Skip to main content
Top
Published in: BMC Medical Genetics 1/2015

Open Access 01-12-2015 | Case report

Germline activating MTOR mutation arising through gonadal mosaicism in two brothers with megalencephaly and neurodevelopmental abnormalities

Authors: Cameron Mroske, Kristen Rasmussen, Deepali N. Shinde, Robert Huether, Zoe Powis, Hsiao-Mei Lu, Ruth M. Baxter, Elizabeth McPherson, Sha Tang

Published in: BMC Medical Genetics | Issue 1/2015

Login to get access

Abstract

Background

In humans, Mammalian Target of Rapamycin (MTOR) encodes a 300 kDa serine/ threonine protein kinase that is ubiquitously expressed, particularly at high levels in brain. MTOR functions as an integrator of multiple cellular processes, and in so doing either directly or indirectly regulates the phosphorylation of at least 800 proteins. While somatic MTOR mutations have been recognized in tumors for many years, and more recently in hemimegalencephaly, germline MTOR mutations have rarely been described.

Case presentation

We report the successful application of family-trio Diagnostic Exome Sequencing (DES) to identify the underlying molecular etiology in two brothers with multiple neurological and developmental lesions, and for whom previous testing was non-diagnostic. The affected brothers, who were 6 and 23 years of age at the time of DES, presented symptoms including but not limited to mild Autism Spectrum Disorder (ASD), megalencephaly, gross motor skill delay, cryptorchidism and bilateral iris coloboma. Importantly, we determined that each affected brother harbored the MTOR missense alteration p.E1799K (c.5395G>A). This exact variant has been previously identified in multiple independent human somatic cancer samples and has been shown to result in increased MTOR activation. Further, recent independent reports describe two unrelated families in whom p.E1799K co-segregated with megalencephaly and intellectual disability (ID); in both cases, p.E1799K was shown to have originated due to germline mosaicism. In the case of the family reported herein, the absence of p.E1799K in genomic DNA extracted from the blood of either parent suggests that this alteration most likely arose due to gonadal mosaicism. Further, the p.E1799K variant exerts its effect by a gain-of-function (GOF), autosomal dominant mechanism.

Conclusion

Herein, we describe the use of DES to uncover an activating MTOR missense alteration of gonadal mosaic origin that is likely to be the causative mutation in two brothers who present multiple neurological and developmental abnormalities. Our report brings the total number of families who harbor MTOR p.E1799K in association with megalencephaly and ID to three. In each case, evidence suggests that p.E1799K arose in the affected individuals due to gonadal mosaicism. Thus, MTOR p.E1799K can now be classified as a pathogenic GOF mutation that causes megalencephaly and cognitive impairment in humans.
Appendix
Available only for authorised users
Literature
1.
go back to reference American Psychiatric Association. Diagnostic and statistical manual of mental disorders. 5th ed. Arlington: American Psychiatric Publishing; 2013. American Psychiatric Association. Diagnostic and statistical manual of mental disorders. 5th ed. Arlington: American Psychiatric Publishing; 2013.
2.
go back to reference Folstein SE, Rosen-Sheidley B. Genetics of autism: complex aetiology for a heterogeneous disorder. Nat Rev Genet. 2001;2(12):943–55.CrossRefPubMed Folstein SE, Rosen-Sheidley B. Genetics of autism: complex aetiology for a heterogeneous disorder. Nat Rev Genet. 2001;2(12):943–55.CrossRefPubMed
3.
go back to reference Smalley SL, Asarnow RF, Spence MA. Autism and genetics. A decade of research. Arch Gen Psychiatry. 1988;45(10):953–61.CrossRefPubMed Smalley SL, Asarnow RF, Spence MA. Autism and genetics. A decade of research. Arch Gen Psychiatry. 1988;45(10):953–61.CrossRefPubMed
4.
go back to reference Talebizadeh Z, Bittel DC, Miles JH, Takahashi N, Wang CH, Kibiryeva N, et al. No association between HOXA1 and HOXB1 genes and autism spectrum disorders (ASD). J Med Genet. 2002;39(11):e70.PubMedCentralCrossRefPubMed Talebizadeh Z, Bittel DC, Miles JH, Takahashi N, Wang CH, Kibiryeva N, et al. No association between HOXA1 and HOXB1 genes and autism spectrum disorders (ASD). J Med Genet. 2002;39(11):e70.PubMedCentralCrossRefPubMed
5.
go back to reference Yonan AL, Alarcon M, Cheng R, Magnusson PK, Spence SJ, Palmer AA, et al. A genomewide screen of 345 families for autism-susceptibility loci. Am J Hum Genet. 2003;73(4):886–97.PubMedCentralCrossRefPubMed Yonan AL, Alarcon M, Cheng R, Magnusson PK, Spence SJ, Palmer AA, et al. A genomewide screen of 345 families for autism-susceptibility loci. Am J Hum Genet. 2003;73(4):886–97.PubMedCentralCrossRefPubMed
6.
go back to reference Fombonne E, Roge B, Claverie J, Courty S, Fremolle J. Microcephaly and macrocephaly in autism. J Autism Dev Disord. 1999;29(2):113–9.CrossRefPubMed Fombonne E, Roge B, Claverie J, Courty S, Fremolle J. Microcephaly and macrocephaly in autism. J Autism Dev Disord. 1999;29(2):113–9.CrossRefPubMed
9.
go back to reference Reardon W, Zhou XP, Eng C. A novel germline mutation of the PTEN gene in a patient with macrocephaly, ventricular dilatation, and features of VATER association. J Med Genet. 2001;38(12):820–3.PubMedCentralCrossRefPubMed Reardon W, Zhou XP, Eng C. A novel germline mutation of the PTEN gene in a patient with macrocephaly, ventricular dilatation, and features of VATER association. J Med Genet. 2001;38(12):820–3.PubMedCentralCrossRefPubMed
10.
go back to reference Goffin A, Hoefsloot LH, Bosgoed E, Swillen A, Fryns JP. PTEN mutation in a family with Cowden syndrome and autism. Am J Med Genet. 2001;105(6):521–4.CrossRefPubMed Goffin A, Hoefsloot LH, Bosgoed E, Swillen A, Fryns JP. PTEN mutation in a family with Cowden syndrome and autism. Am J Med Genet. 2001;105(6):521–4.CrossRefPubMed
11.
go back to reference Zori RT, Marsh DJ, Graham GE, Marliss EB, Eng C. Germline PTEN mutation in a family with Cowden syndrome and Bannayan-Riley-Ruvalcaba syndrome. Am J Med Genet. 1998;80(4):399–402.CrossRefPubMed Zori RT, Marsh DJ, Graham GE, Marliss EB, Eng C. Germline PTEN mutation in a family with Cowden syndrome and Bannayan-Riley-Ruvalcaba syndrome. Am J Med Genet. 1998;80(4):399–402.CrossRefPubMed
12.
go back to reference Schaefer GB, Mendelsohn NJ, Professional P, Guidelines C. Clinical genetics evaluation in identifying the etiology of autism spectrum disorders: 2013 guideline revisions. Genet Med. 2013;15(5):399–407.CrossRefPubMed Schaefer GB, Mendelsohn NJ, Professional P, Guidelines C. Clinical genetics evaluation in identifying the etiology of autism spectrum disorders: 2013 guideline revisions. Genet Med. 2013;15(5):399–407.CrossRefPubMed
13.
go back to reference Moore PA, Rosen CA, Carter KC. Assignment of the human FKBP12-rapamycin-associated protein (FRAP) gene to chromosome 1p36 by fluorescence in situ hybridization. Genomics. 1996;33(2):331–2.CrossRefPubMed Moore PA, Rosen CA, Carter KC. Assignment of the human FKBP12-rapamycin-associated protein (FRAP) gene to chromosome 1p36 by fluorescence in situ hybridization. Genomics. 1996;33(2):331–2.CrossRefPubMed
16.
go back to reference Crino PB. Focal brain malformations: a spectrum of disorders along the mTOR cascade. Novartis Found Symp. 2007;288:260–72. discussion 272–281.CrossRefPubMed Crino PB. Focal brain malformations: a spectrum of disorders along the mTOR cascade. Novartis Found Symp. 2007;288:260–72. discussion 272–281.CrossRefPubMed
17.
go back to reference Wong M, Crino PB: mTOR and Epileptogenesis in Developmental Brain Malformations. In: Jasper’s Basic Mechanisms of the Epilepsies, Fourth Edition. Edited by Noebels JL, Avoli M, Rogawski MA, Olsen RW, Delgado-Escueta AV, 4th edn. Bethesda (MD); 2012. Wong M, Crino PB: mTOR and Epileptogenesis in Developmental Brain Malformations. In: Jasper’s Basic Mechanisms of the Epilepsies, Fourth Edition. Edited by Noebels JL, Avoli M, Rogawski MA, Olsen RW, Delgado-Escueta AV, 4th edn. Bethesda (MD); 2012.
18.
go back to reference Grabiner BC, Nardi V, Birsoy K, Possemato R, Shen K, Sinha S, et al. A diverse array of cancer-associated MTOR mutations are hyperactivating and can predict rapamycin sensitivity. Cancer Discov. 2014;4(5):554–63.PubMedCentralCrossRefPubMed Grabiner BC, Nardi V, Birsoy K, Possemato R, Shen K, Sinha S, et al. A diverse array of cancer-associated MTOR mutations are hyperactivating and can predict rapamycin sensitivity. Cancer Discov. 2014;4(5):554–63.PubMedCentralCrossRefPubMed
19.
go back to reference Lee JH, Huynh M, Silhavy JL, Kim S, Dixon-Salazar T, Heiberg A, et al. De novo somatic mutations in components of the PI3K-AKT3-mTOR pathway cause hemimegalencephaly. Nat Genet. 2012;44(8):941–5.PubMedCentralCrossRefPubMed Lee JH, Huynh M, Silhavy JL, Kim S, Dixon-Salazar T, Heiberg A, et al. De novo somatic mutations in components of the PI3K-AKT3-mTOR pathway cause hemimegalencephaly. Nat Genet. 2012;44(8):941–5.PubMedCentralCrossRefPubMed
20.
go back to reference Epi KC, Epilepsy Phenome/Genome P, Allen AS, Berkovic SF, Cossette P, Delanty N, Dlugos D, et al. De novo mutations in epileptic encephalopathies. Nature. 2013;501(7466):217–21.CrossRef Epi KC, Epilepsy Phenome/Genome P, Allen AS, Berkovic SF, Cossette P, Delanty N, Dlugos D, et al. De novo mutations in epileptic encephalopathies. Nature. 2013;501(7466):217–21.CrossRef
21.
go back to reference Soden S, Saunders CJ, Willig LK, FArrow EG, Smith LD, Petrikin JE, et al. Effectiveness of exome and genome sequencing guided by acuity of illness for diagnosis of neurodevelopmental disorders. Sci Transl Med. 2014;6(265):265ra168.PubMedCentralCrossRefPubMed Soden S, Saunders CJ, Willig LK, FArrow EG, Smith LD, Petrikin JE, et al. Effectiveness of exome and genome sequencing guided by acuity of illness for diagnosis of neurodevelopmental disorders. Sci Transl Med. 2014;6(265):265ra168.PubMedCentralCrossRefPubMed
22.
go back to reference Baynam G, Overkov A, Davis M, Mina K, Schofield L, Allcock R, et al. A germline MTOR mutation in Aboriginal Australian siblings with intellectual disability, dysmorphism, macrocephaly, and small thoraces. Am J Med Genet A. 2015;167(7):1659–67.CrossRefPubMed Baynam G, Overkov A, Davis M, Mina K, Schofield L, Allcock R, et al. A germline MTOR mutation in Aboriginal Australian siblings with intellectual disability, dysmorphism, macrocephaly, and small thoraces. Am J Med Genet A. 2015;167(7):1659–67.CrossRefPubMed
23.
go back to reference Ghahramani N, Klein S, Ghahremani S, Lee H, Strom S, Deignan J, et al. Activating Mutations in mTOR Cause Human Overgrowth Associated with Macrocephaly, Intellectual Disability, and Distinct Dysmorphic Features. In: ACMG Annual Clinical Genetics Meeting. Salt Lake City: American College of Medical Genetics and Genomics; 2015. Ghahramani N, Klein S, Ghahremani S, Lee H, Strom S, Deignan J, et al. Activating Mutations in mTOR Cause Human Overgrowth Associated with Macrocephaly, Intellectual Disability, and Distinct Dysmorphic Features. In: ACMG Annual Clinical Genetics Meeting. Salt Lake City: American College of Medical Genetics and Genomics; 2015.
24.
go back to reference Gnirke A, Melnikov A, Maguire J, Rogov P, LeProust EM, Brockman W, et al. Solution hybrid selection with ultra-long oligonucleotides for massively parallel targeted sequencing. Nat Biotechnol. 2009;27(2):182–9.PubMedCentralCrossRefPubMed Gnirke A, Melnikov A, Maguire J, Rogov P, LeProust EM, Brockman W, et al. Solution hybrid selection with ultra-long oligonucleotides for massively parallel targeted sequencing. Nat Biotechnol. 2009;27(2):182–9.PubMedCentralCrossRefPubMed
25.
go back to reference Bainbridge MN, Wang M, Burgess DL, Kovar C, Rodesch MJ, D'Ascenzo M, Kitzman J, Wu YQ, Newsham I, Richmond TA, et al. Whole exome capture in solution with 3 Gbp of data. Genome Biol. 11(6):R62. http://www.genomebiology.com. Bainbridge MN, Wang M, Burgess DL, Kovar C, Rodesch MJ, D'Ascenzo M, Kitzman J, Wu YQ, Newsham I, Richmond TA, et al. Whole exome capture in solution with 3 Gbp of data. Genome Biol. 11(6):R62. http://​www.​genomebiology.​com.
26.
go back to reference Farwell KD, Shahmirzadi L, El-Khechen D, Powis Z, Chao EC, Tippin Davis B, Baxter RM, Zeng W, Mroske C, Parra MC et al.: Enhanced utility of family-centered diagnostic exome sequencing with inheritance model–based analysis: results from 500 unselected families with undiagnosed genetic conditions. Genet Med 2014:1–9 Farwell KD, Shahmirzadi L, El-Khechen D, Powis Z, Chao EC, Tippin Davis B, Baxter RM, Zeng W, Mroske C, Parra MC et al.: Enhanced utility of family-centered diagnostic exome sequencing with inheritance model–based analysis: results from 500 unselected families with undiagnosed genetic conditions. Genet Med 2014:1–9
27.
go back to reference Ye K, Schulz MH, Long Q, Apweiler R, Ning Z. Pindel: a pattern growth approach to detect break points of large deletions and medium sized insertions from paired-end short reads. Bioinformatics. 2009;25(21):2865–71.PubMedCentralCrossRefPubMed Ye K, Schulz MH, Long Q, Apweiler R, Ning Z. Pindel: a pattern growth approach to detect break points of large deletions and medium sized insertions from paired-end short reads. Bioinformatics. 2009;25(21):2865–71.PubMedCentralCrossRefPubMed
28.
29.
go back to reference Sherry ST, Ward MH, Kholodov M, Baker J, Phan L, Smigielski EM, et al. dbSNP: the NCBI database of genetic variation. Nucleic Acids Res. 2001;29(1):308–11.PubMedCentralCrossRefPubMed Sherry ST, Ward MH, Kholodov M, Baker J, Phan L, Smigielski EM, et al. dbSNP: the NCBI database of genetic variation. Nucleic Acids Res. 2001;29(1):308–11.PubMedCentralCrossRefPubMed
30.
go back to reference 1000 Genomes Project C. A map of human genome variation from population-scale sequencing. Nature. 2010;467(7319):1061–73.CrossRef 1000 Genomes Project C. A map of human genome variation from population-scale sequencing. Nature. 2010;467(7319):1061–73.CrossRef
31.
go back to reference International HapMap C. The International HapMap Project. Nature. 2003;426(6968):789–96.CrossRef International HapMap C. The International HapMap Project. Nature. 2003;426(6968):789–96.CrossRef
32.
go back to reference Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P, et al. A method and server for predicting damaging missense mutations. Nat Methods. 2010;7(4):248–9.PubMedCentralCrossRefPubMed Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P, et al. A method and server for predicting damaging missense mutations. Nat Methods. 2010;7(4):248–9.PubMedCentralCrossRefPubMed
33.
go back to reference Kumar P, Henikoff S, Ng PC. Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nat Protoc. 2009;4(7):1073–81.CrossRefPubMed Kumar P, Henikoff S, Ng PC. Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nat Protoc. 2009;4(7):1073–81.CrossRefPubMed
34.
35.
go back to reference Tsai MF, Lin YJ, Cheng YC, Lee KH, Huang CC, Chen YT, et al. PrimerZ: streamlined primer design for promoters, exons and human SNPs. Nucleic Acids Res. 2007;35(Web Server issue):W63–65.PubMedCentralCrossRefPubMed Tsai MF, Lin YJ, Cheng YC, Lee KH, Huang CC, Chen YT, et al. PrimerZ: streamlined primer design for promoters, exons and human SNPs. Nucleic Acids Res. 2007;35(Web Server issue):W63–65.PubMedCentralCrossRefPubMed
36.
37.
go back to reference Al-Owain M, Kaya N, Al-Zaidan H, Al-Hashmi N, Al-Bakheet A, Al-Muhaizea M, et al. Novel intragenic deletion in OPHN1 in a family causing XLMR with cerebellar hypoplasia and distinctive facial appearance. Clin Genet. 2011;79(4):363–70.CrossRefPubMed Al-Owain M, Kaya N, Al-Zaidan H, Al-Hashmi N, Al-Bakheet A, Al-Muhaizea M, et al. Novel intragenic deletion in OPHN1 in a family causing XLMR with cerebellar hypoplasia and distinctive facial appearance. Clin Genet. 2011;79(4):363–70.CrossRefPubMed
38.
go back to reference Shang YC, Chong ZZ, Wang S, Maiese K. Erythropoietin and Wnt1 govern pathways of mTOR, Apaf-1, and XIAP in inflammatory microglia. Curr Neurovasc Res. 2011;8(4):270–85.PubMedCentralCrossRefPubMed Shang YC, Chong ZZ, Wang S, Maiese K. Erythropoietin and Wnt1 govern pathways of mTOR, Apaf-1, and XIAP in inflammatory microglia. Curr Neurovasc Res. 2011;8(4):270–85.PubMedCentralCrossRefPubMed
39.
go back to reference Smrz D, Kim MS, Zhang S, Mock BA, Smrzova S, DuBois W, et al. mTORC1 and mTORC2 differentially regulate homeostasis of neoplastic and non-neoplastic human mast cells. Blood. 2011;118(26):6803–13.PubMedCentralCrossRefPubMed Smrz D, Kim MS, Zhang S, Mock BA, Smrzova S, DuBois W, et al. mTORC1 and mTORC2 differentially regulate homeostasis of neoplastic and non-neoplastic human mast cells. Blood. 2011;118(26):6803–13.PubMedCentralCrossRefPubMed
40.
go back to reference Halova I, Draberova L, Draber P. Mast cell chemotaxis - chemoattractants and signaling pathways. Frontiers Immunology. 2012;3:119.CrossRef Halova I, Draberova L, Draber P. Mast cell chemotaxis - chemoattractants and signaling pathways. Frontiers Immunology. 2012;3:119.CrossRef
41.
42.
43.
go back to reference Angelidou A, Francis K, Vasiadi M, Alysandratos KD, Zhang B, Theoharides A, et al. Neurotensin is increased in serum of young children with autistic disorder. J Neuroinflammation. 2010;7:48.PubMedCentralCrossRefPubMed Angelidou A, Francis K, Vasiadi M, Alysandratos KD, Zhang B, Theoharides A, et al. Neurotensin is increased in serum of young children with autistic disorder. J Neuroinflammation. 2010;7:48.PubMedCentralCrossRefPubMed
44.
go back to reference Dyment DA, Smith AC, Alcantara D, Schwartzentruber JA, Basel-Vanagaite L, Curry CJ, et al. Mutations in PIK3R1 cause SHORT syndrome. Am J Hum Genet. 2013;93(1):158–66.PubMedCentralCrossRefPubMed Dyment DA, Smith AC, Alcantara D, Schwartzentruber JA, Basel-Vanagaite L, Curry CJ, et al. Mutations in PIK3R1 cause SHORT syndrome. Am J Hum Genet. 2013;93(1):158–66.PubMedCentralCrossRefPubMed
45.
go back to reference Sellitto C, Li L, Gao J, Robinson ML, Lin RZ, Mathias RT, et al. AKT activation promotes PTEN hamartoma tumor syndrome-associated cataract development. J Clin Invest. 2013;123(12):5401–9.PubMedCentralCrossRefPubMed Sellitto C, Li L, Gao J, Robinson ML, Lin RZ, Mathias RT, et al. AKT activation promotes PTEN hamartoma tumor syndrome-associated cataract development. J Clin Invest. 2013;123(12):5401–9.PubMedCentralCrossRefPubMed
47.
go back to reference Ohne Y, Takahara T, Hatakeyama R, Matsuzaki T, Noda M, Mizushima N, et al. Isolation of hyperactive mutants of mammalian target of rapamycin. J Biol Chem. 2008;283(46):31861–70.CrossRefPubMed Ohne Y, Takahara T, Hatakeyama R, Matsuzaki T, Noda M, Mizushima N, et al. Isolation of hyperactive mutants of mammalian target of rapamycin. J Biol Chem. 2008;283(46):31861–70.CrossRefPubMed
49.
go back to reference Smith LD, Saunders CJ, Dinwiddie DL, Atherton AM, Miller NA, Soden SE, et al. Exome Sequencing Reveals De Novo Germline Mutation of the Mammalian Target of Rapamycin (MTOR) in a Patient with Megalencephaly and Intractable Seizures. J Genomes Exomes. 2013;2:63–72. Smith LD, Saunders CJ, Dinwiddie DL, Atherton AM, Miller NA, Soden SE, et al. Exome Sequencing Reveals De Novo Germline Mutation of the Mammalian Target of Rapamycin (MTOR) in a Patient with Megalencephaly and Intractable Seizures. J Genomes Exomes. 2013;2:63–72.
Metadata
Title
Germline activating MTOR mutation arising through gonadal mosaicism in two brothers with megalencephaly and neurodevelopmental abnormalities
Authors
Cameron Mroske
Kristen Rasmussen
Deepali N. Shinde
Robert Huether
Zoe Powis
Hsiao-Mei Lu
Ruth M. Baxter
Elizabeth McPherson
Sha Tang
Publication date
01-12-2015
Publisher
BioMed Central
Published in
BMC Medical Genetics / Issue 1/2015
Electronic ISSN: 1471-2350
DOI
https://doi.org/10.1186/s12881-015-0240-8

Other articles of this Issue 1/2015

BMC Medical Genetics 1/2015 Go to the issue