Skip to main content
Top
Published in: Journal of Neuroinflammation 1/2013

Open Access 01-12-2013 | Short report

Ghrelin inhibits LPS-induced release of IL-6 from mouse dopaminergic neurones

Authors: Amy L Beynon, M Rowan Brown, Rhiannon Wright, Mark I Rees, I Martin Sheldon, Jeffrey S Davies

Published in: Journal of Neuroinflammation | Issue 1/2013

Login to get access

Abstract

Background

Ghrelin is an orexigenic stomach hormone that acts centrally to increase mid-brain dopamine neurone activity, amplify dopamine signaling and protect against neurotoxin-induced dopamine cell death in the mouse substantia nigra pars compacta (SNpc). In addition, ghrelin inhibits the lipopolysaccharide (LPS)-induced release of pro-inflammatory cytokines from peripheral macrophages, T-cells and from LPS stimulated microglia. Here we sought to determine whether ghrelin attenuates pro-inflammatory cytokine release from dopaminergic neurones.

Findings

The dopaminergic SN4741 cell-line, which derives from the mouse substantia nigra (SN) and expresses the ghrelin-receptor (growth hormone secretagogue receptor (GHS-R)) and the ghrelin-O-acyl transferase (GOAT) enzyme, was used to determine the neuro-immunomodulatory action of ghrelin. We induced innate immune activation via LPS challenge (1 μg/ml) of SN4741 neurones that had been pre-cultured in the presence or absence of ghrelin (1, 10, 100 nM) for 4 h. After 24 h supernatants were collected for detection of IL-1 beta (IL-1β ), TNF alpha (TNF-α) and IL-6 cytokines via enzyme linked immunosorbent assay (ELISA) analysis. Nuclear translocation of the transcription factor nuclear factor kappa B (NF-κB) was analyzed by Western blotting, and to determine viability of treatments a cell viability assay and caspase-3 immunohistochemistry were performed.
We provide evidence that while IL-1β and TNF-α were not detectable under any conditions, SN4741 neurones constitutively released IL-6 under basal conditions and treatment with LPS significantly increased IL-6 secretion. Pre-treatment of neurones with ghrelin attenuated LPS-mediated IL-6 release at 24 h, an affect that was inhibited by the GHS-R antagonist [D-Lys3]-GHRP-6. However, while ghrelin pre-treatment attenuated the LPS-mediated increase in NF-κB, there was no alteration in its nuclear translocation. Cell viability assay and caspase-3 immunocytochemistry demonstrated that the results were independent from activation of cytotoxic and/or apoptotic mechanisms in the neuronal population, respectively.

Conclusion

Our results provide evidence that the gut-hormone, ghrelin, attenuates IL-6 secretion to LPS challenge in mid-brain dopaminergic neurones. These data suggest that ghrelin may protect against dopaminergic SN nerve cell damage or death via modulation of the innate immune response.
Literature
1.
go back to reference Kojima M, Hosoda H, Date Y, Nakazato M, Matsuo H, Kangawa K: Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature 1999, 402:656–660.CrossRefPubMed Kojima M, Hosoda H, Date Y, Nakazato M, Matsuo H, Kangawa K: Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature 1999, 402:656–660.CrossRefPubMed
2.
3.
go back to reference Diano S, Farr SA, Benoit SC, McNay EC, Da Silva I, Horvath B, Gaskin FS, Nonaka N, Jaeger LB, Banks WA, Morley JE, Pinto S, Sherwin RS, Xu L, Yamada KA, Sleeman MW, Tschöp MH, Horvath TL: Ghrelin controls hippocampal spine synapse density and memory performance. Nat Neurosci 2006, 9:381–388.CrossRefPubMed Diano S, Farr SA, Benoit SC, McNay EC, Da Silva I, Horvath B, Gaskin FS, Nonaka N, Jaeger LB, Banks WA, Morley JE, Pinto S, Sherwin RS, Xu L, Yamada KA, Sleeman MW, Tschöp MH, Horvath TL: Ghrelin controls hippocampal spine synapse density and memory performance. Nat Neurosci 2006, 9:381–388.CrossRefPubMed
4.
go back to reference Abizaid A, Liu Z: Ghrelin modulates the activity and synaptic input organization of midbrain dopamine neurons while promoting appetite. J Clin Invest 2006, 116:3229–3239.CrossRefPubMedPubMedCentral Abizaid A, Liu Z: Ghrelin modulates the activity and synaptic input organization of midbrain dopamine neurons while promoting appetite. J Clin Invest 2006, 116:3229–3239.CrossRefPubMedPubMedCentral
5.
go back to reference Jiang H, Betancourt L, Smith RG: Ghrelin amplifies dopamine signaling by cross talk involving formation of growth hormone secretagogue receptor/dopamine receptor subtype 1 heterodimers. Mol Endocrinol 2006, 20:1772–1785.CrossRefPubMed Jiang H, Betancourt L, Smith RG: Ghrelin amplifies dopamine signaling by cross talk involving formation of growth hormone secretagogue receptor/dopamine receptor subtype 1 heterodimers. Mol Endocrinol 2006, 20:1772–1785.CrossRefPubMed
6.
go back to reference Jiang H, Li L, Wang J, Xie J: Ghrelin antagonizes MPTP-induced neurotoxicity to the dopaminergic neurons in mouse substantia nigra. Exp Neurol 2008, 212:532–537.CrossRefPubMed Jiang H, Li L, Wang J, Xie J: Ghrelin antagonizes MPTP-induced neurotoxicity to the dopaminergic neurons in mouse substantia nigra. Exp Neurol 2008, 212:532–537.CrossRefPubMed
7.
go back to reference Liu L, Xu H, Jiang H, Wang J, Song N, Xie J: Ghrelin prevents 1-methyl-4-phenylpyridinium ion-induced cytotoxicity through antioxidation and NF-kappaB modulation in MES23.5 cells. Exp Neurol 2010, 222:25–29.CrossRefPubMed Liu L, Xu H, Jiang H, Wang J, Song N, Xie J: Ghrelin prevents 1-methyl-4-phenylpyridinium ion-induced cytotoxicity through antioxidation and NF-kappaB modulation in MES23.5 cells. Exp Neurol 2010, 222:25–29.CrossRefPubMed
8.
go back to reference Andrews ZB, Erion D, Beiler R, Liu Z-W, Abizaid A, Zigman J, Elsworth JD, Savitt JM, DiMarchi R, Tschop M, Roth RH, Gao X-B, Horvath TL: Ghrelin promotes and protects nigrostriatal dopamine function via a UCP2-dependent mitochondrial mechanism. J Neurosci 2009, 29:14057–14065.CrossRefPubMedPubMedCentral Andrews ZB, Erion D, Beiler R, Liu Z-W, Abizaid A, Zigman J, Elsworth JD, Savitt JM, DiMarchi R, Tschop M, Roth RH, Gao X-B, Horvath TL: Ghrelin promotes and protects nigrostriatal dopamine function via a UCP2-dependent mitochondrial mechanism. J Neurosci 2009, 29:14057–14065.CrossRefPubMedPubMedCentral
9.
go back to reference Baatar D, Patel K, Taub DD: The effects of ghrelin on inflammation and the immune system. Mol Cell Endocrinol 2011, 340:44–58.CrossRefPubMed Baatar D, Patel K, Taub DD: The effects of ghrelin on inflammation and the immune system. Mol Cell Endocrinol 2011, 340:44–58.CrossRefPubMed
10.
go back to reference Waseem T, Duxbury M, Ito H, Ashley SW, Robinson MK: Exogenous ghrelin modulates release of pro-inflammatory and anti-inflammatory cytokines in LPS-stimulated macrophages through distinct signaling pathways. Surgery 2008, 143:334–342.CrossRefPubMed Waseem T, Duxbury M, Ito H, Ashley SW, Robinson MK: Exogenous ghrelin modulates release of pro-inflammatory and anti-inflammatory cytokines in LPS-stimulated macrophages through distinct signaling pathways. Surgery 2008, 143:334–342.CrossRefPubMed
11.
go back to reference Dixit VD, Schaffer EM, Pyle RS, Collins GD, Sakthivel SK, Palaniappan R, Jr Lillard JW, Taub DD: Ghrelin inhibits leptin- and activation-induced proinflammatory cytokine expression by human monocytes and T cells. J Clin Invest 2004, 114:57–66.CrossRefPubMedPubMedCentral Dixit VD, Schaffer EM, Pyle RS, Collins GD, Sakthivel SK, Palaniappan R, Jr Lillard JW, Taub DD: Ghrelin inhibits leptin- and activation-induced proinflammatory cytokine expression by human monocytes and T cells. J Clin Invest 2004, 114:57–66.CrossRefPubMedPubMedCentral
12.
go back to reference Theil M, Miyake S, Mizuno M: Suppression of experimental autoimmune encephalomyelitis by ghrelin. J Immunol 2009, 183:2859–2866.CrossRefPubMed Theil M, Miyake S, Mizuno M: Suppression of experimental autoimmune encephalomyelitis by ghrelin. J Immunol 2009, 183:2859–2866.CrossRefPubMed
13.
go back to reference McGeer PL, Itagaki S, Boyes BE, McGeer EG: Reactive microglia are positive for HLA-DR in the substantia nigra of Parkinson’s and Alzheimer’s disease brains. Neurology 1988, 38:1285–1291.CrossRefPubMed McGeer PL, Itagaki S, Boyes BE, McGeer EG: Reactive microglia are positive for HLA-DR in the substantia nigra of Parkinson’s and Alzheimer’s disease brains. Neurology 1988, 38:1285–1291.CrossRefPubMed
14.
go back to reference Jeong HK, Jou I, Joe EH: Systemic LPS administration induces brain inflammation but not dopaminergic neuronal death in the substantia nigra. Exp Mol Med 2010, 42:823–832.CrossRefPubMedPubMedCentral Jeong HK, Jou I, Joe EH: Systemic LPS administration induces brain inflammation but not dopaminergic neuronal death in the substantia nigra. Exp Mol Med 2010, 42:823–832.CrossRefPubMedPubMedCentral
15.
go back to reference Sui Y, Stanić D, Tomas D, Jarrott B, Horne MK: Meloxicam reduces lipopolysaccharide-induced degeneration of dopaminergic neurons in the rat substantia nigra pars compacta . Neurosci Lett 2009, 460:121–125.CrossRefPubMed Sui Y, Stanić D, Tomas D, Jarrott B, Horne MK: Meloxicam reduces lipopolysaccharide-induced degeneration of dopaminergic neurons in the rat substantia nigra pars compacta . Neurosci Lett 2009, 460:121–125.CrossRefPubMed
16.
go back to reference Son J, Chun H, Joh T: Neuroprotection and neuronal differentiation studies using substantia nigra dopaminergic cells derived from transgenic mouse embryos. J Neurosci 1999, 19:10–20.PubMed Son J, Chun H, Joh T: Neuroprotection and neuronal differentiation studies using substantia nigra dopaminergic cells derived from transgenic mouse embryos. J Neurosci 1999, 19:10–20.PubMed
17.
go back to reference Sallmann S, Jüttler E, Prinz S: Induction of interleukin-6 by depolarization of neurons. J Neurosci 2000, 20:8637–8642.PubMed Sallmann S, Jüttler E, Prinz S: Induction of interleukin-6 by depolarization of neurons. J Neurosci 2000, 20:8637–8642.PubMed
18.
go back to reference Nomura F, Akashi S, Sakao Y, Sato S, Kawai T, Matsumoto M, Nakanishi K, Kimoto M, Miyake K, Takeda K, Akira S: Cutting edge: endotoxin tolerance in mouse peritoneal macrophages correlates with down-regulation of surface toll-like receptor 4 expression. J Immunol 2000, 164:3476–3479.CrossRefPubMed Nomura F, Akashi S, Sakao Y, Sato S, Kawai T, Matsumoto M, Nakanishi K, Kimoto M, Miyake K, Takeda K, Akira S: Cutting edge: endotoxin tolerance in mouse peritoneal macrophages correlates with down-regulation of surface toll-like receptor 4 expression. J Immunol 2000, 164:3476–3479.CrossRefPubMed
19.
go back to reference Kamada S, Kikkawa U, Tsujimoto Y, Hunter T: Nuclear translocation of caspase-3 is dependent on its proteolytic activation and recognition of a substrate-like protein(s). J Biol Chem 2005, 280:857–860.CrossRefPubMed Kamada S, Kikkawa U, Tsujimoto Y, Hunter T: Nuclear translocation of caspase-3 is dependent on its proteolytic activation and recognition of a substrate-like protein(s). J Biol Chem 2005, 280:857–860.CrossRefPubMed
20.
go back to reference Li WG, Gavrila D, Liu X, Wang L, Gunnlaugsson S, Stoll LL, McCormick ML, Sigmund CD, Tang C, Weintraub NL: Ghrelin inhibits proinflammatory responses and nuclear factor-kappaB activation in human endothelial cells. Circulation 2004, 109:2221–2226.CrossRefPubMed Li WG, Gavrila D, Liu X, Wang L, Gunnlaugsson S, Stoll LL, McCormick ML, Sigmund CD, Tang C, Weintraub NL: Ghrelin inhibits proinflammatory responses and nuclear factor-kappaB activation in human endothelial cells. Circulation 2004, 109:2221–2226.CrossRefPubMed
21.
go back to reference Moon M, Kim HG, Hwang L, Seo JH, Kim S, Hwang S, Kim S, Lee D, Chung H, Oh MS, Lee KT, Park S: Neuroprotective effect of ghrelin in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson’s disease by blocking microglial activation. Neurotox Res 2009, 15:332–347.CrossRefPubMed Moon M, Kim HG, Hwang L, Seo JH, Kim S, Hwang S, Kim S, Lee D, Chung H, Oh MS, Lee KT, Park S: Neuroprotective effect of ghrelin in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson’s disease by blocking microglial activation. Neurotox Res 2009, 15:332–347.CrossRefPubMed
22.
go back to reference Lee S, Kim Y, Li E, Park S: Ghrelin protects spinal cord motoneurons against chronic glutamate excitotoxicity by inhibiting microglial activation. Korean J Physiol Pharmacol 2012, 16:43–48.CrossRefPubMedPubMedCentral Lee S, Kim Y, Li E, Park S: Ghrelin protects spinal cord motoneurons against chronic glutamate excitotoxicity by inhibiting microglial activation. Korean J Physiol Pharmacol 2012, 16:43–48.CrossRefPubMedPubMedCentral
23.
go back to reference Unger MM, Möller JC, Mankel K, Eggert KM, Bohne K, Bodden M, Stiasny-Kolster K, Kann PH, Mayer G, Tebbe JJ, Oertel WH: Postprandial ghrelin response is reduced in patients with Parkinson’s disease and idiopathic REM sleep behaviour disorder: a peripheral biomarker for early Parkinson’s disease? J Neurol 2011, 258:982–990.CrossRefPubMed Unger MM, Möller JC, Mankel K, Eggert KM, Bohne K, Bodden M, Stiasny-Kolster K, Kann PH, Mayer G, Tebbe JJ, Oertel WH: Postprandial ghrelin response is reduced in patients with Parkinson’s disease and idiopathic REM sleep behaviour disorder: a peripheral biomarker for early Parkinson’s disease? J Neurol 2011, 258:982–990.CrossRefPubMed
24.
go back to reference Mogi M, Harada M, Narabayashi H, Inagaki H, Minami M, Nagatsu T: Interleukin (IL)-lfl, IL-2, IL-4, IL-6 and transforming growth factor-a levels are elevated in ventricular cerebrospinal fluid in juvenile Parkinsonism and Parkinson’s disease. Neurosci Lett 1996, 211:13–16.CrossRefPubMed Mogi M, Harada M, Narabayashi H, Inagaki H, Minami M, Nagatsu T: Interleukin (IL)-lfl, IL-2, IL-4, IL-6 and transforming growth factor-a levels are elevated in ventricular cerebrospinal fluid in juvenile Parkinsonism and Parkinson’s disease. Neurosci Lett 1996, 211:13–16.CrossRefPubMed
25.
go back to reference Blum-Degen D, Muller T, Kuhn W, Gerlach M, Przuntek H, Riederer P: Interleukin-1B and interleukin-6 are elevated in the cerebrospinal fluid of Alzheimer’s and de novo Parkinson’s disease patients. Neurosci Lett 1995, 202:17–20.CrossRefPubMed Blum-Degen D, Muller T, Kuhn W, Gerlach M, Przuntek H, Riederer P: Interleukin-1B and interleukin-6 are elevated in the cerebrospinal fluid of Alzheimer’s and de novo Parkinson’s disease patients. Neurosci Lett 1995, 202:17–20.CrossRefPubMed
Metadata
Title
Ghrelin inhibits LPS-induced release of IL-6 from mouse dopaminergic neurones
Authors
Amy L Beynon
M Rowan Brown
Rhiannon Wright
Mark I Rees
I Martin Sheldon
Jeffrey S Davies
Publication date
01-12-2013
Publisher
BioMed Central
Published in
Journal of Neuroinflammation / Issue 1/2013
Electronic ISSN: 1742-2094
DOI
https://doi.org/10.1186/1742-2094-10-40

Other articles of this Issue 1/2013

Journal of Neuroinflammation 1/2013 Go to the issue