Skip to main content
Top
Published in: Virology Journal 1/2021

Open Access 01-12-2021 | Research

Genomic and functional characterization of five novel Salmonella-targeting bacteriophages

Authors: Marta Kuźmińska-Bajor, Paulina Śliwka, Maciej Ugorski, Paweł Korzeniowski, Aneta Skaradzińska, Maciej Kuczkowski, Magdalena Narajaczyk, Alina Wieliczko, Rafał Kolenda

Published in: Virology Journal | Issue 1/2021

Login to get access

Abstract

Background

The host-unrestricted, non-typhoidal Salmonella enterica serovar Enteritidis (S. Enteritidis) and the serovar Typhimurium (S. Typhimurium) are major causative agents of food-borne gastroenteritis, and the host-restricted Salmonella enterica serovar Gallinarum (S. Gallinarum) is responsible for fowl typhoid. Increasing drug resistance in Salmonella contributes to the reduction of effective therapeutic and/or preventive options. Bacteriophages appear to be promising antibacterial tools, able to combat infectious diseases caused by a wide range of Salmonella strains belonging to both host-unrestricted and host-restricted Salmonella serovars.

Methods

In this study, five novel lytic Salmonella phages, named UPWr_S1-5, were isolated and characterized, including host range determination by plaque formation, morphology visualization with transmission electron microscopy, and establishment of physiological parameters. Moreover, phage genomes were sequenced, annotated and analyzed, and their genomes were compared with reference Salmonella phages by use of average nucleotide identity, phylogeny, dot plot, single nucleotide variation and protein function analysis.

Results

It was found that UPWr_S1-5 phages belong to the genus Jerseyvirus within the Siphoviridae family. All UPWr_S phages were found to efficiently infect various Salmonella serovars. Host range determination revealed differences in host infection profiles and exhibited ability to infect Salmonella enterica serovars such as Enteritidis, Gallinarum, Senftenberg, Stanley and Chester. The lytic life cycle of UPWr_S phages was confirmed using the mitomycin C test assay. Genomic analysis revealed that genomes of UPWr_S phages are composed of 51 core and 19 accessory genes, with 33 of all predicted genes having assigned functions. UPWr_S genome organization comparison revealed 3 kinds of genomes and mosaic structure. UPWr_S phages showed very high sequence similarity to each other, with more than 95% average nucleotide identity.

Conclusions

Five novel UPWr_S1-5 bacteriophages were isolated and characterized. They exhibit host lysis range within 5 different serovars and are efficient in lysis of both host-unrestricted and host-restricted Salmonella serovars. Therefore, because of their ability to infect various Salmonella serovars and lytic life cycle, UPWr_S1-5 phages can be considered as useful tools in biological control of salmonellosis.
Appendix
Available only for authorised users
Literature
1.
go back to reference Kuźmińska-Bajor M, Kuczkowski M, Grzymajło K, Wojciech Ł, Sabat M, Kisiela D, et al. Decreased colonization of chicks by Salmonella enterica serovar Gallinarum expressing mannose-sensitive FimH adhesin from Salmonella enterica serovar Enteritidis. Vet Microbiol. 2012;158. Kuźmińska-Bajor M, Kuczkowski M, Grzymajło K, Wojciech Ł, Sabat M, Kisiela D, et al. Decreased colonization of chicks by Salmonella enterica serovar Gallinarum expressing mannose-sensitive FimH adhesin from Salmonella enterica serovar Enteritidis. Vet Microbiol. 2012;158.
2.
go back to reference Gayet R, Bioley G, Rochereau N, Paul S, Corthésy B. Vaccination against salmonella infection: the mucosal way. Microbiol Mol Biol Rev. 2017;81. Gayet R, Bioley G, Rochereau N, Paul S, Corthésy B. Vaccination against salmonella infection: the mucosal way. Microbiol Mol Biol Rev. 2017;81.
3.
go back to reference Grzymajlo K, Ugorski M, Suchanski J, Kedzierska AE, Kolenda R, Jarzab A, et al. The Novel Type 1 Fimbriae FimH Receptor Calreticulin Plays a Role in Salmonella Host Specificity. Front Cell Infect Microbiol. 2017;7. Grzymajlo K, Ugorski M, Suchanski J, Kedzierska AE, Kolenda R, Jarzab A, et al. The Novel Type 1 Fimbriae FimH Receptor Calreticulin Plays a Role in Salmonella Host Specificity. Front Cell Infect Microbiol. 2017;7.
4.
go back to reference Antunes P, Mourão J, Campos J, Peixe L. Salmonellosis: the role of poultry meat. Clin Microbiol Infect. 2016;22. Antunes P, Mourão J, Campos J, Peixe L. Salmonellosis: the role of poultry meat. Clin Microbiol Infect. 2016;22.
5.
go back to reference Shivaning Karabasanavar N, Benakabhat Madhavaprasad C, Agalagandi Gopalakrishna S, Hiremath J, Shivanagowda Patil G, B Barbuddhe S. Prevalence of Salmonella serotypes S. Enteritidis and S. Typhimurium in poultry and poultry products. J Food Saf. 2020;40:e12852. Shivaning Karabasanavar N, Benakabhat Madhavaprasad C, Agalagandi Gopalakrishna S, Hiremath J, Shivanagowda Patil G, B Barbuddhe S. Prevalence of Salmonella serotypes S. Enteritidis and S. Typhimurium in poultry and poultry products. J Food Saf. 2020;40:e12852.
6.
go back to reference Shivaprasad HL. Fowl typhoid and pullorum disease. Rev Sci Tech l’OIE. 2000;19. Shivaprasad HL. Fowl typhoid and pullorum disease. Rev Sci Tech l’OIE. 2000;19.
7.
go back to reference Xiong W, Wang Y, Sun Y, Ma L, Zeng Q, Jiang X, et al. Antibiotic-mediated changes in the fecal microbiome of broiler chickens define the incidence of antibiotic resistance genes. Microbiome. 2018;6. Xiong W, Wang Y, Sun Y, Ma L, Zeng Q, Jiang X, et al. Antibiotic-mediated changes in the fecal microbiome of broiler chickens define the incidence of antibiotic resistance genes. Microbiome. 2018;6.
8.
go back to reference Cohen E, Davidovich M, Rokney A, Valinsky L, Rahav G, Gal‐Mor O. Emergence of new variants of antibiotic resistance genomic islands among multidrug‐resistant Salmonella enterica in poultry. Environ Microbiol. 2020;22. Cohen E, Davidovich M, Rokney A, Valinsky L, Rahav G, Gal‐Mor O. Emergence of new variants of antibiotic resistance genomic islands among multidrug‐resistant Salmonella enterica in poultry. Environ Microbiol. 2020;22.
9.
go back to reference Romero-Calle D, Guimarães Benevides R, Góes-Neto A, Billington C. Bacteriophages as Alternatives to Antibiotics in Clinical Care. Antibiotics. 2019;8. Romero-Calle D, Guimarães Benevides R, Góes-Neto A, Billington C. Bacteriophages as Alternatives to Antibiotics in Clinical Care. Antibiotics. 2019;8.
10.
go back to reference Lewis R, Hill C. Overcoming barriers to phage application in food and feed. Curr Opin Biotechnol. 2020;61. Lewis R, Hill C. Overcoming barriers to phage application in food and feed. Curr Opin Biotechnol. 2020;61.
11.
go back to reference Huh H, Wong S, St. Jean J, Slavcev R. Bacteriophage interactions with mammalian tissue: Therapeutic applications. Adv Drug Deliv Rev. 2019;145. Huh H, Wong S, St. Jean J, Slavcev R. Bacteriophage interactions with mammalian tissue: Therapeutic applications. Adv Drug Deliv Rev. 2019;145.
12.
go back to reference Malik DJ, Sokolov IJ, Vinner GK, Mancuso F, Cinquerrui S, Vladisavljevic GT, et al. Formulation, stabilisation and encapsulation of bacteriophage for phage therapy. Adv Colloid Interface Sci. 2017;249. Malik DJ, Sokolov IJ, Vinner GK, Mancuso F, Cinquerrui S, Vladisavljevic GT, et al. Formulation, stabilisation and encapsulation of bacteriophage for phage therapy. Adv Colloid Interface Sci. 2017;249.
13.
go back to reference Principi N, Silvestri E, Esposito S. Advantages and Limitations of Bacteriophages for the Treatment of Bacterial Infections. Front Pharmacol. 2019;10. Principi N, Silvestri E, Esposito S. Advantages and Limitations of Bacteriophages for the Treatment of Bacterial Infections. Front Pharmacol. 2019;10.
14.
go back to reference Ackermann HW, Petrow S, Kasatiya SS. Unusual bacteriophages in Salmonella newport. J Virol. 1974;13. Ackermann HW, Petrow S, Kasatiya SS. Unusual bacteriophages in Salmonella newport. J Virol. 1974;13.
15.
go back to reference Sevilla-Navarro S, Catalá-Gregori P, Marin C. Salmonella Bacteriophage Diversity According to Most Prevalent Salmonella Serovars in Layer and Broiler Poultry Farms from Eastern Spain. Animals. 2020;10. Sevilla-Navarro S, Catalá-Gregori P, Marin C. Salmonella Bacteriophage Diversity According to Most Prevalent Salmonella Serovars in Layer and Broiler Poultry Farms from Eastern Spain. Animals. 2020;10.
16.
go back to reference Hyman P, Abedon ST. Bacteriophage Host Range and Bacterial Resistance. 2010. Hyman P, Abedon ST. Bacteriophage Host Range and Bacterial Resistance. 2010.
17.
go back to reference Li M, Lin H, Jing Y, Wang J. Broad-host-range Salmonella bacteriophage STP4-a and its potential application evaluation in poultry industry. Poult Sci. 2020;99. Li M, Lin H, Jing Y, Wang J. Broad-host-range Salmonella bacteriophage STP4-a and its potential application evaluation in poultry industry. Poult Sci. 2020;99.
18.
go back to reference Thanki AM, Brown N, Millard AD, Clokie MRJ. Genomic characterization of jumbo Salmonella phages that effectively target United Kingdom pig-associated Salmonella serotypes. Front Microbiol. 2019. Thanki AM, Brown N, Millard AD, Clokie MRJ. Genomic characterization of jumbo Salmonella phages that effectively target United Kingdom pig-associated Salmonella serotypes. Front Microbiol. 2019.
19.
go back to reference Bielke L, Higgins S, Donoghue A, Donoghue D, Hargis BM. Salmonella Host Range of Bacteriophages That Infect Multiple Genera. Poult Sci. 2007;86. Bielke L, Higgins S, Donoghue A, Donoghue D, Hargis BM. Salmonella Host Range of Bacteriophages That Infect Multiple Genera. Poult Sci. 2007;86.
20.
go back to reference Gambino M, Nørgaard Sørensen A, Ahern S, Smyrlis G, Gencay YE, Hendrix H, et al. Phage S144, a New Polyvalent Phage Infecting Salmonella spp. and Cronobacter sakazakii. Int J Mol Sci. 2020;21. Gambino M, Nørgaard Sørensen A, Ahern S, Smyrlis G, Gencay YE, Hendrix H, et al. Phage S144, a New Polyvalent Phage Infecting Salmonella spp. and Cronobacter sakazakii. Int J Mol Sci. 2020;21.
21.
go back to reference Oliveira A, Sillankorva S, Quinta R, Henriques A, Sereno R, Azeredo J. Isolation and characterization of bacteriophages for avian pathogenic E. coli strains. J Appl Microbiol. 2009;106. Oliveira A, Sillankorva S, Quinta R, Henriques A, Sereno R, Azeredo J. Isolation and characterization of bacteriophages for avian pathogenic E. coli strains. J Appl Microbiol. 2009;106.
22.
23.
go back to reference Kutter E. Phage Host Range and Efficiency of Plating. 2009. Kutter E. Phage Host Range and Efficiency of Plating. 2009.
24.
go back to reference Petsong K, Benjakul S, Chaturongakul S, Switt A, Vongkamjan K. Lysis Profiles of Salmonella Phages on Salmonella Isolates from Various Sources and Efficiency of a Phage Cocktail against S. Enteritidis and S. Typhimurium. Microorganisms. 2019;7. Petsong K, Benjakul S, Chaturongakul S, Switt A, Vongkamjan K. Lysis Profiles of Salmonella Phages on Salmonella Isolates from Various Sources and Efficiency of a Phage Cocktail against S. Enteritidis and S. Typhimurium. Microorganisms. 2019;7.
25.
go back to reference Großwendt A, Röglin H. Improved Analysis of Complete-Linkage Clustering. 2015. Großwendt A, Röglin H. Improved Analysis of Complete-Linkage Clustering. 2015.
26.
go back to reference Wickham H. ggplot2. New York, NY: Springer New York; 2009. Wickham H. ggplot2. New York, NY: Springer New York; 2009.
27.
go back to reference Owen S V., Wenner N, Canals R, Makumi A, Hammarlöf DL, Gordon MA, et al. Characterization of the prophage repertoire of African Salmonella Typhimurium ST313 reveals high levels of spontaneous induction of novel phage BTP1. Front Microbiol. 2017;8 FEB. Owen S V., Wenner N, Canals R, Makumi A, Hammarlöf DL, Gordon MA, et al. Characterization of the prophage repertoire of African Salmonella Typhimurium ST313 reveals high levels of spontaneous induction of novel phage BTP1. Front Microbiol. 2017;8 FEB.
28.
go back to reference Rahman M, Kim S, Kim SM, Seol SY, Kim J. Characterization of induced Staphylococcus aureus bacteriophage SAP-26 and its anti-biofilm activity with rifampicin. Biofouling. 2011;27. Rahman M, Kim S, Kim SM, Seol SY, Kim J. Characterization of induced Staphylococcus aureus bacteriophage SAP-26 and its anti-biofilm activity with rifampicin. Biofouling. 2011;27.
29.
go back to reference Yu YP, Gong T, Jost G, Liu WH, Ye DZ, Luo ZH. Isolation and characterization of five lytic bacteriophages infecting a Vibrio strain closely related to Vibrio owensii. FEMS Microbiol Lett. 2013;348:112–9.CrossRef Yu YP, Gong T, Jost G, Liu WH, Ye DZ, Luo ZH. Isolation and characterization of five lytic bacteriophages infecting a Vibrio strain closely related to Vibrio owensii. FEMS Microbiol Lett. 2013;348:112–9.CrossRef
30.
go back to reference Hadas H, Einav M, Fishov I, Zaritsky A. Bacteriophage T4 Development Depends on the Physiology of its Host Escherichia Coli. Microbiology. 1997;143. Hadas H, Einav M, Fishov I, Zaritsky A. Bacteriophage T4 Development Depends on the Physiology of its Host Escherichia Coli. Microbiology. 1997;143.
31.
go back to reference Wingett SW, Andrews S. FastQ Screen: A tool for multi-genome mapping and quality control. F1000Research. 2018;7. Wingett SW, Andrews S. FastQ Screen: A tool for multi-genome mapping and quality control. F1000Research. 2018;7.
32.
go back to reference Page AJ, De Silva N, Hunt M, Quail MA, Parkhill J, Harris SR, et al. Robust high-throughput prokaryote de novo assembly and improvement pipeline for Illumina data. Microb Genomics. 2016;2. Page AJ, De Silva N, Hunt M, Quail MA, Parkhill J, Harris SR, et al. Robust high-throughput prokaryote de novo assembly and improvement pipeline for Illumina data. Microb Genomics. 2016;2.
33.
go back to reference Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics. 2014;30. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics. 2014;30.
34.
go back to reference Pritchard L, Glover RH, Humphris S, Elphinstone JG, Toth IK. Genomics and taxonomy in diagnostics for food security: soft-rotting enterobacterial plant pathogens. Anal Methods. 2016;8. Pritchard L, Glover RH, Humphris S, Elphinstone JG, Toth IK. Genomics and taxonomy in diagnostics for food security: soft-rotting enterobacterial plant pathogens. Anal Methods. 2016;8.
35.
go back to reference Sullivan MJ, Petty NK, Beatson SA. Easyfig: a genome comparison visualizer. Bioinformatics. 2011;27. Sullivan MJ, Petty NK, Beatson SA. Easyfig: a genome comparison visualizer. Bioinformatics. 2011;27.
40.
go back to reference Kelly CR, Kahn S, Kashyap P, Laine L, Rubin D, Atreja A, et al. Update on fecal microbiota transplantation 2015: indications, methodologies, mechanisms, and outlook. Gastroenterology. 2015;149. Kelly CR, Kahn S, Kashyap P, Laine L, Rubin D, Atreja A, et al. Update on fecal microbiota transplantation 2015: indications, methodologies, mechanisms, and outlook. Gastroenterology. 2015;149.
42.
go back to reference Laslett D. ARAGORN, a program to detect tRNA genes and tmRNA genes in nucleotide sequences. Nucleic Acids Res. 2004;32. Laslett D. ARAGORN, a program to detect tRNA genes and tmRNA genes in nucleotide sequences. Nucleic Acids Res. 2004;32.
44.
go back to reference Letunic I, Bork P. Interactive Tree of Life (iTOL) v4: recent updates and new developments. Nucleic Acids Res. 2019;47. Letunic I, Bork P. Interactive Tree of Life (iTOL) v4: recent updates and new developments. Nucleic Acids Res. 2019;47.
45.
go back to reference Seibt KM, Schmidt T, Heitkam T. FlexiDot: highly customizable, ambiguity-aware dotplots for visual sequence analyses. Bioinformatics. 2018;34. Seibt KM, Schmidt T, Heitkam T. FlexiDot: highly customizable, ambiguity-aware dotplots for visual sequence analyses. Bioinformatics. 2018;34.
46.
go back to reference Adriaenssens E, Brister JR. How to Name and Classify Your Phage: An Informal Guide. Viruses. 2017;9. Adriaenssens E, Brister JR. How to Name and Classify Your Phage: An Informal Guide. Viruses. 2017;9.
48.
go back to reference Anany H, Switt AIM, De Lappe N, Ackermann H-W, Reynolds DM, Kropinski AM, et al. A proposed new bacteriophage subfamily: “Jerseyvirinae.” Arch Virol. 2015;160. Anany H, Switt AIM, De Lappe N, Ackermann H-W, Reynolds DM, Kropinski AM, et al. A proposed new bacteriophage subfamily: “Jerseyvirinae.” Arch Virol. 2015;160.
49.
go back to reference Adriaenssens EM, Edwards R, Nash JHE, Mahadevan P, Seto D, Ackermann H-W, et al. Integration of genomic and proteomic analyses in the classification of the Siphoviridae family. Virology. 2015;477. Adriaenssens EM, Edwards R, Nash JHE, Mahadevan P, Seto D, Ackermann H-W, et al. Integration of genomic and proteomic analyses in the classification of the Siphoviridae family. Virology. 2015;477.
50.
go back to reference Turner D, Hezwani M, Nelson S, Salisbury V, Reynolds D. Characterization of the Salmonella bacteriophage vB_SenS-Ent1. J Gen Virol. 2012;93. Turner D, Hezwani M, Nelson S, Salisbury V, Reynolds D. Characterization of the Salmonella bacteriophage vB_SenS-Ent1. J Gen Virol. 2012;93.
51.
go back to reference Kang H-W, Kim J-W, Jung T-S, Woo G-J. wksl3, a New biocontrol agent for Salmonella enterica serovars enteritidis and typhimurium in foods: characterization, application, sequence analysis, and oral acute toxicity study. Appl Environ Microbiol. 2013;79. Kang H-W, Kim J-W, Jung T-S, Woo G-J. wksl3, a New biocontrol agent for Salmonella enterica serovars enteritidis and typhimurium in foods: characterization, application, sequence analysis, and oral acute toxicity study. Appl Environ Microbiol. 2013;79.
52.
go back to reference Lu M, Liu H, Lu H, Liu R, Liu X. Characterization and genome analysis of a novel salmonella phage vB_SenS_SE1. Curr Microbiol. 2020;77. Lu M, Liu H, Lu H, Liu R, Liu X. Characterization and genome analysis of a novel salmonella phage vB_SenS_SE1. Curr Microbiol. 2020;77.
53.
go back to reference Olsen NS, Hendriksen NB, Hansen LH, Kot W. A new high-throughput screening method for phages: enabling crude isolation and fast identification of diverse phages with therapeutic potential. PHAGE. 2020;1. Olsen NS, Hendriksen NB, Hansen LH, Kot W. A new high-throughput screening method for phages: enabling crude isolation and fast identification of diverse phages with therapeutic potential. PHAGE. 2020;1.
54.
go back to reference Vikram A, Woolston J, Sulakvelidze A. Phage biocontrol applications in food production and processing. Curr Issues Mol Biol. 2021. Vikram A, Woolston J, Sulakvelidze A. Phage biocontrol applications in food production and processing. Curr Issues Mol Biol. 2021.
55.
go back to reference García P, Martínez B, Obeso JM, Rodríguez A. Bacteriophages and their application in food safety. Lett Appl Microbiol. 2008;47. García P, Martínez B, Obeso JM, Rodríguez A. Bacteriophages and their application in food safety. Lett Appl Microbiol. 2008;47.
56.
go back to reference Galié S, García-Gutiérrez C, Miguélez EM, Villar CJ, Lombó F. Biofilms in the food industry: Health Aspects and Control Methods. Front Microbiol. 2018;9. Galié S, García-Gutiérrez C, Miguélez EM, Villar CJ, Lombó F. Biofilms in the food industry: Health Aspects and Control Methods. Front Microbiol. 2018;9.
57.
go back to reference Gigante A, Atterbury RJ. Veterinary use of bacteriophage therapy in intensively-reared livestock. Virol J. 2019;16. Gigante A, Atterbury RJ. Veterinary use of bacteriophage therapy in intensively-reared livestock. Virol J. 2019;16.
58.
go back to reference Ross A, Ward S, Hyman P. More is better: selecting for broad host range bacteriophages. Front Microbiol. 2016;7. Ross A, Ward S, Hyman P. More is better: selecting for broad host range bacteriophages. Front Microbiol. 2016;7.
59.
go back to reference Davies E V., Winstanley C, Fothergill JL, James CE. The role of temperate bacteriophages in bacterial infection. FEMS Microbiol Lett. 2016;363. Davies E V., Winstanley C, Fothergill JL, James CE. The role of temperate bacteriophages in bacterial infection. FEMS Microbiol Lett. 2016;363.
60.
go back to reference Harada LK, Silva EC, Campos WF, Del Fiol FS, Vila M, Dąbrowska K, et al. Biotechnological applications of bacteriophages: State of the art. Microbiol Res. 2018;212–213. Harada LK, Silva EC, Campos WF, Del Fiol FS, Vila M, Dąbrowska K, et al. Biotechnological applications of bacteriophages: State of the art. Microbiol Res. 2018;212–213.
61.
go back to reference EFSA Panel on Additives, or Substances used in Animal Feed (FEEDAP) P, Bampidis V, Azimonti G, Bastos M de L, Christensen H, et al. Safety and efficacy of a feed additive consisting on the bacteriophages PCM F/00069, PCM F/00070, PCM F/00071 and PCM F/00097 infecting Salmonella Gallinarum B/00111 (Bafasal®) for all avian species (Proteon Pharmaceuticals S.A.). EFSA J. 2021;19:e06534. EFSA Panel on Additives, or Substances used in Animal Feed (FEEDAP) P, Bampidis V, Azimonti G, Bastos M de L, Christensen H, et al. Safety and efficacy of a feed additive consisting on the bacteriophages PCM F/00069, PCM F/00070, PCM F/00071 and PCM F/00097 infecting Salmonella Gallinarum B/00111 (Bafasal®) for all avian species (Proteon Pharmaceuticals S.A.). EFSA J. 2021;19:e06534.
62.
go back to reference Santos SB, Kropinski AM, Ceyssens P-J, Ackermann H-W, Villegas A, Lavigne R, et al. Genomic and proteomic characterization of the broad-host-range salmonella phage PVP-SE1: creation of a new phage genus. J Virol. 2011;85. Santos SB, Kropinski AM, Ceyssens P-J, Ackermann H-W, Villegas A, Lavigne R, et al. Genomic and proteomic characterization of the broad-host-range salmonella phage PVP-SE1: creation of a new phage genus. J Virol. 2011;85.
63.
go back to reference Santos SB, Fernandes E, Carvalho CM, Sillankorva S, Krylov VN, Pleteneva EA, et al. Selection and characterization of a multivalent Salmonella phage and its production in a nonpathogenic Escherichia coli strain. Appl Environ Microbiol. 2010;76. Santos SB, Fernandes E, Carvalho CM, Sillankorva S, Krylov VN, Pleteneva EA, et al. Selection and characterization of a multivalent Salmonella phage and its production in a nonpathogenic Escherichia coli strain. Appl Environ Microbiol. 2010;76.
64.
go back to reference Tiwari BR, Kim S, Kim J. Complete genomic sequence of salmonella enterica serovar enteritidis phage SE2. J Virol. 2012;86:7712–7712.CrossRef Tiwari BR, Kim S, Kim J. Complete genomic sequence of salmonella enterica serovar enteritidis phage SE2. J Virol. 2012;86:7712–7712.CrossRef
65.
go back to reference Hanna LF, Matthews TD, Dinsdale EA, Hasty D, Edwards RA. Characterization of the ELPhiS prophage from salmonella enterica serovar enteritidis strain LK5. Appl Environ Microbiol. 2012;78. Hanna LF, Matthews TD, Dinsdale EA, Hasty D, Edwards RA. Characterization of the ELPhiS prophage from salmonella enterica serovar enteritidis strain LK5. Appl Environ Microbiol. 2012;78.
66.
go back to reference Berngruber TW, Weissing FJ, Gandon S. Inhibition of superinfection and the evolution of viral latency. J Virol. 2010;84. Berngruber TW, Weissing FJ, Gandon S. Inhibition of superinfection and the evolution of viral latency. J Virol. 2010;84.
67.
go back to reference Sabzali S, Bouzari M. Isolation, identification and some characteristics of two lytic bacteriophages against Salmonella enterica serovar Paratyphi B and S. enterica serovar Typhimurium from various food sources. FEMS Microbiol Lett. 2021;368. Sabzali S, Bouzari M. Isolation, identification and some characteristics of two lytic bacteriophages against Salmonella enterica serovar Paratyphi B and S. enterica serovar Typhimurium from various food sources. FEMS Microbiol Lett. 2021;368.
68.
go back to reference Pickard D, Thomson NR, Baker S, Wain J, Pardo M, Goulding D, et al. Molecular characterization of the Salmonella enterica Serovar Typhi Vi-Typing Bacteriophage E1. J Bacteriol. 2008;190. Pickard D, Thomson NR, Baker S, Wain J, Pardo M, Goulding D, et al. Molecular characterization of the Salmonella enterica Serovar Typhi Vi-Typing Bacteriophage E1. J Bacteriol. 2008;190.
69.
go back to reference Stoddard BL. Homing endonuclease structure and function. Q Rev Biophys. 2006;38. Stoddard BL. Homing endonuclease structure and function. Q Rev Biophys. 2006;38.
70.
go back to reference Kwan T, Liu J, DuBow M, Gros P, Pelletier J. The complete genomes and proteomes of 27 Staphylococcus aureus bacteriophages. Proc Natl Acad Sci. 2005;102. Kwan T, Liu J, DuBow M, Gros P, Pelletier J. The complete genomes and proteomes of 27 Staphylococcus aureus bacteriophages. Proc Natl Acad Sci. 2005;102.
71.
go back to reference Santos SB, Carvalho C, Azeredo J, Ferreira EC. Population dynamics of a salmonella lytic phage and its host: implications of the host bacterial growth rate in modelling. PLoS One. 2014;9. Santos SB, Carvalho C, Azeredo J, Ferreira EC. Population dynamics of a salmonella lytic phage and its host: implications of the host bacterial growth rate in modelling. PLoS One. 2014;9.
Metadata
Title
Genomic and functional characterization of five novel Salmonella-targeting bacteriophages
Authors
Marta Kuźmińska-Bajor
Paulina Śliwka
Maciej Ugorski
Paweł Korzeniowski
Aneta Skaradzińska
Maciej Kuczkowski
Magdalena Narajaczyk
Alina Wieliczko
Rafał Kolenda
Publication date
01-12-2021
Publisher
BioMed Central
Published in
Virology Journal / Issue 1/2021
Electronic ISSN: 1743-422X
DOI
https://doi.org/10.1186/s12985-021-01655-4

Other articles of this Issue 1/2021

Virology Journal 1/2021 Go to the issue
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discuss last year's major advances in heart failure and cardiomyopathies.