMed Ahmed I, Patton TF. Importance of the noncorneal absorption route in topical ophthalmic drug delivery. Invest Ophthalmol Vis Sci. 1985;26:584–7.PubMed
39.
go back to reference Hamalainen KM, Kananen K, Auriola S, et al. Characterization of paracellular and aqueous penetration routes in cornea, conjunctiva, and sclera. Invest Ophthalmol Vis Sci. 1997;38:627–34.PubMed Hamalainen KM, Kananen K, Auriola S, et al. Characterization of paracellular and aqueous penetration routes in cornea, conjunctiva, and sclera. Invest Ophthalmol Vis Sci. 1997;38:627–34.PubMed
40.
go back to reference Sponsel WE, Terry S, Khuu HD, Lam KW, Frenzel H. Periocular accumulation of timolol and betaxolol in patients with glaucoma under long-term therapy. Surv Ophthalmol. 1999;43(suppl 1):S210–3.PubMed Sponsel WE, Terry S, Khuu HD, Lam KW, Frenzel H. Periocular accumulation of timolol and betaxolol in patients with glaucoma under long-term therapy. Surv Ophthalmol. 1999;43(suppl 1):S210–3.PubMed
41.
go back to reference Holló G, Whitson JT, Faulkner R, et al. Concentrations of betaxolol in ocular tissues of patients with glaucoma and normal monkeys after 1 month of topical ocular administration. Invest Ophthalmol Vis Sci. 2006;47(1):235–40.PubMed Holló G, Whitson JT, Faulkner R, et al. Concentrations of betaxolol in ocular tissues of patients with glaucoma and normal monkeys after 1 month of topical ocular administration. Invest Ophthalmol Vis Sci. 2006;47(1):235–40.PubMed
42.
go back to reference Lavik E, Kuehn MH, Kwon YH. Novel drug delivery systems for glaucoma. Eye (Lond). 2011;25:578–86. Lavik E, Kuehn MH, Kwon YH. Novel drug delivery systems for glaucoma. Eye (Lond). 2011;25:578–86.
43.
go back to reference Sena DF, Ramchand K, Lindsley K. Neuroprotection for treatment of glaucoma in adults. Cochrane Database Syst. 2010;(2):CD006539. Sena DF, Ramchand K, Lindsley K. Neuroprotection for treatment of glaucoma in adults. Cochrane Database Syst. 2010;(2):CD006539.
44.
go back to reference Krupin T, Liebmann JM, Greenfield DS, et al. A randomized trial of brimonidine versus timolol in preserving visual function: results from the Low-Pressure Glaucoma Treatment Study. Am J Ophthalmol. 2011;151:671–81.PubMed Krupin T, Liebmann JM, Greenfield DS, et al. A randomized trial of brimonidine versus timolol in preserving visual function: results from the Low-Pressure Glaucoma Treatment Study. Am J Ophthalmol. 2011;151:671–81.PubMed
45.
go back to reference Quigley HA. Clinical trials for glaucoma neuroprotection are not impossible. Curr Opin Ophthalmol. 2012;23:144–54.PubMed Quigley HA. Clinical trials for glaucoma neuroprotection are not impossible. Curr Opin Ophthalmol. 2012;23:144–54.PubMed
46.
go back to reference Rosenfeld PJ, Brown DM, Heier JS, et al. Ranibizumab for neovascular age related macular degeneration. N Engl J Med. 2006;355:1419–31.PubMed Rosenfeld PJ, Brown DM, Heier JS, et al. Ranibizumab for neovascular age related macular degeneration. N Engl J Med. 2006;355:1419–31.PubMed
47.
go back to reference Díaz-Coránguez M, Ramos C, Antonetti DA. The inner blood-retinal barrier: cellular basis and development. Vision Res. 2017;139:123–37.PubMedPubMedCentral Díaz-Coránguez M, Ramos C, Antonetti DA. The inner blood-retinal barrier: cellular basis and development. Vision Res. 2017;139:123–37.PubMedPubMedCentral
48.
go back to reference Liu G, Molas M, Grossmann GA, et al. Biological properties of poly-l-lysine-DNA complexes generated by cooperative binding of the polycation. J Biol Chem. 2001;276(37):34379–87.PubMed Liu G, Molas M, Grossmann GA, et al. Biological properties of poly-l-lysine-DNA complexes generated by cooperative binding of the polycation. J Biol Chem. 2001;276(37):34379–87.PubMed
49.
go back to reference Nagarwal RC, Kant S, Singh PN, et al. Polymeric nanoparticulate system: a potential approach for ocular drug delivery. J Control Release. 2009;136(1):2–13.PubMed Nagarwal RC, Kant S, Singh PN, et al. Polymeric nanoparticulate system: a potential approach for ocular drug delivery. J Control Release. 2009;136(1):2–13.PubMed
50.
go back to reference Singh Y, Meher JG, Raval K, et al. Nanoemulsion: concepts, development and applications in drug delivery. J Control Release. 2017;28(252):28–49. Singh Y, Meher JG, Raval K, et al. Nanoemulsion: concepts, development and applications in drug delivery. J Control Release. 2017;28(252):28–49.
51.
go back to reference Torchilin VP. Recent advances with liposomes as pharmaceutical carriers. Nat Rev Drug Discov. 2005;4(2):145–60.PubMed Torchilin VP. Recent advances with liposomes as pharmaceutical carriers. Nat Rev Drug Discov. 2005;4(2):145–60.PubMed
52.
go back to reference Akbarzadeh A, Khalilov R, Mostafavi E, et al. Role of dendrimers in advanced drug delivery and biomedical applications: a review. Exp Oncol. 2018;40(3):178–83.PubMed Akbarzadeh A, Khalilov R, Mostafavi E, et al. Role of dendrimers in advanced drug delivery and biomedical applications: a review. Exp Oncol. 2018;40(3):178–83.PubMed
53.
go back to reference Cheng B, He H, Huang T, et al. Gold nanosphere gated mesoporous silica nanoparticle responsive to near-infrared light and redox potential as a theranostic platform for cancer therapy. J Biomed Nanotechnol. 2016;12(3):435–49.PubMedPubMedCentral Cheng B, He H, Huang T, et al. Gold nanosphere gated mesoporous silica nanoparticle responsive to near-infrared light and redox potential as a theranostic platform for cancer therapy. J Biomed Nanotechnol. 2016;12(3):435–49.PubMedPubMedCentral
54.
go back to reference Gao W, Zhang Y, Zhang Q, et al. Nanoparticle–hydrogel: a hybrid biomaterial system for localized drug delivery. Ann Biomed Eng. 2016;44(6):2049–61.PubMedPubMedCentral Gao W, Zhang Y, Zhang Q, et al. Nanoparticle–hydrogel: a hybrid biomaterial system for localized drug delivery. Ann Biomed Eng. 2016;44(6):2049–61.PubMedPubMedCentral
55.
go back to reference Lu Y, Qi J, Dong X, et al. The in vivo fate of nanocrystals. Drug Discov Today. 2017;22(4):744–50.PubMed Lu Y, Qi J, Dong X, et al. The in vivo fate of nanocrystals. Drug Discov Today. 2017;22(4):744–50.PubMed
56.
go back to reference Zhang Y, Ren K, He Z, et al. Development of inclusion complex of brinzolamide with hydroxypropyl-β-cyclodextrin. Carbohydr Polym. 2013;98(1):638–43.PubMed Zhang Y, Ren K, He Z, et al. Development of inclusion complex of brinzolamide with hydroxypropyl-β-cyclodextrin. Carbohydr Polym. 2013;98(1):638–43.PubMed
57.
go back to reference Chaudhary HM, Duttagupta AS, Jadhav KR, et al. Nanodiamonds as a new horizon for pharmaceutical and biomedical applications. Curr Drug Deliv. 2015;12(3):271–81.PubMed Chaudhary HM, Duttagupta AS, Jadhav KR, et al. Nanodiamonds as a new horizon for pharmaceutical and biomedical applications. Curr Drug Deliv. 2015;12(3):271–81.PubMed
58.
go back to reference Prajapati VD, Jani GK, Kapadia JR. Current knowledge on biodegradable microspheres in drug delivery. Expert Opin Drug Deliv. 2015;12(8):1283–99.PubMed Prajapati VD, Jani GK, Kapadia JR. Current knowledge on biodegradable microspheres in drug delivery. Expert Opin Drug Deliv. 2015;12(8):1283–99.PubMed
59.
go back to reference Moghassemi S, Hadjizadeh A. Nano-niosomes as nanoscale drug delivery systems: an illustrated review. J Control Release. 2014;10(185):22–36. Moghassemi S, Hadjizadeh A. Nano-niosomes as nanoscale drug delivery systems: an illustrated review. J Control Release. 2014;10(185):22–36.
60.
go back to reference Haidar MK, Eroglu H. Nanofibers: new insights for drug delivery and tissue engineering. Curr Top Med Chem. 2017;17(13):1564–79.PubMed Haidar MK, Eroglu H. Nanofibers: new insights for drug delivery and tissue engineering. Curr Top Med Chem. 2017;17(13):1564–79.PubMed
61.
go back to reference Talevi A, Gantner ME, Ruiz ME. Applications of nanosystems to anticancer drug therapy (Part I. Nanogels, nanospheres, nanocapsules). Recent Pat Anticancer Drug Discov. 2014;9(1):83–98.PubMed Talevi A, Gantner ME, Ruiz ME. Applications of nanosystems to anticancer drug therapy (Part I. Nanogels, nanospheres, nanocapsules). Recent Pat Anticancer Drug Discov. 2014;9(1):83–98.PubMed
62.
go back to reference Priwitaningrum DL, Blonde JG, Sridhar A, et al. Tumor stroma-containing 3D spheroid arrays: a tool to study nanoparticle penetration. J Control Release. 2016;244(Pt B):257–68.PubMed Priwitaningrum DL, Blonde JG, Sridhar A, et al. Tumor stroma-containing 3D spheroid arrays: a tool to study nanoparticle penetration. J Control Release. 2016;244(Pt B):257–68.PubMed
63.
go back to reference Hornung A, Poettler M, Friedrich RP, et al. Treatment efficiency of free and nanoparticle-loaded mitoxantrone for magnetic drug targeting in multicellular tumor spheroids. Molecules. 2015;20(10):18016–30.PubMedPubMedCentral Hornung A, Poettler M, Friedrich RP, et al. Treatment efficiency of free and nanoparticle-loaded mitoxantrone for magnetic drug targeting in multicellular tumor spheroids. Molecules. 2015;20(10):18016–30.PubMedPubMedCentral
64.
go back to reference Yang L, Yin T, Liu Y, et al. Gold nanoparticle-capped mesoporous silica-based H2O2-responsive controlled release system for Alzheimer’s disease treatment. Acta Biomater. 2016;46:177–90.PubMed Yang L, Yin T, Liu Y, et al. Gold nanoparticle-capped mesoporous silica-based H2O2-responsive controlled release system for Alzheimer’s disease treatment. Acta Biomater. 2016;46:177–90.PubMed
65.
go back to reference Müller RH, Radtke M, Wissing SA. Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) in cosmetic and dermatological preparations. Adv Drug Deliv Rev. 2002;54(Suppl. 1):S131–55.PubMed Müller RH, Radtke M, Wissing SA. Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) in cosmetic and dermatological preparations. Adv Drug Deliv Rev. 2002;54(Suppl. 1):S131–55.PubMed
66.
go back to reference Tamboli V, Mishra GP, Mitrat AK. Polymeric vectors for ocular gene delivery. Ther Deliv. 2011;2:523–36.PubMed Tamboli V, Mishra GP, Mitrat AK. Polymeric vectors for ocular gene delivery. Ther Deliv. 2011;2:523–36.PubMed
67.
go back to reference Wang J, Huang Y, David AE, et al. Magnetic nanoparticles for MRI of brain tumors. Curr Pharm Biotechnol. 2012;13(12):2403–16.PubMed Wang J, Huang Y, David AE, et al. Magnetic nanoparticles for MRI of brain tumors. Curr Pharm Biotechnol. 2012;13(12):2403–16.PubMed
68.
go back to reference Chen J, Patil S, Seal S, et al. Rare earth nanoparticles prevent retinal degeneration induced by intracellular peroxides. Nat Nanotechnol. 2006;1:142–50.PubMed Chen J, Patil S, Seal S, et al. Rare earth nanoparticles prevent retinal degeneration induced by intracellular peroxides. Nat Nanotechnol. 2006;1:142–50.PubMed
69.
go back to reference Salem HF, Ahmed SM, Omar MM. Liposomal flucytosine capped with gold nanoparticle formulations for improved ocular delivery. Drug Des Devel Ther. 2016;13(10):277–95. Salem HF, Ahmed SM, Omar MM. Liposomal flucytosine capped with gold nanoparticle formulations for improved ocular delivery. Drug Des Devel Ther. 2016;13(10):277–95.
70.
go back to reference Gref R, Domb A, Quellec P, et al. The controlled intravenous delivery of drugs using PEG-coated sterically stabilized nanospheres. Adv Drug Deliv Rev. 1995;19:215–33. Gref R, Domb A, Quellec P, et al. The controlled intravenous delivery of drugs using PEG-coated sterically stabilized nanospheres. Adv Drug Deliv Rev. 1995;19:215–33.
71.
go back to reference Venishetty VK, Komuravelli R, Kuncha M, et al. Increased brain uptake of docetaxel and ketoconazole loaded folate-grafted solid lipid nanoparticles. Nanomedicine. 2013;9(1):111–21.PubMed Venishetty VK, Komuravelli R, Kuncha M, et al. Increased brain uptake of docetaxel and ketoconazole loaded folate-grafted solid lipid nanoparticles. Nanomedicine. 2013;9(1):111–21.PubMed
72.
go back to reference Liu D, Lian Y, Fang Q, et al. Hyaluronic-acid-modified lipid-polymer hybrid nanoparticles as an efficient ocular delivery platform for moxifloxacin hydrochloride. Int J Biol Macromol. 2018;17(116):1026–36. Liu D, Lian Y, Fang Q, et al. Hyaluronic-acid-modified lipid-polymer hybrid nanoparticles as an efficient ocular delivery platform for moxifloxacin hydrochloride. Int J Biol Macromol. 2018;17(116):1026–36.
73.
go back to reference Jonas JB, Aung T, Boune RR, et al. Glaucoma. Lancet. 2017;390:2083–93. Jonas JB, Aung T, Boune RR, et al. Glaucoma. Lancet. 2017;390:2083–93.
74.
go back to reference Chrai SS, Robinson JR. Corneal permeation of topical pilocarpine nitrate in the rabbit. Am J Ophthalmol. 1974;77(5):735–9.PubMed Chrai SS, Robinson JR. Corneal permeation of topical pilocarpine nitrate in the rabbit. Am J Ophthalmol. 1974;77(5):735–9.PubMed
75.
go back to reference Lazare R, Horlington M. Pilocarpine levels in the eyes of rabbits following topical application. Exp Eye Res. 1975;21(3):281–7.PubMed Lazare R, Horlington M. Pilocarpine levels in the eyes of rabbits following topical application. Exp Eye Res. 1975;21(3):281–7.PubMed
76.
go back to reference Plazoneet J, Grove M, Durr C, et al. Recent advances in pilocarpine delivery. In: Saettone MF, Bucci M, Speiser P, editors. Ophthalmic drug delivery: biopharmaceutical, technological and clinical aspects. Padova: Springer & Liviana; 1987. p. 122. Plazoneet J, Grove M, Durr C, et al. Recent advances in pilocarpine delivery. In: Saettone MF, Bucci M, Speiser P, editors. Ophthalmic drug delivery: biopharmaceutical, technological and clinical aspects. Padova: Springer & Liviana; 1987. p. 122.
77.
go back to reference Pepic I, Jalsenjak N, Jalsenjak I. Micellar solutions of triblock copolymer surfactants with pilocarpine. Int J Pharm. 2004;272:57–64.PubMed Pepic I, Jalsenjak N, Jalsenjak I. Micellar solutions of triblock copolymer surfactants with pilocarpine. Int J Pharm. 2004;272:57–64.PubMed
78.
go back to reference Jarho P, Järvinen K, Urtti A, et al. Modified beta-cyclodextrin (SBE7-beta-CyD) with viscous vehicle improves the ocular delivery and tolerability of pilocarpine prodrug in rabbits. J Pharm Pharmacol. 1996;48(3):263–9.PubMed Jarho P, Järvinen K, Urtti A, et al. Modified beta-cyclodextrin (SBE7-beta-CyD) with viscous vehicle improves the ocular delivery and tolerability of pilocarpine prodrug in rabbits. J Pharm Pharmacol. 1996;48(3):263–9.PubMed
79.
go back to reference Vandamme TF, Brobeck L. Poly(amidoamine) dendrimers as ophthalmic vehicles for ocular delivery of pilocarpine nitrate and tropicamide. J Control Release. 2005;102(1):23–38.PubMed Vandamme TF, Brobeck L. Poly(amidoamine) dendrimers as ophthalmic vehicles for ocular delivery of pilocarpine nitrate and tropicamide. J Control Release. 2005;102(1):23–38.PubMed
80.
go back to reference Monem AS, Ali FM, Ismail MW. Prolonged effect of liposomes encapsulating pilocarpine HCl in normal and glaucomatous rabbits. Int J Pharm. 2000;198:29–38.PubMed Monem AS, Ali FM, Ismail MW. Prolonged effect of liposomes encapsulating pilocarpine HCl in normal and glaucomatous rabbits. Int J Pharm. 2000;198:29–38.PubMed
81.
go back to reference Aktaş Y, Unlü N, Orhan M, et al. Influence of hydroxypropyl beta-cyclodextrin on the corneal permeation of pilocarpine. Drug Dev Ind Pharm. 2003;29(2):223–30.PubMed Aktaş Y, Unlü N, Orhan M, et al. Influence of hydroxypropyl beta-cyclodextrin on the corneal permeation of pilocarpine. Drug Dev Ind Pharm. 2003;29(2):223–30.PubMed
82.
go back to reference Lee CH, Li YJ, Huang CC, et al. Poly(ε-caprolactone) nanocapsule carriers with sustained drug release: single dose for long-term glaucoma treatment. Nanoscale. 2017;9(32):11754–64.PubMed Lee CH, Li YJ, Huang CC, et al. Poly(ε-caprolactone) nanocapsule carriers with sustained drug release: single dose for long-term glaucoma treatment. Nanoscale. 2017;9(32):11754–64.PubMed
83.
go back to reference Casolaro M, Casolaro I, Lamponi S. Stimuli-responsive hydrogels for controlled pilocarpine ocular delivery. Eur J Pharm Biopharm. 2012;80(3):553–61.PubMed Casolaro M, Casolaro I, Lamponi S. Stimuli-responsive hydrogels for controlled pilocarpine ocular delivery. Eur J Pharm Biopharm. 2012;80(3):553–61.PubMed
84.
go back to reference Li J, Wu L, Wu W, et al. A potential carrier based on liquid crystal nanoparticles for ophthalmic delivery of pilocarpine nitrate. Int J Pharm. 2013;455(1–2):75–84.PubMed Li J, Wu L, Wu W, et al. A potential carrier based on liquid crystal nanoparticles for ophthalmic delivery of pilocarpine nitrate. Int J Pharm. 2013;455(1–2):75–84.PubMed
85.
go back to reference Orasugh JT, Sarkar G, Saha NR, et al. Effect of cellulose nanocrystals on the performance of drug loaded in situ gelling thermo-responsive ophthalmic formulations. Int J Biol Macromol. 2019;1(124):235–45. Orasugh JT, Sarkar G, Saha NR, et al. Effect of cellulose nanocrystals on the performance of drug loaded in situ gelling thermo-responsive ophthalmic formulations. Int J Biol Macromol. 2019;1(124):235–45.
86.
go back to reference Kao HJ, Lin HR, Lo YL, et al. Characterization of pilocarpine-loaded chitosan/Carbopol nanoparticles. J Pharm Pharmacol. 2006;58(2):179–86.PubMed Kao HJ, Lin HR, Lo YL, et al. Characterization of pilocarpine-loaded chitosan/Carbopol nanoparticles. J Pharm Pharmacol. 2006;58(2):179–86.PubMed
87.
go back to reference Heel RC, Brogden RN, Speight TM, Avery GF. Timolol: a review of its therapeutic efficacy in the topical treatment of glaucoma. Drugs. 1979;17(1):38–55.PubMed Heel RC, Brogden RN, Speight TM, Avery GF. Timolol: a review of its therapeutic efficacy in the topical treatment of glaucoma. Drugs. 1979;17(1):38–55.PubMed
88.
go back to reference Fukuda M, Sasaki H. The transcorneal penetration of commercial ophthalmic formulations containing timolol maleate in rabbit eyes. J Ocul Pharmacol Ther. 2015;31(1):57–60.PubMed Fukuda M, Sasaki H. The transcorneal penetration of commercial ophthalmic formulations containing timolol maleate in rabbit eyes. J Ocul Pharmacol Ther. 2015;31(1):57–60.PubMed
89.
go back to reference Van Buskirk EM. Adverse reactions from timolol administration. Ophthalmology. 1980;87(5):447–50.PubMed Van Buskirk EM. Adverse reactions from timolol administration. Ophthalmology. 1980;87(5):447–50.PubMed
90.
go back to reference Maulvi FA, Patil RJ, Desai AR, et al. Effect of gold nanoparticles on timolol uptake and its release kinetics from contact lenses: in vitro and in vivo evaluation. Acta Biomater. 2019;1(86):350–62. Maulvi FA, Patil RJ, Desai AR, et al. Effect of gold nanoparticles on timolol uptake and its release kinetics from contact lenses: in vitro and in vivo evaluation. Acta Biomater. 2019;1(86):350–62.
91.
go back to reference Shokry M, Hathout RM, Mansour S. Exploring gelatin nanoparticles as novel nanocarriers for timolol maleate: augmented in vivo efficacy and safe histological profile. Int J Pharm. 2018;545(1–2):229–39.PubMed Shokry M, Hathout RM, Mansour S. Exploring gelatin nanoparticles as novel nanocarriers for timolol maleate: augmented in vivo efficacy and safe histological profile. Int J Pharm. 2018;545(1–2):229–39.PubMed
92.
go back to reference Jung HJ, Chauhan A. Extended release of timolol from nanoparticle-loaded fornix insert for glaucoma therapy. J Ocular Pharmacol Ther. 2013;29(2):229–35. Jung HJ, Chauhan A. Extended release of timolol from nanoparticle-loaded fornix insert for glaucoma therapy. J Ocular Pharmacol Ther. 2013;29(2):229–35.
93.
go back to reference Shafaa MW, Sabra NM, Fouad RA. The extended ocular hypotensive effect of positive liposomal cholesterol bound timolol maleate in glaucomatous rabbits. Biopharm Drug Dispos. 2011;32(9):507–17.PubMed Shafaa MW, Sabra NM, Fouad RA. The extended ocular hypotensive effect of positive liposomal cholesterol bound timolol maleate in glaucomatous rabbits. Biopharm Drug Dispos. 2011;32(9):507–17.PubMed
94.
go back to reference Aggarwal D, Kaur IP. Improved pharmacodynamics of timolol maleate from a mucoadhesive niosomal ophthalmic drug delivery system. Int J Pharm. 2005;290(1):155–9.PubMed Aggarwal D, Kaur IP. Improved pharmacodynamics of timolol maleate from a mucoadhesive niosomal ophthalmic drug delivery system. Int J Pharm. 2005;290(1):155–9.PubMed
95.
go back to reference Gagandeep, Garg T, Malik B, Goyal AK. Development and characterization of nano-fiber patch for the treatment of glaucoma. Eur J Pharm Sci. 2014;53:10–6.PubMed Gagandeep, Garg T, Malik B, Goyal AK. Development and characterization of nano-fiber patch for the treatment of glaucoma. Eur J Pharm Sci. 2014;53:10–6.PubMed
96.
go back to reference Fulgêncio Gde O, Viana FA, Ribeiro RR, et al. New mucoadhesive chitosan film for ophthalmic drug delivery of timolol maleate: in vivo evaluation. J Ocul Pharmacol Ther. 2012;28(4):350–8.PubMed Fulgêncio Gde O, Viana FA, Ribeiro RR, et al. New mucoadhesive chitosan film for ophthalmic drug delivery of timolol maleate: in vivo evaluation. J Ocul Pharmacol Ther. 2012;28(4):350–8.PubMed
97.
go back to reference Siafaka PI, Titopoulou A, Koukaras EN, et al. Chitosan derivatives as effective nanocarriers for ocular release of timolol drug. Int J Pharm. 2015;495(1):249–64.PubMed Siafaka PI, Titopoulou A, Koukaras EN, et al. Chitosan derivatives as effective nanocarriers for ocular release of timolol drug. Int J Pharm. 2015;495(1):249–64.PubMed
98.
go back to reference Bertram JP, Saluja SS, McKain J, et al. Sustained delivery of timolol maleate from poly(lactic-co-glycolic acid)/poly(lactic acid) microspheres for over 3 months. J Microencapsul. 2009;26:18–26.PubMed Bertram JP, Saluja SS, McKain J, et al. Sustained delivery of timolol maleate from poly(lactic-co-glycolic acid)/poly(lactic acid) microspheres for over 3 months. J Microencapsul. 2009;26:18–26.PubMed
99.
go back to reference Ilka R, Mohseni M, Kianirad M, et al. Nanogel-based natural polymers as smart carriers for the controlled delivery of timolol maleate through the cornea for glaucoma. Int J Biol Macromol. 2018;1(109):955–62. Ilka R, Mohseni M, Kianirad M, et al. Nanogel-based natural polymers as smart carriers for the controlled delivery of timolol maleate through the cornea for glaucoma. Int J Biol Macromol. 2018;1(109):955–62.
100.
go back to reference Tan G, Yu S, Pan H, et al. Bioadhesive chitosan-loaded liposomes: a more efficient and higher permeable ocular delivery platform for timolol maleate. Int J Biol Macromol. 2017;94(Pt A):355–63.PubMed Tan G, Yu S, Pan H, et al. Bioadhesive chitosan-loaded liposomes: a more efficient and higher permeable ocular delivery platform for timolol maleate. Int J Biol Macromol. 2017;94(Pt A):355–63.PubMed
101.
go back to reference Zhang HH, Luo QH, Yang ZJ, et al. Novel ophthalmic timolol meleate liposomal-hydrogel and its improved local glaucomatous therapeutic effect in vivo. Drug Deliv. 2011;18(7):502–10.PubMed Zhang HH, Luo QH, Yang ZJ, et al. Novel ophthalmic timolol meleate liposomal-hydrogel and its improved local glaucomatous therapeutic effect in vivo. Drug Deliv. 2011;18(7):502–10.PubMed
102.
go back to reference Zhao R, Li J, Wang J, et al. Development of timolol-loaded galactosylated chitosan nanoparticles and evaluation of their potential for ocular drug delivery. AAPS PharmSciTech. 2017;18(4):997–1008.PubMed Zhao R, Li J, Wang J, et al. Development of timolol-loaded galactosylated chitosan nanoparticles and evaluation of their potential for ocular drug delivery. AAPS PharmSciTech. 2017;18(4):997–1008.PubMed
103.
go back to reference Yu S, Wang QM, Wang X, et al. Liposome incorporated ion sensitive in situ gels for opthalmic delivery of timolol maleate. Int J Pharm. 2015;480(1–2):128–36.PubMed Yu S, Wang QM, Wang X, et al. Liposome incorporated ion sensitive in situ gels for opthalmic delivery of timolol maleate. Int J Pharm. 2015;480(1–2):128–36.PubMed
104.
go back to reference Lindskog S. Structure and mechanism of carbonic anhydrase. Pharmacol Ther. 1997;74(1):1–20.PubMed Lindskog S. Structure and mechanism of carbonic anhydrase. Pharmacol Ther. 1997;74(1):1–20.PubMed
105.
go back to reference Holló G. Carbonic anhydrase inhibitors. In: Shaarawy TM, Sherwood MB, Hitchings RA, Crowston JG, editors. Glaucoma. 2nd ed. Philadelphia: Elsevier Saunders; 2015. p. 559. Holló G. Carbonic anhydrase inhibitors. In: Shaarawy TM, Sherwood MB, Hitchings RA, Crowston JG, editors. Glaucoma. 2nd ed. Philadelphia: Elsevier Saunders; 2015. p. 559.
106.
go back to reference Sugrue MF. Pharmacological and ocular hypotensive properties of topical carbonic anhydrase inhibitors. Prog Retin Eye Res. 2000;19(1):87–112.PubMed Sugrue MF. Pharmacological and ocular hypotensive properties of topical carbonic anhydrase inhibitors. Prog Retin Eye Res. 2000;19(1):87–112.PubMed
107.
go back to reference Jonas JB, Aung T, Bourne RR, Bron AM, Ritch R, Panda-Jonas S. Glaucoma. Lancet. 2017;390(10108):2183–93.PubMed Jonas JB, Aung T, Bourne RR, Bron AM, Ritch R, Panda-Jonas S. Glaucoma. Lancet. 2017;390(10108):2183–93.PubMed
108.
go back to reference Carta F, Scozzafava A, Supuran CT. Sulfonamides: a patent review (2008–2012). Expert Opin Ther Pat. 2012;22(7):747–58.PubMed Carta F, Scozzafava A, Supuran CT. Sulfonamides: a patent review (2008–2012). Expert Opin Ther Pat. 2012;22(7):747–58.PubMed
109.
go back to reference Supuran CT, Scozzafava A. Carbonic anhydrase inhibitors and their therapeutic potential. Expert Opin Ther Pat. 2000;10:575–600. Supuran CT, Scozzafava A. Carbonic anhydrase inhibitors and their therapeutic potential. Expert Opin Ther Pat. 2000;10:575–600.
110.
go back to reference Maren TH. Carbonic anhydrase: chemistry, physiology, and inhibition. Physiol Rev. 1967;47(4):595–781.PubMed Maren TH. Carbonic anhydrase: chemistry, physiology, and inhibition. Physiol Rev. 1967;47(4):595–781.PubMed
111.
go back to reference Scozzafava A, Supuran CT. Glaucoma and the applications of carbonic anhydrase inhibitors. Subcell Biochem. 2014;75:349–59.PubMed Scozzafava A, Supuran CT. Glaucoma and the applications of carbonic anhydrase inhibitors. Subcell Biochem. 2014;75:349–59.PubMed
112.
go back to reference Ilies M, Supuran CT, Scozzafava A, et al. Carbonic anhydrase inhibitors: sulfonamides incorporating furan-, thiophene- and pyrrole-carboxamido groups possess strong topical intraocular pressure lowering properties as aqueous suspensions. Bioorg Med Chem. 2000;8(8):2145–55.PubMed Ilies M, Supuran CT, Scozzafava A, et al. Carbonic anhydrase inhibitors: sulfonamides incorporating furan-, thiophene- and pyrrole-carboxamido groups possess strong topical intraocular pressure lowering properties as aqueous suspensions. Bioorg Med Chem. 2000;8(8):2145–55.PubMed
113.
go back to reference Winum JY, Casini A, Mincione F, et al. Carbonic anhydrase inhibitors: N-(p-sulfamoylphenyl)-alpha-d-glycopyranosylamines as topically acting antiglaucoma agents in hypertensive rabbits. Bioorg Med Chem Lett. 2004;14(1):225–9.PubMed Winum JY, Casini A, Mincione F, et al. Carbonic anhydrase inhibitors: N-(p-sulfamoylphenyl)-alpha-d-glycopyranosylamines as topically acting antiglaucoma agents in hypertensive rabbits. Bioorg Med Chem Lett. 2004;14(1):225–9.PubMed
114.
go back to reference DeSantis L. Preclinical overview of brinzolamide. Surv Ophthalmol. 2000;44(Suppl 2):S119–29.PubMed DeSantis L. Preclinical overview of brinzolamide. Surv Ophthalmol. 2000;44(Suppl 2):S119–29.PubMed
115.
go back to reference Kaur IP, Singh M, Kanwar M. Formulation and evaluation of ophthalmic preparations of acetazolamide. Int J Pharm. 2000;199(2):119–27.PubMed Kaur IP, Singh M, Kanwar M. Formulation and evaluation of ophthalmic preparations of acetazolamide. Int J Pharm. 2000;199(2):119–27.PubMed
116.
go back to reference Epstein DL, Grant WM. Carbonic anhydrase inhibitor side effects. Serum chemical analysis. Arch Ophthalmol. 1977;95(8):1378–82.PubMed Epstein DL, Grant WM. Carbonic anhydrase inhibitor side effects. Serum chemical analysis. Arch Ophthalmol. 1977;95(8):1378–82.PubMed
117.
go back to reference Kaur IP, Kapil M, Smitha R, et al. Development of topically effective formulations of acetazolamide using HP-beta-CD-polymer co-complexes. Curr Drug Deliv. 2004;1(1):65–72.PubMed Kaur IP, Kapil M, Smitha R, et al. Development of topically effective formulations of acetazolamide using HP-beta-CD-polymer co-complexes. Curr Drug Deliv. 2004;1(1):65–72.PubMed
118.
go back to reference Sasaki H, Yamamura K, Mukai T, et al. Enhancement of ocular drug penetration. Crit Rev Ther Drug Carrier Syst. 1999;16(1):85–146.PubMed Sasaki H, Yamamura K, Mukai T, et al. Enhancement of ocular drug penetration. Crit Rev Ther Drug Carrier Syst. 1999;16(1):85–146.PubMed
119.
go back to reference Kaur IP, Smitha R, Aggarwal D, et al. Acetazolamide: future perspective in topical glaucoma therapeutics. Int J Pharm. 2002;248(1–2):1–14.PubMed Kaur IP, Smitha R, Aggarwal D, et al. Acetazolamide: future perspective in topical glaucoma therapeutics. Int J Pharm. 2002;248(1–2):1–14.PubMed
120.
go back to reference Friedman Z, Allen RC, Raph SM. Topical acetazolamide and methazolamide delivered by contact lenses. Arch Ophthalmol. 1985;103(7):963–6.PubMed Friedman Z, Allen RC, Raph SM. Topical acetazolamide and methazolamide delivered by contact lenses. Arch Ophthalmol. 1985;103(7):963–6.PubMed
121.
go back to reference Loftsson T, Frithriksdóttir H, Stefánsson E, et al. Topically effective ocular hypotensive acetazolamide and ethoxyzolamide formulations in rabbits. J Pharm Pharmacol. 1994;46(6):503–4.PubMed Loftsson T, Frithriksdóttir H, Stefánsson E, et al. Topically effective ocular hypotensive acetazolamide and ethoxyzolamide formulations in rabbits. J Pharm Pharmacol. 1994;46(6):503–4.PubMed
122.
go back to reference El-Gazaierly O, Hikal AH. Preparation and evaluation of acetazolamide liposomes as an ocular delivery system. Int J Pharm. 1997;158(2):121–7. El-Gazaierly O, Hikal AH. Preparation and evaluation of acetazolamide liposomes as an ocular delivery system. Int J Pharm. 1997;158(2):121–7.
123.
go back to reference Aggarwal D, Pal D, Mitra AK, Kaur IP. Study of the extent of ocular absorption of acetazolamide from a developed niosomal formulation, by microdialysis sampling of aqueous humor. Int J Pharm. 2007;338(1–2):21–6.PubMed Aggarwal D, Pal D, Mitra AK, Kaur IP. Study of the extent of ocular absorption of acetazolamide from a developed niosomal formulation, by microdialysis sampling of aqueous humor. Int J Pharm. 2007;338(1–2):21–6.PubMed
124.
go back to reference Duarte AR, Roy C, Vega-González A, Duarte CM, Subra-Paternault P. Preparation of acetazolamide composite microparticles by supercritical anti-solvent techniques. Int J Pharm. 2007;332(1–2):132–9.PubMed Duarte AR, Roy C, Vega-González A, Duarte CM, Subra-Paternault P. Preparation of acetazolamide composite microparticles by supercritical anti-solvent techniques. Int J Pharm. 2007;332(1–2):132–9.PubMed
125.
go back to reference Rathod LV, Kapadia R, Sawant KK. A novel nanoparticle impregnated ocular insert for enhanced bioavailability to posterior segment of eye: in vitro, in vivo and stability studies. Mater Sci Eng C Mater Biol Appl. 2017;1(71):529–40. Rathod LV, Kapadia R, Sawant KK. A novel nanoparticle impregnated ocular insert for enhanced bioavailability to posterior segment of eye: in vitro, in vivo and stability studies. Mater Sci Eng C Mater Biol Appl. 2017;1(71):529–40.
126.
go back to reference Singh J, Chhabra G, Pathak K. Development of acetazolamide-loaded, pH-triggered polymeric nanoparticulate in situ gel for sustained ocular delivery: in vitro. Ex vivo evaluation and pharmacodynamic study. Drug Dev Ind Pharm. 2014;40(9):1223–32.PubMed Singh J, Chhabra G, Pathak K. Development of acetazolamide-loaded, pH-triggered polymeric nanoparticulate in situ gel for sustained ocular delivery: in vitro. Ex vivo evaluation and pharmacodynamic study. Drug Dev Ind Pharm. 2014;40(9):1223–32.PubMed
127.
go back to reference Bravo-Osuna I, Vicario-de-la-Torre M, Andrés-Guerrero V, et al. Novel water-soluble mucoadhesive carbosilane dendrimers for ocular administration. Mol Pharm. 2016;13(9):2966–76.PubMed Bravo-Osuna I, Vicario-de-la-Torre M, Andrés-Guerrero V, et al. Novel water-soluble mucoadhesive carbosilane dendrimers for ocular administration. Mol Pharm. 2016;13(9):2966–76.PubMed
128.
go back to reference Mishra V, Jain NK. Acetazolamide encapsulated dendritic nano-architectures for effective glaucoma management in rabbits. Int J Pharm. 2014;461(1–2):380–90.PubMed Mishra V, Jain NK. Acetazolamide encapsulated dendritic nano-architectures for effective glaucoma management in rabbits. Int J Pharm. 2014;461(1–2):380–90.PubMed
129.
go back to reference Morsi N, Ibrahim M, Refai H, et al. Nanoemulsion-based electrolyte triggered in situ gel for ocular delivery of acetazolamide. Eur J Pharm Sci. 2017;15(104):302–14. Morsi N, Ibrahim M, Refai H, et al. Nanoemulsion-based electrolyte triggered in situ gel for ocular delivery of acetazolamide. Eur J Pharm Sci. 2017;15(104):302–14.
130.
go back to reference Verma P, Gupta RN, Jha AK, et al. Development, in vitro and in vivo characterization of Eudragit RL 100 nanoparticles for improved ocular bioavailability of acetazolamide. Drug Deliv. 2013;20(7):269–76.PubMed Verma P, Gupta RN, Jha AK, et al. Development, in vitro and in vivo characterization of Eudragit RL 100 nanoparticles for improved ocular bioavailability of acetazolamide. Drug Deliv. 2013;20(7):269–76.PubMed
131.
go back to reference Pfeiffer N. Dorzolamide: development and clinical application of a topical carbonic anhydrase inhibitor. Surv Ophthalmol. 1997;42(2):137–51.PubMed Pfeiffer N. Dorzolamide: development and clinical application of a topical carbonic anhydrase inhibitor. Surv Ophthalmol. 1997;42(2):137–51.PubMed
132.
go back to reference Strahlman E, Tipping R, Vogel R. A double-masked, randomized 1-year study comparing dorzolamide (Trusopt), timolol, and betaxolol. International Dorzolamide Study Group. Arch Ophthalmol. 1995;113(8):1009–16.PubMed Strahlman E, Tipping R, Vogel R. A double-masked, randomized 1-year study comparing dorzolamide (Trusopt), timolol, and betaxolol. International Dorzolamide Study Group. Arch Ophthalmol. 1995;113(8):1009–16.PubMed
133.
go back to reference Martens-Lobenhoffer J, Banditt P. Clinical pharmacokinetics of dorzolamide. Clin Pharmacokinet. 2002;41(3):197–205.PubMed Martens-Lobenhoffer J, Banditt P. Clinical pharmacokinetics of dorzolamide. Clin Pharmacokinet. 2002;41(3):197–205.PubMed
134.
go back to reference Schwartz GF, Quigley HA. Adherence and persistence with glaucoma therapy. Surv Ophthalmol. 2008;53(Suppl 1):S57–8.PubMed Schwartz GF, Quigley HA. Adherence and persistence with glaucoma therapy. Surv Ophthalmol. 2008;53(Suppl 1):S57–8.PubMed
135.
go back to reference Shinde U, Ahmed MH, Singh K. Development of dorzolamide loaded 6-O-carboxymethyl chitosan nanoparticles for open angle glaucoma. J Drug Deliv. 2013;2013:562727.PubMedPubMedCentral Shinde U, Ahmed MH, Singh K. Development of dorzolamide loaded 6-O-carboxymethyl chitosan nanoparticles for open angle glaucoma. J Drug Deliv. 2013;2013:562727.PubMedPubMedCentral
136.
go back to reference Jansook P, Stefánsson E, Thorsteinsdóttir M, et al. Cyclodextrin solubilization of carbonic anhydrase inhibitor drugs: formulation of dorzolamide eye drop microparticle suspension. Eur J Pharm Biopharm. 2010;76(2):208–14.PubMed Jansook P, Stefánsson E, Thorsteinsdóttir M, et al. Cyclodextrin solubilization of carbonic anhydrase inhibitor drugs: formulation of dorzolamide eye drop microparticle suspension. Eur J Pharm Biopharm. 2010;76(2):208–14.PubMed
137.
go back to reference Fu J, Sun F, Liu W, et al. Subconjunctival delivery of dorzolamide-loaded poly(ether-anhydride) microparticles produces sustained lowering of intraocular pressure in rabbits. Mol Pharm. 2016;13(9):2987–95.PubMedPubMedCentral Fu J, Sun F, Liu W, et al. Subconjunctival delivery of dorzolamide-loaded poly(ether-anhydride) microparticles produces sustained lowering of intraocular pressure in rabbits. Mol Pharm. 2016;13(9):2987–95.PubMedPubMedCentral
138.
go back to reference Katiyar S, Pandit J, Mondal RS, et al. In situ gelling dorzolamide loaded chitosan nanoparticles for the treatment of glaucoma. Carbohydr Polym. 2014;15(102):117–24. Katiyar S, Pandit J, Mondal RS, et al. In situ gelling dorzolamide loaded chitosan nanoparticles for the treatment of glaucoma. Carbohydr Polym. 2014;15(102):117–24.
139.
go back to reference Kouchak M, Malekahmadi M, Bavarsad N, et al. Dorzolamide nanoliposome as a long action ophthalmic delivery system in open angle glaucoma and ocular hypertension patients. Drug Dev Ind Pharm. 2018;44(8):1239–42.PubMed Kouchak M, Malekahmadi M, Bavarsad N, et al. Dorzolamide nanoliposome as a long action ophthalmic delivery system in open angle glaucoma and ocular hypertension patients. Drug Dev Ind Pharm. 2018;44(8):1239–42.PubMed
140.
go back to reference Gudmundsdottir BS, Petursdottir D, Asgrimsdottir GM, et al. γ-Cyclodextrin nanoparticle eye drops with dorzolamide: effect on intraocular pressure in man. J Ocul Pharmacol Ther. 2014;30(1):35–41.PubMed Gudmundsdottir BS, Petursdottir D, Asgrimsdottir GM, et al. γ-Cyclodextrin nanoparticle eye drops with dorzolamide: effect on intraocular pressure in man. J Ocul Pharmacol Ther. 2014;30(1):35–41.PubMed
141.
go back to reference Iester M. Brinzolamide ophthalmic suspension: a review of its pharmacology and use in the treatment of open angle glaucoma and ocular hypertension. Clin Ophthalmol. 2008;2(3):517–23.PubMedPubMedCentral Iester M. Brinzolamide ophthalmic suspension: a review of its pharmacology and use in the treatment of open angle glaucoma and ocular hypertension. Clin Ophthalmol. 2008;2(3):517–23.PubMedPubMedCentral
142.
go back to reference Kadam RS, Jadhav G, Ogidigben M, et al. Ocular pharmacokinetics of dorzolamide and brinzolamide after single and multiple topical dosing: implications for effects on ocular blood flow. Drug Metab Dispos. 2011;39(9):1529–37.PubMedPubMedCentral Kadam RS, Jadhav G, Ogidigben M, et al. Ocular pharmacokinetics of dorzolamide and brinzolamide after single and multiple topical dosing: implications for effects on ocular blood flow. Drug Metab Dispos. 2011;39(9):1529–37.PubMedPubMedCentral
143.
go back to reference Silver LH, the Brinzolamide Comfort Study Group. Ocular comfort of brinzolamide 1.0% ophthalmic suspension compared with dorzolamide 2.0% ophthalmic solution. Results from two multicenter comfort studies. Surv Ophthalmol. 2000;44:141–5. Silver LH, the Brinzolamide Comfort Study Group. Ocular comfort of brinzolamide 1.0% ophthalmic suspension compared with dorzolamide 2.0% ophthalmic solution. Results from two multicenter comfort studies. Surv Ophthalmol. 2000;44:141–5.
144.
go back to reference Tsukamoto H, Noma H, Mukai S, et al. The efficacy and ocular discomfort of substituting brinzolamide for dorzolamide in combination therapy with latanoprost, timolol, and dorzolamide. J Ocul Pharmacol Ther. 2005;21(5):395–9.PubMed Tsukamoto H, Noma H, Mukai S, et al. The efficacy and ocular discomfort of substituting brinzolamide for dorzolamide in combination therapy with latanoprost, timolol, and dorzolamide. J Ocul Pharmacol Ther. 2005;21(5):395–9.PubMed
145.
go back to reference Wu W, Li J, Wu L, et al. Ophthalmic delivery of brinzolamide by liquid crystalline nanoparticles: in vitro and in vivo evaluation. AAPS Pharm Sci Tech. 2013;14(3):1063–71. Wu W, Li J, Wu L, et al. Ophthalmic delivery of brinzolamide by liquid crystalline nanoparticles: in vitro and in vivo evaluation. AAPS Pharm Sci Tech. 2013;14(3):1063–71.
146.
go back to reference Tuomela A, Liu P, Puranen J, et al. Brinzolamide nanocrystal formulations for ophthalmic delivery: reduction of elevated intraocular pressure in vivo. Int J Pharm. 2014;467(1–2):34–41.PubMed Tuomela A, Liu P, Puranen J, et al. Brinzolamide nanocrystal formulations for ophthalmic delivery: reduction of elevated intraocular pressure in vivo. Int J Pharm. 2014;467(1–2):34–41.PubMed
147.
go back to reference Ikuta Y, Aoyagi S, Tanaka Y, et al. Creation of nano eye-drops and effective drug delivery to the interior of the eye. Sci Rep. 2017;14(7):44229. Ikuta Y, Aoyagi S, Tanaka Y, et al. Creation of nano eye-drops and effective drug delivery to the interior of the eye. Sci Rep. 2017;14(7):44229.
148.
go back to reference Mahboobian MM, Seyfoddin A, Rupenthal ID, et al. Formulation development and evaluation of the therapeutic efficacy of brinzolamide containing nanoemulsions. Iran J Pharm Res. 2017;16(3):847–57.PubMedPubMedCentral Mahboobian MM, Seyfoddin A, Rupenthal ID, et al. Formulation development and evaluation of the therapeutic efficacy of brinzolamide containing nanoemulsions. Iran J Pharm Res. 2017;16(3):847–57.PubMedPubMedCentral
149.
go back to reference Wang F, Bao X, Fang A, et al. Nanoliposome-encapsulated brinzolamide-hydropropyl-β-cyclodextrin inclusion complex: a potential therapeutic ocular drug-delivery system. Front Pharmacol. 2018;13(9):91. Wang F, Bao X, Fang A, et al. Nanoliposome-encapsulated brinzolamide-hydropropyl-β-cyclodextrin inclusion complex: a potential therapeutic ocular drug-delivery system. Front Pharmacol. 2018;13(9):91.
150.
go back to reference Salama HA, Ghorab M, Mahmoud AA, et al. PLGA nanoparticles as subconjunctival injection for management of glaucoma. AAPS PharmSciTech. 2017;18(7):2517–28.PubMed Salama HA, Ghorab M, Mahmoud AA, et al. PLGA nanoparticles as subconjunctival injection for management of glaucoma. AAPS PharmSciTech. 2017;18(7):2517–28.PubMed
151.
go back to reference Toris CB, Camras CB, Yablonski ME. Acute versus chronic effects of brimonidine on aqueous humor dynamics in ocular hypertensive patients. Am J Ophthalmol. 1999;128(1):8–14.PubMed Toris CB, Camras CB, Yablonski ME. Acute versus chronic effects of brimonidine on aqueous humor dynamics in ocular hypertensive patients. Am J Ophthalmol. 1999;128(1):8–14.PubMed
152.
go back to reference Ghate D, Edelhauser HF. Ocular drug delivery. Expert Opin Drug Deliv. 2006;3(2):275–87.PubMed Ghate D, Edelhauser HF. Ocular drug delivery. Expert Opin Drug Deliv. 2006;3(2):275–87.PubMed
153.
go back to reference Konstas AG, Stewart WC, Topouzis F, et al. Brimonidine 0.2% given two or three times daily versus timolol maleate 0.5% in primary open-angle glaucoma. Am J Ophthalmol. 2001;131(6):729–33.PubMed Konstas AG, Stewart WC, Topouzis F, et al. Brimonidine 0.2% given two or three times daily versus timolol maleate 0.5% in primary open-angle glaucoma. Am J Ophthalmol. 2001;131(6):729–33.PubMed
154.
go back to reference Prabhu P, Nitish KR, Koland M, et al. Preparation and evaluation of nano-vesicles of brimonidine tartrate as an ocular drug delivery system. J Young Pharm. 2010;2(4):356–61.PubMedPubMedCentral Prabhu P, Nitish KR, Koland M, et al. Preparation and evaluation of nano-vesicles of brimonidine tartrate as an ocular drug delivery system. J Young Pharm. 2010;2(4):356–61.PubMedPubMedCentral
155.
go back to reference Bhagav P, Upadhyay H, Chandran S. Brimonidine tartrate-Eudragit long-acting nanoparticles: formulation, optimization, in vitro and in vivo evaluation. AAPS PharmSciTech. 2011;12(4):1087–101.PubMedPubMedCentral Bhagav P, Upadhyay H, Chandran S. Brimonidine tartrate-Eudragit long-acting nanoparticles: formulation, optimization, in vitro and in vivo evaluation. AAPS PharmSciTech. 2011;12(4):1087–101.PubMedPubMedCentral
156.
go back to reference Chiang B, Kim YC, Doty AC, et al. Sustained reduction of intraocular pressure by supraciliary delivery of brimonidine-loaded poly(lactic acid) microspheres for the treatment of glaucoma. J Control Release. 2016;28(228):48–57. Chiang B, Kim YC, Doty AC, et al. Sustained reduction of intraocular pressure by supraciliary delivery of brimonidine-loaded poly(lactic acid) microspheres for the treatment of glaucoma. J Control Release. 2016;28(228):48–57.
157.
go back to reference Ibrahim MM, Abd-Elgawad AH, Soliman OA, et al. Natural bioadhesive biodegradable nanoparticle-based topical ophthalmic formulations for management of glaucoma. Transl Vis Sci Technol. 2015;4(3):12.PubMedPubMedCentral Ibrahim MM, Abd-Elgawad AH, Soliman OA, et al. Natural bioadhesive biodegradable nanoparticle-based topical ophthalmic formulations for management of glaucoma. Transl Vis Sci Technol. 2015;4(3):12.PubMedPubMedCentral
158.
go back to reference El-Salamouni NS, Farid RM, El-Kamel AH, et al. Nanostructured lipid carriers for intraocular brimonidine localisation: development, in vitro and in vivo evaluation. J Microencapsul. 2018;35(1):102–13.PubMed El-Salamouni NS, Farid RM, El-Kamel AH, et al. Nanostructured lipid carriers for intraocular brimonidine localisation: development, in vitro and in vivo evaluation. J Microencapsul. 2018;35(1):102–13.PubMed
159.
go back to reference Pek YS, Wu H, Mohamed ST, et al. Long-term subconjunctival delivery of brimonidine tartrate for glaucoma treatment using a microspheres/carrier system. Adv Healthc Mater. 2016;5(21):2823–31.PubMed Pek YS, Wu H, Mohamed ST, et al. Long-term subconjunctival delivery of brimonidine tartrate for glaucoma treatment using a microspheres/carrier system. Adv Healthc Mater. 2016;5(21):2823–31.PubMed
160.
go back to reference Bean GW, Camras CB. Commercially available prostaglandin analogs for the reduction of intraocular pressure: similarities and differences. Surv Ophthalmol. 2008;53(Suppl 1):S69–84.PubMed Bean GW, Camras CB. Commercially available prostaglandin analogs for the reduction of intraocular pressure: similarities and differences. Surv Ophthalmol. 2008;53(Suppl 1):S69–84.PubMed
161.
go back to reference Tanna AP, Lin AB. Medical therapy for glaucoma: what to add after a prostaglandin analogs? Curr Opin Ophthalmol. 2015;26(2):116–20.PubMed Tanna AP, Lin AB. Medical therapy for glaucoma: what to add after a prostaglandin analogs? Curr Opin Ophthalmol. 2015;26(2):116–20.PubMed
162.
go back to reference Holló G. The side effects of the prostaglandin analogues. Expert Opin Drug Saf. 2007;6(1):45–52.PubMed Holló G. The side effects of the prostaglandin analogues. Expert Opin Drug Saf. 2007;6(1):45–52.PubMed
163.
go back to reference Wong TT, Novack GD, Natarajan JV, et al. Nanomedicine for glaucoma: sustained release latanoprost offers a new therapeutic option with substantial benefits over eyedrops. Drug Deliv Transl Res. 2014;4(4):303–9.PubMed Wong TT, Novack GD, Natarajan JV, et al. Nanomedicine for glaucoma: sustained release latanoprost offers a new therapeutic option with substantial benefits over eyedrops. Drug Deliv Transl Res. 2014;4(4):303–9.PubMed
164.
go back to reference Giarmoukakis A, Labiris G, Sideroudi H, et al. Biodegradable nanoparticles for controlled subconjunctival delivery of latanoprost acid: in vitro and in vivo evaluation. Preliminary results. Exp Eye Res. 2013;112:29–36.PubMed Giarmoukakis A, Labiris G, Sideroudi H, et al. Biodegradable nanoparticles for controlled subconjunctival delivery of latanoprost acid: in vitro and in vivo evaluation. Preliminary results. Exp Eye Res. 2013;112:29–36.PubMed
165.
go back to reference Natarajan JV, Ang M, Darwitan A, et al. Nanomedicine for glaucoma: liposomes provide sustained release of latanoprost in the eye. Int J Nanomed. 2012;7:123–31. Natarajan JV, Ang M, Darwitan A, et al. Nanomedicine for glaucoma: liposomes provide sustained release of latanoprost in the eye. Int J Nanomed. 2012;7:123–31.
166.
go back to reference Cheng YH, Tsai TH, Jhan YY, et al. Thermosensitive chitosan-based hydrogel as a topical ocular drug delivery system of latanoprost for glaucoma treatment. Carbohydr Polym. 2016;25(144):390–9. Cheng YH, Tsai TH, Jhan YY, et al. Thermosensitive chitosan-based hydrogel as a topical ocular drug delivery system of latanoprost for glaucoma treatment. Carbohydr Polym. 2016;25(144):390–9.
167.
go back to reference Fahmy HM, Saad EAES, Sabra NM, et al. Treatment merits of latanoprost/thymoquinone—encapsulated liposome for glaucomatus rabbits. Int J Pharm. 2018;548(1):597–608.PubMed Fahmy HM, Saad EAES, Sabra NM, et al. Treatment merits of latanoprost/thymoquinone—encapsulated liposome for glaucomatus rabbits. Int J Pharm. 2018;548(1):597–608.PubMed
168.
go back to reference Rodriguez-Aller M, Guinchard S, Guillarme D, et al. New prostaglandin analog formulation for glaucoma treatment containing cyclodextrins for improved stability, solubility and ocular tolerance. Eur J Pharm Biopharm. 2015;95(Pt B):203–14.PubMed Rodriguez-Aller M, Guinchard S, Guillarme D, et al. New prostaglandin analog formulation for glaucoma treatment containing cyclodextrins for improved stability, solubility and ocular tolerance. Eur J Pharm Biopharm. 2015;95(Pt B):203–14.PubMed
169.
go back to reference Franca JR, Foureaux G, Fuscaldi LL, et al. Bimatoprost-loaded ocular inserts as sustained release drug delivery systems for glaucoma treatment: in vitro and in vivo evaluation. PLoS One. 2014;9(4):e95461.PubMedPubMedCentral Franca JR, Foureaux G, Fuscaldi LL, et al. Bimatoprost-loaded ocular inserts as sustained release drug delivery systems for glaucoma treatment: in vitro and in vivo evaluation. PLoS One. 2014;9(4):e95461.PubMedPubMedCentral
170.
go back to reference Di Trani N, Jain P, Chua CYX, et al. Nanofluidic microsystem for sustained intraocular delivery of therapeutics. Nanomedicine. 2019;16:1–9.PubMed Di Trani N, Jain P, Chua CYX, et al. Nanofluidic microsystem for sustained intraocular delivery of therapeutics. Nanomedicine. 2019;16:1–9.PubMed
171.
go back to reference Lambert WS, Carlson BJ, van der Ende AE, et al. Nanosponge-mediated drug delivery lowers intraocular pressure. Transl Vis Sci Technol. 2015;4(1):1.PubMedPubMedCentral Lambert WS, Carlson BJ, van der Ende AE, et al. Nanosponge-mediated drug delivery lowers intraocular pressure. Transl Vis Sci Technol. 2015;4(1):1.PubMedPubMedCentral
172.
go back to reference Aref AA, Gedde SJ, Budenz DL. Glaucoma drainage implant surgery. Dev Ophthalmol. 2017;59:43–52.PubMed Aref AA, Gedde SJ, Budenz DL. Glaucoma drainage implant surgery. Dev Ophthalmol. 2017;59:43–52.PubMed
173.
go back to reference Ayyala RS, Duarte JL, Sahiner N. Glaucoma drainage devices: state of the art. Expert Rev Med Devices. 2006;3(4):509–21.PubMed Ayyala RS, Duarte JL, Sahiner N. Glaucoma drainage devices: state of the art. Expert Rev Med Devices. 2006;3(4):509–21.PubMed
174.
go back to reference Chaudhry M, Grover S, Baisakhiya S, et al. Artificial drainage devices for glaucoma surgery: an overview. Nepal J Ophthalmol. 2012;4(2):295–302.PubMed Chaudhry M, Grover S, Baisakhiya S, et al. Artificial drainage devices for glaucoma surgery: an overview. Nepal J Ophthalmol. 2012;4(2):295–302.PubMed
176.
go back to reference Hong CH, Arosemena A, Zurakowski D, et al. Glaucoma drainage devices: a systematic literature review and current controversies. Surv Ophthalmol. 2005;50(1):48–60.PubMed Hong CH, Arosemena A, Zurakowski D, et al. Glaucoma drainage devices: a systematic literature review and current controversies. Surv Ophthalmol. 2005;50(1):48–60.PubMed
177.
go back to reference Ponnusamy T, Yu H, John VT, et al. A novel antiproliferative drug coating for glaucoma drainage devices. J Glaucoma. 2014;23(8):526–34.PubMed Ponnusamy T, Yu H, John VT, et al. A novel antiproliferative drug coating for glaucoma drainage devices. J Glaucoma. 2014;23(8):526–34.PubMed
178.
go back to reference Pan T, Brown JD, Ziaie B. An artificial nano-drainage implant (ANDI) for glaucoma treatment. Conf Proc IEEE Eng Med Biol Soc. 2006;1:3174–7. Pan T, Brown JD, Ziaie B. An artificial nano-drainage implant (ANDI) for glaucoma treatment. Conf Proc IEEE Eng Med Biol Soc. 2006;1:3174–7.
179.
go back to reference Harake RS, Ding Y, Brown JD, et al. Design, fabrication, and in vitro testing of an anti-biofouling glaucoma micro-shunt. Ann Biomed Eng. 2015;43(10):2394–405.PubMed Harake RS, Ding Y, Brown JD, et al. Design, fabrication, and in vitro testing of an anti-biofouling glaucoma micro-shunt. Ann Biomed Eng. 2015;43(10):2394–405.PubMed
180.
go back to reference Popat KC, Desai TA. Poly(ethylene glycol) interfaces: an approach for enhanced performance of microfluidic systems. Biosens Bioelectron. 2004;19(9):1037–44.PubMed Popat KC, Desai TA. Poly(ethylene glycol) interfaces: an approach for enhanced performance of microfluidic systems. Biosens Bioelectron. 2004;19(9):1037–44.PubMed
181.
go back to reference Shokrollahi H. Structure, synthetic methods, magnetic properties and biomedical applications of ferrofluids. Mater Sci Eng C Mater Biol Appl. 2013;33(5):2476–87.PubMed Shokrollahi H. Structure, synthetic methods, magnetic properties and biomedical applications of ferrofluids. Mater Sci Eng C Mater Biol Appl. 2013;33(5):2476–87.PubMed
183.
go back to reference Paschalis EI, Chodosh J, Sperling RA, et al. A novel implantable glaucoma valve using ferrofluid. PLoS One. 2013;8(6):e67404.PubMedPubMedCentral Paschalis EI, Chodosh J, Sperling RA, et al. A novel implantable glaucoma valve using ferrofluid. PLoS One. 2013;8(6):e67404.PubMedPubMedCentral
184.
go back to reference Lama PJ, Fechtner RD. Antifibrotics and wound healing in glaucoma surgery. Surv Ophthalmol. 2003;48:314–46.PubMed Lama PJ, Fechtner RD. Antifibrotics and wound healing in glaucoma surgery. Surv Ophthalmol. 2003;48:314–46.PubMed
185.
go back to reference Costa VP, Spaeth GL, Eiferman RA, Orengo-Nania S. Wound healing modulation in glaucoma filtration surgery. Ophthalmic Surg. 1993;24:152–70.PubMed Costa VP, Spaeth GL, Eiferman RA, Orengo-Nania S. Wound healing modulation in glaucoma filtration surgery. Ophthalmic Surg. 1993;24:152–70.PubMed
186.
go back to reference Wilkins M, Indar A, Wormald R. Intra-operative mitomycin C for glaucoma surgery. Cochrane Database Syst Rev. 2005;19(4):CD002897. Wilkins M, Indar A, Wormald R. Intra-operative mitomycin C for glaucoma surgery. Cochrane Database Syst Rev. 2005;19(4):CD002897.
187.
go back to reference The Fluorouracil Filtering Surgery Study Group. Three-year follow-up of the Fluorouracil Filtering Surgery Study. Am J Ophthalmol. 1993;115:82–92. The Fluorouracil Filtering Surgery Study Group. Three-year follow-up of the Fluorouracil Filtering Surgery Study. Am J Ophthalmol. 1993;115:82–92.
188.
go back to reference Hou Z, Wei H, Wang Q, et al. New method to prepare mitomycin C loaded PLA-nanoparticles with high drug entrapment efficiency. Nanoscale Res Lett. 2009;4(7):732–7.PubMedPubMedCentral Hou Z, Wei H, Wang Q, et al. New method to prepare mitomycin C loaded PLA-nanoparticles with high drug entrapment efficiency. Nanoscale Res Lett. 2009;4(7):732–7.PubMedPubMedCentral
189.
go back to reference Gomes dos Santos AL, Bochot A, Doyle A, et al. Sustained release of nanosized complexes of polyethylenimine and anti-TGF-beta 2 oligonucleotide improves the outcome of glaucoma surgery. J Control Release. 2006;112(3):369–81.PubMed Gomes dos Santos AL, Bochot A, Doyle A, et al. Sustained release of nanosized complexes of polyethylenimine and anti-TGF-beta 2 oligonucleotide improves the outcome of glaucoma surgery. J Control Release. 2006;112(3):369–81.PubMed
190.
go back to reference Desai MA, Gedde SJ, Feuer WJ, et al. Practice preferences for glaucoma surgery: a survey of the American Glaucoma Society in 2008. Ophthal Surg Lasers Imaging. 2011;42:202–8. Desai MA, Gedde SJ, Feuer WJ, et al. Practice preferences for glaucoma surgery: a survey of the American Glaucoma Society in 2008. Ophthal Surg Lasers Imaging. 2011;42:202–8.
191.
go back to reference Occhiutto ML, Freitas FR, Lima PP, Maranhão RC, Costa VP. Paclitaxel associated with lipid nanoparticles as a new antiscarring agent in experimental glaucoma surgery. Invest Ophthalmol Vis Sci. 2016;57(3):971–8.PubMed Occhiutto ML, Freitas FR, Lima PP, Maranhão RC, Costa VP. Paclitaxel associated with lipid nanoparticles as a new antiscarring agent in experimental glaucoma surgery. Invest Ophthalmol Vis Sci. 2016;57(3):971–8.PubMed
192.
go back to reference Duan Y, Guan X, Ge J, et al. Cationic nano-copolymers mediated IKKbeta targeting siRNA inhibit the proliferation of human Tenon’s capsule fibroblasts in vitro. Mol Vis. 2008;14:2616–28.PubMedPubMedCentral Duan Y, Guan X, Ge J, et al. Cationic nano-copolymers mediated IKKbeta targeting siRNA inhibit the proliferation of human Tenon’s capsule fibroblasts in vitro. Mol Vis. 2008;14:2616–28.PubMedPubMedCentral
193.
go back to reference Ye H, Qian Y, Lin M, et al. Cationic nano-copolymers mediated IKKβ targeting siRNA to modulate wound healing in a monkey model of glaucoma filtration surgery. Mol Vis. 2010;26(16):2502–10. Ye H, Qian Y, Lin M, et al. Cationic nano-copolymers mediated IKKβ targeting siRNA to modulate wound healing in a monkey model of glaucoma filtration surgery. Mol Vis. 2010;26(16):2502–10.
194.
go back to reference Paula JS, Ribeiro VR, Chahud F, et al. Bevacizumab-loaded polyurethane subconjunctival implants: effects on experimental glaucoma filtration surgery. J Ocul Pharmacol Ther. 2013;29(6):566–73.PubMedPubMedCentral Paula JS, Ribeiro VR, Chahud F, et al. Bevacizumab-loaded polyurethane subconjunctival implants: effects on experimental glaucoma filtration surgery. J Ocul Pharmacol Ther. 2013;29(6):566–73.PubMedPubMedCentral
195.
go back to reference Li Z, Van Bergen T, Van de Veire S, et al. Inhibition of vascular endothelial growth factor reduces scar formation after glaucoma filtration surgery. Invest Ophthalmol Vis Sci. 2009;50(11):5217–25.PubMed Li Z, Van Bergen T, Van de Veire S, et al. Inhibition of vascular endothelial growth factor reduces scar formation after glaucoma filtration surgery. Invest Ophthalmol Vis Sci. 2009;50(11):5217–25.PubMed
196.
go back to reference Grewal DS, Jain R, Kumar H, Grewal SPS. Evaluation of subconjunctival bevacizumab as an adjunct to trabeculectomy a pilot study. Ophthalmology. 2008;115(12):2141–5.PubMed Grewal DS, Jain R, Kumar H, Grewal SPS. Evaluation of subconjunctival bevacizumab as an adjunct to trabeculectomy a pilot study. Ophthalmology. 2008;115(12):2141–5.PubMed
197.
go back to reference Vandewalle E, Abegão Pinto L, Van Bergen T, et al. Intracameral bevacizumab as an adjunct to trabeculectomy: a 1-year prospective, randomised study. Br J Ophthalmol. 2014;98(1):73–8.PubMed Vandewalle E, Abegão Pinto L, Van Bergen T, et al. Intracameral bevacizumab as an adjunct to trabeculectomy: a 1-year prospective, randomised study. Br J Ophthalmol. 2014;98(1):73–8.PubMed
198.
go back to reference Han Q, Wang Y, Li X, et al. Effects of bevacizumab loaded PEG-PCL-PEG hydrogel intracameral application on intraocular pressure after glaucoma filtration surgery. J Mater Sci Mater Med. 2015;26(8):225.PubMed Han Q, Wang Y, Li X, et al. Effects of bevacizumab loaded PEG-PCL-PEG hydrogel intracameral application on intraocular pressure after glaucoma filtration surgery. J Mater Sci Mater Med. 2015;26(8):225.PubMed
199.
go back to reference Gupta N, Yücel YH. Glaucoma as a neurodegenerative disease. Curr Opin Ophthalmol. 2007;18(2):110–4.PubMed Gupta N, Yücel YH. Glaucoma as a neurodegenerative disease. Curr Opin Ophthalmol. 2007;18(2):110–4.PubMed
200.
go back to reference Brubaker RF. Delayed functional loss in glaucoma. LII Edward Jackson memorial lecture. Am J Ophthalmol. 1996;121:473–83.PubMed Brubaker RF. Delayed functional loss in glaucoma. LII Edward Jackson memorial lecture. Am J Ophthalmol. 1996;121:473–83.PubMed
201.
go back to reference Allen SJ, Watson JJ, Shoemark DK, et al. GDNF, NGF and BDNF as therapeutic options for neurodegeneration. Pharmacol Ther. 2013;138(2):155–75.PubMed Allen SJ, Watson JJ, Shoemark DK, et al. GDNF, NGF and BDNF as therapeutic options for neurodegeneration. Pharmacol Ther. 2013;138(2):155–75.PubMed
202.
go back to reference Frasson M, Picaud S, Léveillard T, et al. Glial cell line-derived neurotrophic factor induces histologic and functional protection of rod photoreceptors in the rd/rd mouse. Invest Ophthalmol Vis Sci. 1999;40(11):2724–34.PubMed Frasson M, Picaud S, Léveillard T, et al. Glial cell line-derived neurotrophic factor induces histologic and functional protection of rod photoreceptors in the rd/rd mouse. Invest Ophthalmol Vis Sci. 1999;40(11):2724–34.PubMed
203.
go back to reference Checa-Casalengua P, Jiang C, Bravo-Osuna I, et al. Retinal ganglion cells survival in a glaucoma model by GDNF/Vit E PLGA microspheres prepared according to a novel microencapsulation procedure. J Control Release. 2011;156(1):92–100.PubMed Checa-Casalengua P, Jiang C, Bravo-Osuna I, et al. Retinal ganglion cells survival in a glaucoma model by GDNF/Vit E PLGA microspheres prepared according to a novel microencapsulation procedure. J Control Release. 2011;156(1):92–100.PubMed
204.
go back to reference Ward MS, Khoobehi A, Lavik EB, et al. Neuroprotection of retinal ganglion cells in DBA/2 J mice with GDNF-loaded biodegradable microspheres. J Pharm Sci. 2007;96(3):558–68.PubMed Ward MS, Khoobehi A, Lavik EB, et al. Neuroprotection of retinal ganglion cells in DBA/2 J mice with GDNF-loaded biodegradable microspheres. J Pharm Sci. 2007;96(3):558–68.PubMed
205.
go back to reference Jiang C, Moore MJ, Zhang X, et al. Intravitreal injections of GDNF-loaded biodegradable microspheres are neuroprotective in a rat model of glaucoma. Mol Vis. 2007;24(13):1783–92. Jiang C, Moore MJ, Zhang X, et al. Intravitreal injections of GDNF-loaded biodegradable microspheres are neuroprotective in a rat model of glaucoma. Mol Vis. 2007;24(13):1783–92.
206.
go back to reference García-Caballero C, Prieto-Calvo E, Checa-Casalengua P, et al. Six month delivery of GDNF from PLGA/vitamin E biodegradable microspheres after intravitreal injection in rabbits. Eur J Pharm Sci. 2017;30(103):19–26. García-Caballero C, Prieto-Calvo E, Checa-Casalengua P, et al. Six month delivery of GDNF from PLGA/vitamin E biodegradable microspheres after intravitreal injection in rabbits. Eur J Pharm Sci. 2017;30(103):19–26.
207.
go back to reference Clatterbuck RE. Cliliary neurotrophic factor prevents retrograde neuronal death in the adult central nervous system. Proc Natl Acad Sci USA. 1993;90:2222–6.PubMedPubMedCentral Clatterbuck RE. Cliliary neurotrophic factor prevents retrograde neuronal death in the adult central nervous system. Proc Natl Acad Sci USA. 1993;90:2222–6.PubMedPubMedCentral
208.
go back to reference Emerich DF, Winn SR, Hantraye PM, et al. Protective effect of encapsulated cells producing neurotrophic factor CNTF in a monkey model of Huntington’s disease. Nature. 1997;386(6623):395–9.PubMed Emerich DF, Winn SR, Hantraye PM, et al. Protective effect of encapsulated cells producing neurotrophic factor CNTF in a monkey model of Huntington’s disease. Nature. 1997;386(6623):395–9.PubMed
209.
go back to reference Hagg T, Varon S. Ciliary neurotrophic factor prevents degeneration of adult rat substantia nigra dopaminergic neurons in vivo. Proc Natl Acad Sci USA. 1993;90(13):6315–9.PubMedPubMedCentral Hagg T, Varon S. Ciliary neurotrophic factor prevents degeneration of adult rat substantia nigra dopaminergic neurons in vivo. Proc Natl Acad Sci USA. 1993;90(13):6315–9.PubMedPubMedCentral
210.
go back to reference Sendtner M, Schmalbruch H, Stockli KA, et al. Ciliary neurotrophic factor prevents degeneration of motor neurons in mouse mutant progressive motor neuronopathy. Nature. 1992;358(6386):502–4.PubMed Sendtner M, Schmalbruch H, Stockli KA, et al. Ciliary neurotrophic factor prevents degeneration of motor neurons in mouse mutant progressive motor neuronopathy. Nature. 1992;358(6386):502–4.PubMed
211.
go back to reference Nkansah MK, Tzeng SY, Holdt AM, et al. Poly(lactic-co-glycolic acid) nanospheres and microspheres for short- and long-term delivery of bioactive ciliary neurotrophic factor. Biotechnol Bioeng. 2008;100(5):1010–9.PubMed Nkansah MK, Tzeng SY, Holdt AM, et al. Poly(lactic-co-glycolic acid) nanospheres and microspheres for short- and long-term delivery of bioactive ciliary neurotrophic factor. Biotechnol Bioeng. 2008;100(5):1010–9.PubMed
212.
go back to reference Pease ME, Zack DJ, Berlinicke C, et al. Effect of CNTF on retinal ganglion cell survival in experimental glaucoma. Invest Ophthalmol Vis Sci. 2009;50(5):2194–200.PubMed Pease ME, Zack DJ, Berlinicke C, et al. Effect of CNTF on retinal ganglion cell survival in experimental glaucoma. Invest Ophthalmol Vis Sci. 2009;50(5):2194–200.PubMed
213.
go back to reference Kitagawa K, Matsumoto M, Tagaya M, et al. Hyperthermia-induced neuronal protection against ischemic injury in gerbils. J Cereb Blood Flow Metab. 1991;11(3):449e52. Kitagawa K, Matsumoto M, Tagaya M, et al. Hyperthermia-induced neuronal protection against ischemic injury in gerbils. J Cereb Blood Flow Metab. 1991;11(3):449e52.
214.
go back to reference Caprioli J, Kitano S, Morgan JE. Hyperthermia and hypoxia increase tolerance of retinal ganglion cells to anoxia and excitotoxicity. Invest Ophthalmol Vis Sci. 1996;37(12):2376e81. Caprioli J, Kitano S, Morgan JE. Hyperthermia and hypoxia increase tolerance of retinal ganglion cells to anoxia and excitotoxicity. Invest Ophthalmol Vis Sci. 1996;37(12):2376e81.
215.
go back to reference Barbe MF, Tytell M, Gower DJ, et al. Hyperthermia protects against light damage in the rat retina. Science. 1988;241(4874):1817e20. Barbe MF, Tytell M, Gower DJ, et al. Hyperthermia protects against light damage in the rat retina. Science. 1988;241(4874):1817e20.
216.
go back to reference Yin Y, Henzl MT, Lorber B, et al. Oncomodulin is a macrophage-derived signal for axon regeneration in retinal ganglion cells. Nat Neurosci. 2006;9:843–52.PubMed Yin Y, Henzl MT, Lorber B, et al. Oncomodulin is a macrophage-derived signal for axon regeneration in retinal ganglion cells. Nat Neurosci. 2006;9:843–52.PubMed
217.
go back to reference Jeun M, Jeoung JW, Moon S, et al. Engineered superparamagnetic Mn0.5Zn0.5Fe2O4 nanoparticles as a heat shock protein induction agent for ocular neuroprotection in glaucoma. Biomaterials. 2011;32(2):387–94.PubMed Jeun M, Jeoung JW, Moon S, et al. Engineered superparamagnetic Mn0.5Zn0.5Fe2O4 nanoparticles as a heat shock protein induction agent for ocular neuroprotection in glaucoma. Biomaterials. 2011;32(2):387–94.PubMed
218.
go back to reference Eming SA, Wynn TA, Martin P. Inflammation and metabolism in tissue repair and regeneration. Science. 2017;356(6342):1026–30.PubMed Eming SA, Wynn TA, Martin P. Inflammation and metabolism in tissue repair and regeneration. Science. 2017;356(6342):1026–30.PubMed
219.
go back to reference Pasinetti GM. Cyclooxygenase and inflammation in Alzheimer’s disease: experimental approaches and clinical interventions. J Neurosci Res. 1998;54:1–6.PubMed Pasinetti GM. Cyclooxygenase and inflammation in Alzheimer’s disease: experimental approaches and clinical interventions. J Neurosci Res. 1998;54:1–6.PubMed
220.
go back to reference Gonzalez-Scarano F, Baltuch G. Microglia as mediators of inflammatory and degenerative diseases. Annu Rev Neurosci. 1999;22:219–40.PubMed Gonzalez-Scarano F, Baltuch G. Microglia as mediators of inflammatory and degenerative diseases. Annu Rev Neurosci. 1999;22:219–40.PubMed
221.
go back to reference Julien JP. Amyotrophic lateral sclerosis: unfolding the toxicity of the misfolded. Cell. 2001;104:581–91.PubMed Julien JP. Amyotrophic lateral sclerosis: unfolding the toxicity of the misfolded. Cell. 2001;104:581–91.PubMed
222.
go back to reference Mac Nair CE, Nickells RW. Neuroinflammation in glaucoma and optic nerve damage. Prog Mol Biol Transl Sci. 2015;134:343–63.PubMed Mac Nair CE, Nickells RW. Neuroinflammation in glaucoma and optic nerve damage. Prog Mol Biol Transl Sci. 2015;134:343–63.PubMed
223.
go back to reference Kawano T, Anrather J, Zhou P, et al. Prostaglandin E2 EP1 receptors: downstream effectors of COX-2 neurotoxicity. Nat Med. 2006;12:225–9.PubMed Kawano T, Anrather J, Zhou P, et al. Prostaglandin E2 EP1 receptors: downstream effectors of COX-2 neurotoxicity. Nat Med. 2006;12:225–9.PubMed
224.
go back to reference Kolko M, DeCoster MA, de Turco EB, et al. Synergy by secretory phospholipase A2 and glutamate on inducing cell death and sustained arachidonic acid metabolic changes in primary cortical neuronal cultures. J Biol Chem. 1996;271:32722–8.PubMed Kolko M, DeCoster MA, de Turco EB, et al. Synergy by secretory phospholipase A2 and glutamate on inducing cell death and sustained arachidonic acid metabolic changes in primary cortical neuronal cultures. J Biol Chem. 1996;271:32722–8.PubMed
225.
go back to reference Li G, Luna C, Liton PB, et al. Sustained stress response after oxidative stress in trabecular meshwork cells. Mol Vis. 2007;13:2282–8.PubMedPubMedCentral Li G, Luna C, Liton PB, et al. Sustained stress response after oxidative stress in trabecular meshwork cells. Mol Vis. 2007;13:2282–8.PubMedPubMedCentral
226.
go back to reference Tezel G, Wax MB. Increased production of tumor necrosis factor-alpha by glial cells exposed to simulated ischemia or elevated hydrostatic pressure induces apoptosis in cocultured retinal ganglion cells. J Neurosci. 2000;20:8693–700.PubMedPubMedCentral Tezel G, Wax MB. Increased production of tumor necrosis factor-alpha by glial cells exposed to simulated ischemia or elevated hydrostatic pressure induces apoptosis in cocultured retinal ganglion cells. J Neurosci. 2000;20:8693–700.PubMedPubMedCentral
227.
go back to reference Ergorul C, Ray A, Huang W, et al. Hypoxia inducible factor1alpha (HIF-1alpha) and some HIF-1 target genes are elevated in experimental glaucoma. J Mol Neurosci. 2010;42:183–91.PubMedPubMedCentral Ergorul C, Ray A, Huang W, et al. Hypoxia inducible factor1alpha (HIF-1alpha) and some HIF-1 target genes are elevated in experimental glaucoma. J Mol Neurosci. 2010;42:183–91.PubMedPubMedCentral
228.
go back to reference Ammon HP, Wahl MA. Pharmacology of Curcuma longa. Planta Med. 1991;57:1–7.PubMed Ammon HP, Wahl MA. Pharmacology of Curcuma longa. Planta Med. 1991;57:1–7.PubMed
229.
go back to reference Dong S, Zeng Q, Mitchell ES, et al. Curcumin enhances neurogenesis and cognition in aged rats: implications for transcriptional interactions related to growth and synaptic plasticity. PLoS One. 2012;7(2):e31211.PubMedPubMedCentral Dong S, Zeng Q, Mitchell ES, et al. Curcumin enhances neurogenesis and cognition in aged rats: implications for transcriptional interactions related to growth and synaptic plasticity. PLoS One. 2012;7(2):e31211.PubMedPubMedCentral
230.
go back to reference Kim DS, Kim JY, Han Y. Curcuminoids in neurodegenerative diseases. Recent Pat CNS Drug Discov. 2012;7(3):184–204. Kim DS, Kim JY, Han Y. Curcuminoids in neurodegenerative diseases. Recent Pat CNS Drug Discov. 2012;7(3):184–204.
231.
go back to reference Belviranlı M, Okudan N, Atalık KE, et al. Curcumin improves spatial memory and decreases oxidative damage in aged female rats. Biogerontology. 2013;14(2):187–96.PubMed Belviranlı M, Okudan N, Atalık KE, et al. Curcumin improves spatial memory and decreases oxidative damage in aged female rats. Biogerontology. 2013;14(2):187–96.PubMed
232.
go back to reference Wang L, Li C, Guo H, et al. Curcumin inhibits neuronal and vascular degeneration in retina after ischemia and reperfusion injury. PLoS One. 2011;6(8):e23194.PubMedPubMedCentral Wang L, Li C, Guo H, et al. Curcumin inhibits neuronal and vascular degeneration in retina after ischemia and reperfusion injury. PLoS One. 2011;6(8):e23194.PubMedPubMedCentral
233.
go back to reference Yue YK, Mo B, Zhao J, et al. Neuroprotective effect of curcumin against oxidative damage in BV-2 microglia and high intraocular pressure animal model. J Ocul Pharmacol Ther. 2014;30(8):657–64.PubMed Yue YK, Mo B, Zhao J, et al. Neuroprotective effect of curcumin against oxidative damage in BV-2 microglia and high intraocular pressure animal model. J Ocul Pharmacol Ther. 2014;30(8):657–64.PubMed
234.
go back to reference Kaminaga Y, Nagatsu A, Akiyama T, et al. Production of unnatural glucosides of curcumin with drastically enhanced water solubility by cell suspension cultures of Catharanthus roseus. FEBS Lett. 2003;555(2):311–6.PubMed Kaminaga Y, Nagatsu A, Akiyama T, et al. Production of unnatural glucosides of curcumin with drastically enhanced water solubility by cell suspension cultures of Catharanthus roseus. FEBS Lett. 2003;555(2):311–6.PubMed
235.
go back to reference Gupta S, Patchva S, Aggarwal BB. Therapeutic roles of curcumin: lessons learned from clinical trials. AAPS J. 2013;15(1):195–218.PubMed Gupta S, Patchva S, Aggarwal BB. Therapeutic roles of curcumin: lessons learned from clinical trials. AAPS J. 2013;15(1):195–218.PubMed
236.
go back to reference Davis BM, Pahlitzsch M, Guo L, et al. Topical curcumin nanocarriers are neuroprotective in eye disease. Sci Rep. 2018;8(1):11066.PubMedPubMedCentral Davis BM, Pahlitzsch M, Guo L, et al. Topical curcumin nanocarriers are neuroprotective in eye disease. Sci Rep. 2018;8(1):11066.PubMedPubMedCentral
238.
go back to reference Ju WK, Neufeld AH. Cellular localization of cyclooxygenase-1 and cyclooxygenase-2 in the normal mouse, rat, and human retina. J Comp Neurol. 2002;452:392–9.PubMed Ju WK, Neufeld AH. Cellular localization of cyclooxygenase-1 and cyclooxygenase-2 in the normal mouse, rat, and human retina. J Comp Neurol. 2002;452:392–9.PubMed
239.
go back to reference Wang AG, Lee CM, Wang YC, et al. Up-regulation of cytochrome oxidase in the retina following optic nerve injury. Exp Eye Res. 2002;74:651–9.PubMed Wang AG, Lee CM, Wang YC, et al. Up-regulation of cytochrome oxidase in the retina following optic nerve injury. Exp Eye Res. 2002;74:651–9.PubMed
240.
go back to reference Ju WK, Kim KY, Neufeld AH. Increased activity of cyclooxygenase-2 signals early neurodegenerative events in the rat retina following transient ischemia. Exp Eye Res. 2003;77:137–45.PubMed Ju WK, Kim KY, Neufeld AH. Increased activity of cyclooxygenase-2 signals early neurodegenerative events in the rat retina following transient ischemia. Exp Eye Res. 2003;77:137–45.PubMed
241.
go back to reference Nadal-Nicolás FM, Rodriguez-Villagra E, Bravo-Osuna I, et al. Ketorolac administration attenuates retinal ganglion cell death after axonal injury. Invest Ophthalmol Vis Sci. 2016;57(3):1183–92.PubMed Nadal-Nicolás FM, Rodriguez-Villagra E, Bravo-Osuna I, et al. Ketorolac administration attenuates retinal ganglion cell death after axonal injury. Invest Ophthalmol Vis Sci. 2016;57(3):1183–92.PubMed
242.
go back to reference Barcia E, Herrero-Vanrell R, Díez A, et al. Downregulation of endotoxin-induced uveitis by intravitreal injection of polylactic-glycolic acid (PLGA) microspheres loaded with dexamethasone. Exp Eye Res. 2009;89(2):238–45.PubMed Barcia E, Herrero-Vanrell R, Díez A, et al. Downregulation of endotoxin-induced uveitis by intravitreal injection of polylactic-glycolic acid (PLGA) microspheres loaded with dexamethasone. Exp Eye Res. 2009;89(2):238–45.PubMed
243.
go back to reference Prow TW. Toxicity of nanomaterials to the eye. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2010;2(4):317–33.PubMed Prow TW. Toxicity of nanomaterials to the eye. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2010;2(4):317–33.PubMed
244.
go back to reference Voigt N, Henrich-Noack P, Kockentiedt S, et al. Toxicity of polymeric nanoparticles in vivo and in vitro. J Nanopart Res. 2014;16(6):2379. Voigt N, Henrich-Noack P, Kockentiedt S, et al. Toxicity of polymeric nanoparticles in vivo and in vitro. J Nanopart Res. 2014;16(6):2379.
245.
go back to reference De Matteis V, Rinaldi R. Toxicity assessment in the nanoparticle era. Adv Exp Med Biol. 2018;1048:1–19.PubMed De Matteis V, Rinaldi R. Toxicity assessment in the nanoparticle era. Adv Exp Med Biol. 2018;1048:1–19.PubMed
246.
go back to reference El-Ansary A, Al-Daihan S, Bacha AB, et al. Toxicity of novel nanosized formulations used in medicine. Methods Mol Biol. 2013;1028:47–74.PubMed El-Ansary A, Al-Daihan S, Bacha AB, et al. Toxicity of novel nanosized formulations used in medicine. Methods Mol Biol. 2013;1028:47–74.PubMed
247.
go back to reference De Jong WH, Van Der Ven LT, Sleijffers A, et al. Systemic and immunotoxicity of silver nanoparticles in an intravenous 28 days repeated dose toxicity study in rats. Biomaterials. 2013;34(33):8333–43.PubMed De Jong WH, Van Der Ven LT, Sleijffers A, et al. Systemic and immunotoxicity of silver nanoparticles in an intravenous 28 days repeated dose toxicity study in rats. Biomaterials. 2013;34(33):8333–43.PubMed
Metadata
Title
Nanotechnology for Medical and Surgical Glaucoma Therapy—A Review
Authors
Marcelo Luís Occhiutto
Raul C. Maranhão
Vital Paulino Costa
Anastasios G. Konstas
Publication date
01-01-2020
Publisher
Springer Healthcare
Published in
Advances in Therapy / Issue 1/2020
Print ISSN: 0741-238X
Electronic ISSN: 1865-8652
DOI
https://doi.org/10.1007/s12325-019-01163-6

Other articles of this Issue 1/2020

Advances in Therapy 1/2020 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.