Skip to main content
Top
Published in: BMC Ophthalmology 1/2024

Open Access 01-12-2024 | Glaucoma | Research

The structure–function relationship between multifocal pupil perimetry and retinal nerve fibre layer in glaucoma

Authors: Corinne F. Carle, Allan Y. H. Chain, Maria Kolic, Ted Maddess

Published in: BMC Ophthalmology | Issue 1/2024

Login to get access

Abstract

Background

Multifocal pupillographic objective perimetry (mfPOP) is a novel method for assessing functional change in diseases like glaucoma. Previous research has suggested that, in contrast to the pretectally-mediated melanopsin response of intrinsically photosensitive retinal ganglion cells, mfPOP responses to transient onset stimuli involve the extrastriate cortex, and thus the main visual pathway. We therefore investigate the correlation between peripapillary retinal nerve fibre layer (pRNFL) thickness and glaucomatous visual field changes detected using mfPOP. Parallel analyses are undertaken using white on white standard automated perimetry (SAP) for comparison.

Methods

Twenty-five glaucoma patients and 24 normal subjects were tested using SAP, 3 mfPOP variants, and optical coherence tomography (OCT). Arcuate clusters of the SAP and mfPOP deviations were weighted according to their contribution to published arcuate divisions of the retinal nerve fibre layer. Structure–function correlation coefficients (r) were computed between pRNFL clock-hour sector thickness measurements, and the local visual field sensitivities from both SAP and mfPOP.

Results

The strongest correlation was observed in the superior-superotemporal disc sector in patients with worst eye SAP MD < -12 dB: r = 0.93 for the mfPOP LumBal test (p < 0.001). Correlations across all disc-sectors were strongest in these same patients in both SAP and mfPOP: SAP r = 0.54, mfPOP LumBal r = 0.55 (p < 0.001). In patients with SAP MD ≥ -6 dB in both eyes, SAP correlations across all sectors were higher than mfPOP; mfPOP correlations however, were higher than SAP in more advanced disease, and in normal subjects.

Conclusions

For both methods the largest correlations with pRNFL thickness corresponded to the inferior nasal field of more severely damaged eyes. Head-to-head comparison of mfPOP and SAP showed similar structure–function relationships. This agrees with our recent reports that mfPOP primarily stimulates the cortical drive to the pupils.
Appendix
Available only for authorised users
Literature
1.
go back to reference Sabeti F, Maddess T, Essex RW, Saikal A, James A, Carle C. Multifocal pupillography in early age-related macular degeneration. Optom Vis Sci. 2014;91(8):904–15.CrossRefPubMed Sabeti F, Maddess T, Essex RW, Saikal A, James A, Carle C. Multifocal pupillography in early age-related macular degeneration. Optom Vis Sci. 2014;91(8):904–15.CrossRefPubMed
2.
go back to reference Rai BB, Essex RW, Sabeti F, Maddess T, Rohan EMF, van Kleef JP, Carle CF. An objective perimetry study of central versus. peripheral sensitivities and delays in age-related macular degeneration. Trans Vis Sci Tech. 2021;10(14(24)):1–14. Rai BB, Essex RW, Sabeti F, Maddess T, Rohan EMF, van Kleef JP, Carle CF. An objective perimetry study of central versus. peripheral sensitivities and delays in age-related macular degeneration. Trans Vis Sci Tech. 2021;10(14(24)):1–14.
3.
go back to reference Rai BB, Sabeti F, Carle CF, Rohan EMF, van Kleef JP, Essex RW, Barry RC, Maddess T. Rapid objective testing of visual function matched to the ETDRS-grid, and its diagnostic power in AMD. Ophthalmol Sci. 2022;2(2.100143):1–9. Rai BB, Sabeti F, Carle CF, Rohan EMF, van Kleef JP, Essex RW, Barry RC, Maddess T. Rapid objective testing of visual function matched to the ETDRS-grid, and its diagnostic power in AMD. Ophthalmol Sci. 2022;2(2.100143):1–9.
4.
go back to reference Sabeti F, Nolan CJ, James AC, Jenkins A, Maddess T. Multifocal pupillography identifies changes in visual sensitivity according to severity of diabetic retinopathy in type 2 diabetes. Invest Ophthalmol Vis Sci. 2015;56(8):4504–13.CrossRefPubMed Sabeti F, Nolan CJ, James AC, Jenkins A, Maddess T. Multifocal pupillography identifies changes in visual sensitivity according to severity of diabetic retinopathy in type 2 diabetes. Invest Ophthalmol Vis Sci. 2015;56(8):4504–13.CrossRefPubMed
5.
go back to reference Rai BB, Maddess T, Carle CF, Rohan EMF, van Kleef JP, Barry RC, Essex RW, Nolan CJ, Sabeti F. Comparing objective perimetry, matrix perimetry, and regional retinal thickness in early diabetic macular oedema. Trans Vis Sci Tech. 2021;10(32):1–12. Rai BB, Maddess T, Carle CF, Rohan EMF, van Kleef JP, Barry RC, Essex RW, Nolan CJ, Sabeti F. Comparing objective perimetry, matrix perimetry, and regional retinal thickness in early diabetic macular oedema. Trans Vis Sci Tech. 2021;10(32):1–12.
6.
go back to reference Sabeti F, Rai BB, van Kleef JP, Carle CF, Rohan EMF, Essex RW, Nolan CJ, Maddess T. Objective perimetry identifies regional functional progression and recovery in mild Diabetic Macular Oedema. PLoS ONE. 2023;18(6):1–20.CrossRef Sabeti F, Rai BB, van Kleef JP, Carle CF, Rohan EMF, Essex RW, Nolan CJ, Maddess T. Objective perimetry identifies regional functional progression and recovery in mild Diabetic Macular Oedema. PLoS ONE. 2023;18(6):1–20.CrossRef
7.
go back to reference Maddess T, van Kleef JP, Rohan EMF, Carle CF, Baird-Gunning J, Rai BB, Bruestle A, Lane J, Lueck CJ. Rapid, non-contact multifocal visual assessment in multiple sclerosis. Neurol Sci. 2022;43:1–7. Maddess T, van Kleef JP, Rohan EMF, Carle CF, Baird-Gunning J, Rai BB, Bruestle A, Lane J, Lueck CJ. Rapid, non-contact multifocal visual assessment in multiple sclerosis. Neurol Sci. 2022;43:1–7.
8.
go back to reference Carle CF, James AC, Kolic M, Essex RW, Maddess T. Luminance and colour variant pupil perimetry in glaucoma. Clin Experiment Ophthalmol. 2014;42(9):815–24.CrossRefPubMed Carle CF, James AC, Kolic M, Essex RW, Maddess T. Luminance and colour variant pupil perimetry in glaucoma. Clin Experiment Ophthalmol. 2014;42(9):815–24.CrossRefPubMed
9.
go back to reference Carle CF, James AC, Kolic M, Loh YW, Maddess T. High-resolution multifocal pupillographic objective perimetry in glaucoma. Invest Ophthalmol Vis Sci. 2011;52(1):604–10.CrossRefPubMed Carle CF, James AC, Kolic M, Loh YW, Maddess T. High-resolution multifocal pupillographic objective perimetry in glaucoma. Invest Ophthalmol Vis Sci. 2011;52(1):604–10.CrossRefPubMed
10.
go back to reference Carle CF, James AC, Kolic M, Essex RW, Maddess T. Blue Multifocal Pupillographic Objective Perimetry in Glaucoma. Invest Ophthalmol Vis Sci. 2015;56(11):6394–403.CrossRefPubMed Carle CF, James AC, Kolic M, Essex RW, Maddess T. Blue Multifocal Pupillographic Objective Perimetry in Glaucoma. Invest Ophthalmol Vis Sci. 2015;56(11):6394–403.CrossRefPubMed
11.
go back to reference Malik R, Swanson WH, Garway-Heath DF. “Structure-function relationship” in glaucoma: past thinking and current concepts. Clin Experiment Ophthalmol. 2012;40(4):369–80.CrossRefPubMedPubMedCentral Malik R, Swanson WH, Garway-Heath DF. “Structure-function relationship” in glaucoma: past thinking and current concepts. Clin Experiment Ophthalmol. 2012;40(4):369–80.CrossRefPubMedPubMedCentral
12.
go back to reference Gamlin PD. The pretectum: connections and oculomotor-related roles. Prog Brain Res. 2006;151:379–405.CrossRefPubMed Gamlin PD. The pretectum: connections and oculomotor-related roles. Prog Brain Res. 2006;151:379–405.CrossRefPubMed
13.
go back to reference Heywood CA, Nicholas JJ, LeMare C, Cowey A. The effect of lesions to cortical areas V4 or AIT on pupillary responses to chromatic and achromatic stimuli in monkeys. Exp Brain Res. 1998;122(4):475–80.CrossRefPubMed Heywood CA, Nicholas JJ, LeMare C, Cowey A. The effect of lesions to cortical areas V4 or AIT on pupillary responses to chromatic and achromatic stimuli in monkeys. Exp Brain Res. 1998;122(4):475–80.CrossRefPubMed
14.
go back to reference Gamlin PD, McDougal DH, Pokorny J, Smith VC, Yau KW, Dacey DM. Human and macaque pupil responses driven by melanopsin-containing retinal ganglion cells. Vision Res. 2007;47(7):946–54.CrossRefPubMedPubMedCentral Gamlin PD, McDougal DH, Pokorny J, Smith VC, Yau KW, Dacey DM. Human and macaque pupil responses driven by melanopsin-containing retinal ganglion cells. Vision Res. 2007;47(7):946–54.CrossRefPubMedPubMedCentral
15.
go back to reference Sabeti F, James AC, Carle CF, Essex RW, Bell A, Maddess T. Comparing multifocal pupillographic objective perimetry (mfPOP) and multifocal visual evoked potentials (mfVEP) in retinal diseases. Sci Rep. 2017;7:45847.CrossRefPubMedPubMedCentral Sabeti F, James AC, Carle CF, Essex RW, Bell A, Maddess T. Comparing multifocal pupillographic objective perimetry (mfPOP) and multifocal visual evoked potentials (mfVEP) in retinal diseases. Sci Rep. 2017;7:45847.CrossRefPubMedPubMedCentral
16.
go back to reference Jansonius NM, Nevalainen J, Selig B, Zangwill LM, Sample PA, Budde WM, Jonas JB, Lagreze WA, Airaksinen PJ, Vonthein R, et al. A mathematical description of nerve fiber bundle trajectories and their variability in the human retina. Vision Res. 2009;49(17):2157–63.CrossRefPubMedPubMedCentral Jansonius NM, Nevalainen J, Selig B, Zangwill LM, Sample PA, Budde WM, Jonas JB, Lagreze WA, Airaksinen PJ, Vonthein R, et al. A mathematical description of nerve fiber bundle trajectories and their variability in the human retina. Vision Res. 2009;49(17):2157–63.CrossRefPubMedPubMedCentral
17.
go back to reference Bell A, James AC, Kolic M, Essex RW, Maddess T. Dichoptic multifocal pupillography reveals afferent visual field defects in early type 2 diabetes. Invest Ophthalmol Vis Sci. 2010;51(1):602–8.CrossRefPubMed Bell A, James AC, Kolic M, Essex RW, Maddess T. Dichoptic multifocal pupillography reveals afferent visual field defects in early type 2 diabetes. Invest Ophthalmol Vis Sci. 2010;51(1):602–8.CrossRefPubMed
18.
go back to reference Carle CF, James AC, Maddess T. The pupillary response to color and luminance variant multifocal stimuli. Invest Ophthalmol Vis Sci. 2013;54(1):467–75.CrossRefPubMed Carle CF, James AC, Maddess T. The pupillary response to color and luminance variant multifocal stimuli. Invest Ophthalmol Vis Sci. 2013;54(1):467–75.CrossRefPubMed
19.
go back to reference Carle CF, James AC, Sabeti F, Kolic M, Essex RW, Shean C, Jeans R, Saikal A, Licinio A, Maddess T. Clustered volleys stimulus presentation for multifocal objective perimetry. Transl Vis Sci Technol. 2022;11(2):5.CrossRefPubMedPubMedCentral Carle CF, James AC, Sabeti F, Kolic M, Essex RW, Shean C, Jeans R, Saikal A, Licinio A, Maddess T. Clustered volleys stimulus presentation for multifocal objective perimetry. Transl Vis Sci Technol. 2022;11(2):5.CrossRefPubMedPubMedCentral
20.
go back to reference Maddess T, Bedford SM, Goh XL, James AC. Multifocal pupillographic visual field testing in glaucoma. Clin Experiment Ophthalmol. 2009;37(7):678–86.CrossRefPubMed Maddess T, Bedford SM, Goh XL, James AC. Multifocal pupillographic visual field testing in glaucoma. Clin Experiment Ophthalmol. 2009;37(7):678–86.CrossRefPubMed
21.
go back to reference Fitzgibbon T, Taylor SF. Retinotopy of the human retinal nerve fibre layer and optic nerve head. J Comp Neurol. 1996;375(2):238–51.CrossRefPubMed Fitzgibbon T, Taylor SF. Retinotopy of the human retinal nerve fibre layer and optic nerve head. J Comp Neurol. 1996;375(2):238–51.CrossRefPubMed
22.
go back to reference Hood DC, Anderson SC, Wall M, Kardon RH. Structure versus function in glaucoma: an application of a linear model. Invest Ophthalmol Vis Sci. 2007;48(8):3662–8.CrossRefPubMed Hood DC, Anderson SC, Wall M, Kardon RH. Structure versus function in glaucoma: an application of a linear model. Invest Ophthalmol Vis Sci. 2007;48(8):3662–8.CrossRefPubMed
23.
go back to reference Hastie T, Stuetzle W. Principal Curves. J Am Stat Assoc. 1989;84(406):502–16.CrossRef Hastie T, Stuetzle W. Principal Curves. J Am Stat Assoc. 1989;84(406):502–16.CrossRef
24.
go back to reference Henson DB, Chaudry S, Artes PH, Faragher EB, Ansons A. Response variability in the visual field: comparison of optic neuritis, glaucoma, ocular hypertension, and normal eyes. Invest Ophthalmol Vis Sci. 2000;41(2):417–21.PubMed Henson DB, Chaudry S, Artes PH, Faragher EB, Ansons A. Response variability in the visual field: comparison of optic neuritis, glaucoma, ocular hypertension, and normal eyes. Invest Ophthalmol Vis Sci. 2000;41(2):417–21.PubMed
25.
go back to reference Chen PP, Budenz DL. The effects of cataract extraction on the visual field of eyes with chronic open-angle glaucoma. Am J Ophthalmol. 1998;125(3):325–33.CrossRefPubMed Chen PP, Budenz DL. The effects of cataract extraction on the visual field of eyes with chronic open-angle glaucoma. Am J Ophthalmol. 1998;125(3):325–33.CrossRefPubMed
26.
go back to reference Li RS, Chen BY, Tay DK, Chan HH, Pu ML, So KF. Melanopsin-expressing retinal ganglion cells are more injury-resistant in a chronic ocular hypertension model. Invest Ophthalmol Vis Sci. 2006;47(7):2951–8.CrossRefPubMed Li RS, Chen BY, Tay DK, Chan HH, Pu ML, So KF. Melanopsin-expressing retinal ganglion cells are more injury-resistant in a chronic ocular hypertension model. Invest Ophthalmol Vis Sci. 2006;47(7):2951–8.CrossRefPubMed
27.
go back to reference Wang HZ, Lu QJ, Wang NL, Liu H, Zhang L, Zhan GL. Loss of melanopsin-containing retinal ganglion cells in a rat glaucoma model. Chin Med J (Engl). 2008;121(11):1015–9.CrossRefPubMed Wang HZ, Lu QJ, Wang NL, Liu H, Zhang L, Zhan GL. Loss of melanopsin-containing retinal ganglion cells in a rat glaucoma model. Chin Med J (Engl). 2008;121(11):1015–9.CrossRefPubMed
28.
go back to reference de Zavalia N, Plano SA, Fernandez DC, Lanzani MF, Salido E, Belforte N, Sarmiento MI, Golombek DA, Rosenstein RE. Effect of experimental glaucoma on the non-image forming visual system. J Neurochem. 2011;117(5):904–14.CrossRefPubMed de Zavalia N, Plano SA, Fernandez DC, Lanzani MF, Salido E, Belforte N, Sarmiento MI, Golombek DA, Rosenstein RE. Effect of experimental glaucoma on the non-image forming visual system. J Neurochem. 2011;117(5):904–14.CrossRefPubMed
29.
go back to reference Chew SS, Cunnningham WJ, Gamble GD, Danesh-Meyer HV. Retinal nerve fiber layer loss in glaucoma patients with a relative afferent pupillary defect. Invest Ophthalmol Vis Sci. 2010;51(10):5049–53.CrossRefPubMed Chew SS, Cunnningham WJ, Gamble GD, Danesh-Meyer HV. Retinal nerve fiber layer loss in glaucoma patients with a relative afferent pupillary defect. Invest Ophthalmol Vis Sci. 2010;51(10):5049–53.CrossRefPubMed
30.
go back to reference Sarezky D, Volpe NJ, Park MS, Tanna AP. Correlation between inter-eye difference in average retinal nerve fiber layer thickness and afferent pupillary response as measured by an automated pupillometer in glaucoma. J Glaucoma. 2015;25(3):312–6.CrossRef Sarezky D, Volpe NJ, Park MS, Tanna AP. Correlation between inter-eye difference in average retinal nerve fiber layer thickness and afferent pupillary response as measured by an automated pupillometer in glaucoma. J Glaucoma. 2015;25(3):312–6.CrossRef
31.
go back to reference Tatham AJ, Meira-Freitas D, Weinreb RN, Marvasti AH, Zangwill LM, Medeiros FA. Estimation of retinal ganglion cell loss in glaucomatous eyes with a relative afferent pupillary defect. Invest Ophthalmol Vis Sci. 2014;55(1):513–22.CrossRefPubMedPubMedCentral Tatham AJ, Meira-Freitas D, Weinreb RN, Marvasti AH, Zangwill LM, Medeiros FA. Estimation of retinal ganglion cell loss in glaucomatous eyes with a relative afferent pupillary defect. Invest Ophthalmol Vis Sci. 2014;55(1):513–22.CrossRefPubMedPubMedCentral
32.
go back to reference Chang DS, Boland MV, Arora KS, Supakontanasan W, Chen BB, Friedman DS. Symmetry of the pupillary light reflex and its relationship to retinal nerve fiber layer thickness and visual field defect. Invest Ophthalmol Vis Sci. 2013;54(8):5596–601.CrossRefPubMedPubMedCentral Chang DS, Boland MV, Arora KS, Supakontanasan W, Chen BB, Friedman DS. Symmetry of the pupillary light reflex and its relationship to retinal nerve fiber layer thickness and visual field defect. Invest Ophthalmol Vis Sci. 2013;54(8):5596–601.CrossRefPubMedPubMedCentral
33.
go back to reference Artes PH, Iwase A, Ohno Y, Kitazawa Y, Chauhan BC. Properties of perimetric threshold estimates from Full Threshold, SITA Standard, and SITA Fast strategies. Invest Ophthalmol Vis Sci. 2002;43(8):2654–9.PubMed Artes PH, Iwase A, Ohno Y, Kitazawa Y, Chauhan BC. Properties of perimetric threshold estimates from Full Threshold, SITA Standard, and SITA Fast strategies. Invest Ophthalmol Vis Sci. 2002;43(8):2654–9.PubMed
34.
go back to reference Martucci A, Cesareo M, Napoli D, Sorge RP, Ricci F, Mancino R, Nucci C. Evaluation of pupillary response to light in patients with glaucoma: a study using computerized pupillometry. Int Ophthalmol. 2014;34:1241–7.CrossRefPubMed Martucci A, Cesareo M, Napoli D, Sorge RP, Ricci F, Mancino R, Nucci C. Evaluation of pupillary response to light in patients with glaucoma: a study using computerized pupillometry. Int Ophthalmol. 2014;34:1241–7.CrossRefPubMed
35.
go back to reference Denniss J, McKendrick AM, Turpin A. An anatomically customizable computational model relating the visual field to the optic nerve head in individual eyes. Invest Ophthalmol Vis Sci. 2012;53(11):6981–90.CrossRefPubMed Denniss J, McKendrick AM, Turpin A. An anatomically customizable computational model relating the visual field to the optic nerve head in individual eyes. Invest Ophthalmol Vis Sci. 2012;53(11):6981–90.CrossRefPubMed
Metadata
Title
The structure–function relationship between multifocal pupil perimetry and retinal nerve fibre layer in glaucoma
Authors
Corinne F. Carle
Allan Y. H. Chain
Maria Kolic
Ted Maddess
Publication date
01-12-2024
Publisher
BioMed Central
Keyword
Glaucoma
Published in
BMC Ophthalmology / Issue 1/2024
Electronic ISSN: 1471-2415
DOI
https://doi.org/10.1186/s12886-024-03402-z

Other articles of this Issue 1/2024

BMC Ophthalmology 1/2024 Go to the issue