Skip to main content
Top
Published in: BMC Infectious Diseases 1/2018

Open Access 01-12-2018 | Research article

Genomic sequencing is required for identification of tuberculosis transmission in Hawaii

Authors: Kent J. Koster, Angela Largen, Jeffrey T. Foster, Kevin P. Drees, Lishi Qian, Ed Desmond, Xuehua Wan, Shaobin Hou, James T. Douglas

Published in: BMC Infectious Diseases | Issue 1/2018

Login to get access

Abstract

Background

Tuberculosis (TB) caused an estimated 1.4 million deaths and 10.4 million new cases globally in 2015. TB rates in the United States continue to steadily decline, yet rates in the State of Hawaii are perennially among the highest in the nation due to a continuous influx of immigrants from the Western Pacific and Asia. TB in Hawaii is composed of a unique distribution of genetic lineages, with the Beijing and Manila families of Mycobacterium tuberculosis (Mtb) comprising over two-thirds of TB cases. Standard fingerprinting methods (spoligotyping plus 24-loci Mycobacterial Interspersed Repetitive Units-Variable Number Tandem Repeats [MIRU-VNTR] fingerprinting) perform poorly when used to identify actual transmission clusters composed of isolates from these two families. Those typing methods typically group isolates from these families into large clusters of non-linked isolates with identical fingerprints. Next-generation whole-genome sequencing (WGS) provides a new tool for molecular epidemiology that can resolve clusters of isolates with identical spoligotyping and MIRU-VNTR fingerprints.

Methods

We performed WGS and SNP analysis and evaluated epidemiological data to investigate 19 apparent TB transmission clusters in Hawaii from 2003 to 2017 in order to assess WGS’ ability to resolve putative Mtb clusters from the Beijing and Manila families. This project additionally investigated MIRU-VNTR allele prevalence to determine why standard Mtb fingerprinting fails to usefully distinguish actual transmission clusters from these two Mtb families.

Results

WGS excluded transmission events in seven of these putative clusters, confirmed transmission in eight, and identified both transmission-linked and non-linked isolates in four. For epidemiologically identified clusters, while the sensitivity of MIRU-VNTR fingerprinting for identifying actual transmission clusters was found to be 100%, its specificity was only 28.6% relative to WGS. We identified that the Beijing and Manila families’ significantly lower Shannon evenness of MIRU-VNTR allele distributions than lineage 4 was the cause of standard fingerprinting’s poor performance when identifying transmission in Beijing and Manila family clusters.

Conclusions

This study demonstrated that WGS is necessary for epidemiological investigation of TB in Hawaii and the Pacific.
Appendix
Available only for authorised users
Literature
2.
go back to reference Stewart RJ, Tsang CA, Pratt RH, Price SF, Langer AJ. Tuberculosis — United States, 2017. Morb Mortal Wkly Rep. 2018;67:317–23.CrossRef Stewart RJ, Tsang CA, Pratt RH, Price SF, Langer AJ. Tuberculosis — United States, 2017. Morb Mortal Wkly Rep. 2018;67:317–23.CrossRef
3.
go back to reference Gagneux S. Ecology and evolution of Mycobacterium tuberculosis. Nat Rev Microbiol. 2018;16(4):202–13. Gagneux S. Ecology and evolution of Mycobacterium tuberculosis. Nat Rev Microbiol. 2018;16(4):202–13.
5.
go back to reference Bamrah S, Desmond E, Ghosh S, France AM, Kammerer JS, Cowan LS, et al. Molecular epidemiology of Mycobacterium tuberculosis in the United States–affiliated Pacific Islands. Asia Pac J Public Health. 2014;26(1):77–84.CrossRefPubMed Bamrah S, Desmond E, Ghosh S, France AM, Kammerer JS, Cowan LS, et al. Molecular epidemiology of Mycobacterium tuberculosis in the United States–affiliated Pacific Islands. Asia Pac J Public Health. 2014;26(1):77–84.CrossRefPubMed
6.
go back to reference Douglas JT, Qian L, Montoya J, Musser J, Van Embden J, Van Soolingen D, et al. Characterization of the Manila family of Mycobacterium tuberculosis. J Clin Microbiol. 2003;41:2723–6.CrossRefPubMedPubMedCentral Douglas JT, Qian L, Montoya J, Musser J, Van Embden J, Van Soolingen D, et al. Characterization of the Manila family of Mycobacterium tuberculosis. J Clin Microbiol. 2003;41:2723–6.CrossRefPubMedPubMedCentral
7.
go back to reference van Soolingen D, Qian L, de Haas PE, Douglas JT, Traore H, Portaels F, et al. Predominance of a single genotype of Mycobacterium tuberculosis in countries of East Asia. J Clin Microbiol. 1995;33:3234–8.PubMedPubMedCentral van Soolingen D, Qian L, de Haas PE, Douglas JT, Traore H, Portaels F, et al. Predominance of a single genotype of Mycobacterium tuberculosis in countries of East Asia. J Clin Microbiol. 1995;33:3234–8.PubMedPubMedCentral
8.
go back to reference Kamerbeek J, Schouls L, Kolk A, van Agterveld M, van Soolingen D, et al. Simultaneous detection and strain differentiation of Mycobacterium tuberculosis for diagnosis and epidemiology. J Clin Microbiol. 1997;35:907–14.PubMedPubMedCentral Kamerbeek J, Schouls L, Kolk A, van Agterveld M, van Soolingen D, et al. Simultaneous detection and strain differentiation of Mycobacterium tuberculosis for diagnosis and epidemiology. J Clin Microbiol. 1997;35:907–14.PubMedPubMedCentral
9.
go back to reference Gagneux S, DeRiemer K, Van T, Kato-Maeda M, de Jong BC, Narayanan S, et al. Variable host–pathogen compatibility in Mycobacterium tuberculosis. Proc Natl Acad Sci U S A. 2006;103(8):2869–73.CrossRefPubMedPubMedCentral Gagneux S, DeRiemer K, Van T, Kato-Maeda M, de Jong BC, Narayanan S, et al. Variable host–pathogen compatibility in Mycobacterium tuberculosis. Proc Natl Acad Sci U S A. 2006;103(8):2869–73.CrossRefPubMedPubMedCentral
10.
go back to reference Comas I, Homolka S, Niemann S, Gagneux S. Genotyping of Genetically Monomorphic Bacteria: DNA Sequencing in Mycobacterium tuberculosis Highlights the Limitations of Current Methodologies. PLoS One. 2009;4(11):e7815.CrossRefPubMedPubMedCentral Comas I, Homolka S, Niemann S, Gagneux S. Genotyping of Genetically Monomorphic Bacteria: DNA Sequencing in Mycobacterium tuberculosis Highlights the Limitations of Current Methodologies. PLoS One. 2009;4(11):e7815.CrossRefPubMedPubMedCentral
11.
go back to reference van Embden J, Cave M, Crawford J, Dale J, Eisenach K, Gicquel B, et al. Strain identification of Mycobacterium tuberculosis by DNA fingerprinting: recommendations for a standardized methodology. J Clin Microbiol. 1993;31:406–9.PubMedPubMedCentral van Embden J, Cave M, Crawford J, Dale J, Eisenach K, Gicquel B, et al. Strain identification of Mycobacterium tuberculosis by DNA fingerprinting: recommendations for a standardized methodology. J Clin Microbiol. 1993;31:406–9.PubMedPubMedCentral
12.
go back to reference Supply P, Allix C, Lesjean S, Cardoso-Oelemann M, Rusch-Gerdes S, Willery E, et al. Proposal for standardization of optimized mycobacterial interspersed repetitive unit–variable-number tandem repeat typing of Mycobacterium tuberculosis. J Clin Microbiol. 2006;44:4498–510.CrossRefPubMedPubMedCentral Supply P, Allix C, Lesjean S, Cardoso-Oelemann M, Rusch-Gerdes S, Willery E, et al. Proposal for standardization of optimized mycobacterial interspersed repetitive unit–variable-number tandem repeat typing of Mycobacterium tuberculosis. J Clin Microbiol. 2006;44:4498–510.CrossRefPubMedPubMedCentral
13.
go back to reference Cowan L, Diem L, Monson T, Wand P, Temporado D, Oemig T, Crawford J. Evaluation of a two-step approach for large-scale, prospective genotyping of Mycobacterium tuberculosis isolates in the United States. J Clin Microbiol. 2005;43:688–95.CrossRefPubMedPubMedCentral Cowan L, Diem L, Monson T, Wand P, Temporado D, Oemig T, Crawford J. Evaluation of a two-step approach for large-scale, prospective genotyping of Mycobacterium tuberculosis isolates in the United States. J Clin Microbiol. 2005;43:688–95.CrossRefPubMedPubMedCentral
15.
go back to reference Wyllie DH, Davidson JA, Grace Smith E, Rathod P, Crook DW, Peto TEA, Robinson E, Walker T, Campbell C. A quantitative evaluation of MIRU-VNTR typing against whole-genome sequencing for identifying Mycobacterium tuberculosis transmission: a prospective observational cohort study. EBioMedicine. 2018;34:122–30.CrossRefPubMedPubMedCentral Wyllie DH, Davidson JA, Grace Smith E, Rathod P, Crook DW, Peto TEA, Robinson E, Walker T, Campbell C. A quantitative evaluation of MIRU-VNTR typing against whole-genome sequencing for identifying Mycobacterium tuberculosis transmission: a prospective observational cohort study. EBioMedicine. 2018;34:122–30.CrossRefPubMedPubMedCentral
16.
go back to reference Roetzer A, Schuback S, Diel R, Gasau F, Ubben T, di Nauta A, et al. Evaluation of Mycobacterium tuberculosis typing methods in a 4-year study in Schleswig-Holstein, Northern Germany. J Clin Microbiol. 2011;49:4173–8.CrossRefPubMedPubMedCentral Roetzer A, Schuback S, Diel R, Gasau F, Ubben T, di Nauta A, et al. Evaluation of Mycobacterium tuberculosis typing methods in a 4-year study in Schleswig-Holstein, Northern Germany. J Clin Microbiol. 2011;49:4173–8.CrossRefPubMedPubMedCentral
17.
go back to reference Guo YL, Liu Y, Wang SM, Li CY, Jiang GL, Shi GL, et al. Genotyping and drug resistance patterns of Mycobacterium tuberculosis strains in five provinces of China. Int J Tuberc Lung Dis. 2011;15:789–94.CrossRefPubMed Guo YL, Liu Y, Wang SM, Li CY, Jiang GL, Shi GL, et al. Genotyping and drug resistance patterns of Mycobacterium tuberculosis strains in five provinces of China. Int J Tuberc Lung Dis. 2011;15:789–94.CrossRefPubMed
18.
go back to reference Hanekom M, van der Spuy GD, Gey van Pittius NC, CR ME, Hoek KG, Ndabambi SL, et al. Discordance between mycobacterial interspersed repetitive-unit-variable-number tandem-repeat typing and IS6110 restriction fragment length polymorphism genotyping for analysis of Mycobacterium tuberculosis Beijing strains in a setting of high incidence of tuberculosis. J Clin Microbiol. 2008;46:3338–45.CrossRefPubMedPubMedCentral Hanekom M, van der Spuy GD, Gey van Pittius NC, CR ME, Hoek KG, Ndabambi SL, et al. Discordance between mycobacterial interspersed repetitive-unit-variable-number tandem-repeat typing and IS6110 restriction fragment length polymorphism genotyping for analysis of Mycobacterium tuberculosis Beijing strains in a setting of high incidence of tuberculosis. J Clin Microbiol. 2008;46:3338–45.CrossRefPubMedPubMedCentral
19.
go back to reference Kam KM, Yip CW, Tse LW, Wong KL, Lam TK, Kremer K, et al. Utility of mycobacterial interspersed repetitive unit typing for differentiating multidrug-resistant Mycobacterium tuberculosis isolates of the Beijing family. J Clin Microbiol. 2005;43:306–13.CrossRefPubMedPubMedCentral Kam KM, Yip CW, Tse LW, Wong KL, Lam TK, Kremer K, et al. Utility of mycobacterial interspersed repetitive unit typing for differentiating multidrug-resistant Mycobacterium tuberculosis isolates of the Beijing family. J Clin Microbiol. 2005;43:306–13.CrossRefPubMedPubMedCentral
20.
go back to reference Kam K, Yip C, Tse L, Leung K, Wong K, Ko W, et al. Optimization of variable number tandem repeat typing set for differentiating Mycobacterium tuberculosis strains in the Beijing family. FEMS Microbiol Lett. 2006;256:258–65.CrossRefPubMed Kam K, Yip C, Tse L, Leung K, Wong K, Ko W, et al. Optimization of variable number tandem repeat typing set for differentiating Mycobacterium tuberculosis strains in the Beijing family. FEMS Microbiol Lett. 2006;256:258–65.CrossRefPubMed
21.
go back to reference de Steenwinkel J, ten Kate M, de Knegt G, Kremer K, Aarnoutse R, Boeree M, et al. Drug susceptibility of Mycobacterium tuberculosis Beijing genotype and association with MDR TB. Emerg Infect Dis. 2012;18(4):660–3.CrossRefPubMedPubMedCentral de Steenwinkel J, ten Kate M, de Knegt G, Kremer K, Aarnoutse R, Boeree M, et al. Drug susceptibility of Mycobacterium tuberculosis Beijing genotype and association with MDR TB. Emerg Infect Dis. 2012;18(4):660–3.CrossRefPubMedPubMedCentral
22.
go back to reference Buu T, van Soolingen D, Huyen M, Lan N, Quy H, Tiemersma E, et al. Increased transmission of Mycobacterium tuberculosis Beijing genotype strains associated with resistance to streptomycin: a population-based study. PLoS One. 2012;7(8):e42323.CrossRefPubMedPubMedCentral Buu T, van Soolingen D, Huyen M, Lan N, Quy H, Tiemersma E, et al. Increased transmission of Mycobacterium tuberculosis Beijing genotype strains associated with resistance to streptomycin: a population-based study. PLoS One. 2012;7(8):e42323.CrossRefPubMedPubMedCentral
23.
go back to reference Sharma A, Hill A, Kurbatova E, van der Walt M, Kvasnovsky C, Tupasi TE, et al. Estimating the future burden of multidrug-resistant and extensively drug-resistant tuberculosis in India, the Philippines, Russia, and South Africa: a mathematical modelling study. Lancet Infect Dis. 2017. https://doi.org/10.1016/S1473-3099(17)30247-5. Sharma A, Hill A, Kurbatova E, van der Walt M, Kvasnovsky C, Tupasi TE, et al. Estimating the future burden of multidrug-resistant and extensively drug-resistant tuberculosis in India, the Philippines, Russia, and South Africa: a mathematical modelling study. Lancet Infect Dis. 2017. https://​doi.​org/​10.​1016/​S1473-3099(17)30247-5.
24.
go back to reference Schürch A, Kremer K, Daviena O, Kiers A, Boeree MJ, Siezen RJ, et al. High-resolution typing by integration of genome sequencing data in a large tuberculosis cluster. J Clin Microbiol. 2010;48(9):3403–6.CrossRefPubMedPubMedCentral Schürch A, Kremer K, Daviena O, Kiers A, Boeree MJ, Siezen RJ, et al. High-resolution typing by integration of genome sequencing data in a large tuberculosis cluster. J Clin Microbiol. 2010;48(9):3403–6.CrossRefPubMedPubMedCentral
25.
go back to reference Mokrousov I, Chernyaeva E, Vyazovaya A, Sinkov V, Zhuravlev V, Narvskaya O. Next-generation sequencing of Mycobacterium tuberculosis. Emerg Infect Dis. 2016;22(6):1127–9.CrossRefPubMedPubMedCentral Mokrousov I, Chernyaeva E, Vyazovaya A, Sinkov V, Zhuravlev V, Narvskaya O. Next-generation sequencing of Mycobacterium tuberculosis. Emerg Infect Dis. 2016;22(6):1127–9.CrossRefPubMedPubMedCentral
26.
go back to reference Gardy J, Johnston JC, Ho Sui S, Cook VJ, Shah L, Brodkin E, et al. Whole-genome sequencing and social-network analysis of a tuberculosis outbreak. N Engl J Med. 2011;364:730–9.CrossRefPubMed Gardy J, Johnston JC, Ho Sui S, Cook VJ, Shah L, Brodkin E, et al. Whole-genome sequencing and social-network analysis of a tuberculosis outbreak. N Engl J Med. 2011;364:730–9.CrossRefPubMed
27.
go back to reference Kato-Maeda M, Ho C, Passarelli B, Banaei N, Grinsdale J, Flores L, et al. Use of whole genome sequencing to determine the microevolution of Mycobacterium tuberculosis during an outbreak. PLoS One. 2013;8(3):e58235.CrossRefPubMedPubMedCentral Kato-Maeda M, Ho C, Passarelli B, Banaei N, Grinsdale J, Flores L, et al. Use of whole genome sequencing to determine the microevolution of Mycobacterium tuberculosis during an outbreak. PLoS One. 2013;8(3):e58235.CrossRefPubMedPubMedCentral
28.
go back to reference Walker TM, Ip CL, Harrell RH, Evans JT, Kapatai G, Dedicoat MJ, et al. Whole-genome sequencing to delineate Mycobacterium tuberculosis outbreaks: a retrospective observational study. Lancet Infect Dis. 2013;13:137–46.CrossRefPubMedPubMedCentral Walker TM, Ip CL, Harrell RH, Evans JT, Kapatai G, Dedicoat MJ, et al. Whole-genome sequencing to delineate Mycobacterium tuberculosis outbreaks: a retrospective observational study. Lancet Infect Dis. 2013;13:137–46.CrossRefPubMedPubMedCentral
29.
go back to reference Wan X, Koster K, Qian L, Desmond E, Brostrom R, et al. Genomic analyses of the ancestral Manila family of Mycobacterium tuberculosis. PLoS One. 2017;12(4):e0175330.CrossRefPubMedPubMedCentral Wan X, Koster K, Qian L, Desmond E, Brostrom R, et al. Genomic analyses of the ancestral Manila family of Mycobacterium tuberculosis. PLoS One. 2017;12(4):e0175330.CrossRefPubMedPubMedCentral
31.
go back to reference Brudey K, Driscoll JR, Rigouts L, Prodinger WM, Gori A, Al-Hajoj SA, et al. Mycobacterium tuberculosis complex genetic diversity: mining the fourth international spoligotyping database (SpolDB4) for classification, population genetics and epidemiology. BMC Microbiol. 2006;6:23.CrossRefPubMedPubMedCentral Brudey K, Driscoll JR, Rigouts L, Prodinger WM, Gori A, Al-Hajoj SA, et al. Mycobacterium tuberculosis complex genetic diversity: mining the fourth international spoligotyping database (SpolDB4) for classification, population genetics and epidemiology. BMC Microbiol. 2006;6:23.CrossRefPubMedPubMedCentral
32.
go back to reference Sahl JW, Lemmer D, Travis J, Schupp JM, Gillece JD, Aziz M, et al. NASP: an accurate, rapid method for the identification of SNPs in WGS datasets that supports flexible input and output formats. Microbial Genomics. 2016;2:e000074.CrossRefPubMedPubMedCentral Sahl JW, Lemmer D, Travis J, Schupp JM, Gillece JD, Aziz M, et al. NASP: an accurate, rapid method for the identification of SNPs in WGS datasets that supports flexible input and output formats. Microbial Genomics. 2016;2:e000074.CrossRefPubMedPubMedCentral
34.
go back to reference McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, et al. The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010;20:1297–303.CrossRefPubMedPubMedCentral McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, et al. The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010;20:1297–303.CrossRefPubMedPubMedCentral
35.
go back to reference Nascimento M, Sousa A, Francisco AP, Carriço JA, Vaz C. PHYLOViZ 2.0: providing scalable data integration and visualization for multiple phylogenetic inference methods. Bioinformatics. 2017;33(1):128–9.CrossRefPubMed Nascimento M, Sousa A, Francisco AP, Carriço JA, Vaz C. PHYLOViZ 2.0: providing scalable data integration and visualization for multiple phylogenetic inference methods. Bioinformatics. 2017;33(1):128–9.CrossRefPubMed
36.
go back to reference Francisco AP, Bugalho M, Ramirez M, Carriço JA. Global optimal eBURST analysis of multilocus typing data using a graphic matroid approach. BMC Bioinformatics. 2009;10:152.CrossRefPubMedPubMedCentral Francisco AP, Bugalho M, Ramirez M, Carriço JA. Global optimal eBURST analysis of multilocus typing data using a graphic matroid approach. BMC Bioinformatics. 2009;10:152.CrossRefPubMedPubMedCentral
37.
go back to reference Koster K, Qian L, Flores C, Desmond E, Brostrom R, Foster J, et al. Cluster identification and analysis of clinical Mycobacterium tuberculosis isolates in the state of Hawaii. Washington, DC: Abstr 115th gen meet am Soc Microbiol. American Society for Microbiology; 2015. Koster K, Qian L, Flores C, Desmond E, Brostrom R, Foster J, et al. Cluster identification and analysis of clinical Mycobacterium tuberculosis isolates in the state of Hawaii. Washington, DC: Abstr 115th gen meet am Soc Microbiol. American Society for Microbiology; 2015.
39.
go back to reference Roetzer A, Diel R, Kohl TA, Rückert C, Nübel U, Blom J, et al. Whole genome sequencing versus traditional genotyping for investigation of a Mycobacterium tuberculosis outbreak: a longitudinal molecular epidemiological study. PLoS Med. 2013;10(2):e1001387.CrossRefPubMedPubMedCentral Roetzer A, Diel R, Kohl TA, Rückert C, Nübel U, Blom J, et al. Whole genome sequencing versus traditional genotyping for investigation of a Mycobacterium tuberculosis outbreak: a longitudinal molecular epidemiological study. PLoS Med. 2013;10(2):e1001387.CrossRefPubMedPubMedCentral
40.
42.
go back to reference Andrews ES, Arcus VL. The mycobacterial PhoH2 proteins are type II toxin antitoxins coupled to RNA helicase domains. Tuberculosis (Edinb). 2015;95(4):385–94.CrossRef Andrews ES, Arcus VL. The mycobacterial PhoH2 proteins are type II toxin antitoxins coupled to RNA helicase domains. Tuberculosis (Edinb). 2015;95(4):385–94.CrossRef
Metadata
Title
Genomic sequencing is required for identification of tuberculosis transmission in Hawaii
Authors
Kent J. Koster
Angela Largen
Jeffrey T. Foster
Kevin P. Drees
Lishi Qian
Ed Desmond
Xuehua Wan
Shaobin Hou
James T. Douglas
Publication date
01-12-2018
Publisher
BioMed Central
Published in
BMC Infectious Diseases / Issue 1/2018
Electronic ISSN: 1471-2334
DOI
https://doi.org/10.1186/s12879-018-3502-1

Other articles of this Issue 1/2018

BMC Infectious Diseases 1/2018 Go to the issue
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discuss last year's major advances in heart failure and cardiomyopathies.