Skip to main content
Top
Published in: Virology Journal 1/2013

Open Access 01-12-2013 | Short report

Genomic analysis of a newly isolated of Japanese encephalitis virus strain, CQ11-66, from a pediatric patient in China

Authors: Li-Juan Xu, Ruixi Liu, Sheng Ye, Hua Ling, Chao-Min Zhu

Published in: Virology Journal | Issue 1/2013

Login to get access

Abstract

Background

Japanese encephalitis virus (JEV) is one of the major causative agents of viral encephalitis in East Asia, Southeast Asia and Australia. However, no clinical JEV strain has yet been isolated from JE patients in Chongqing, China. In this study, we report the genomic analysis of a new JEV strain, CQ11-66, isolated from a pediatric patient in Chongqing, China.

Findings

Virus isolation was carried out in BHK-21 cells. Nested PCR was used to detect and isolate the JEV strain, and computer analysis of phylogenetic relationships, nucleic acid homology studies and deduction of the amino acid sequence were conducted using ClustalX (1.8) and Mega5 software. The JEV strain CQ11-66 was isolated from patient cerebrospinal fluid. The sequenced genome of CQ11-66 was 10,863 nucleotides in length, whereas other strains, such as SX09S-01, contain 10,965 nucleotides. Sequence comparison of the CQ11-66 polyprotein open reading frame (ORF) with those of 21 other JEV strains revealed that the nucleotide sequence divergence ranged from 1.68% to 18.46%. Sequence analysis of the full-length CQ11-66 E gene sequence with those of 30 other JEV isolates also identified nucleotide divergence, ranging from 1.69% to 18.74%. Phylogenetic analyses indicated that the CQ11-66 strain belonged to genotype III.

Conclusions

JEV genotype III still circulates in Chongqing and it is therefore important for active surveillance of JEV genotype III to be conducted in the pediatric population.
Appendix
Available only for authorised users
Literature
1.
go back to reference Yun SI, Kim SY, Rice CM, Lee YM: Development and application of a reverse genetics system for Japanese encephalitis virus. J.Viro 2003, 77: 6450-6465. 10.1128/JVI.77.11.6450-6465.2003CrossRef Yun SI, Kim SY, Rice CM, Lee YM: Development and application of a reverse genetics system for Japanese encephalitis virus. J.Viro 2003, 77: 6450-6465. 10.1128/JVI.77.11.6450-6465.2003CrossRef
2.
go back to reference Lindenbach BD, Rice CM: Flaviviridae:the viruses and their eplication. In Fields Virology. 4th edition. Edited by: Knipe DM Howley PM. Philadelphia: Lippincott Willams and Wilkins; 2001:991-1041. Lindenbach BD, Rice CM: Flaviviridae:the viruses and their eplication. In Fields Virology. 4th edition. Edited by: Knipe DM Howley PM. Philadelphia: Lippincott Willams and Wilkins; 2001:991-1041.
3.
go back to reference Ali A, Igarashi A: Antigenic and genetic variation among Japanese encephalitis virus strains belong to genotype I. Microbio Immunol 1997, 41: 241-252.CrossRef Ali A, Igarashi A: Antigenic and genetic variation among Japanese encephalitis virus strains belong to genotype I. Microbio Immunol 1997, 41: 241-252.CrossRef
4.
go back to reference Huong VT, Ha D, Deubel V: Genetic study of Japanese encephalitis viruses from Vietnam. AmJTrop Med Hyg 1993, 49: 538-544. Huong VT, Ha D, Deubel V: Genetic study of Japanese encephalitis viruses from Vietnam. AmJTrop Med Hyg 1993, 49: 538-544.
5.
go back to reference Ni H, Barret ADT: Nucleotide and deduced amino acid sequence of the structural protein genes of Japanese encephalitis viruses from different geographical location. J Gen Virol 1995, 76: 401-407. 10.1099/0022-1317-76-2-401PubMedCrossRef Ni H, Barret ADT: Nucleotide and deduced amino acid sequence of the structural protein genes of Japanese encephalitis viruses from different geographical location. J Gen Virol 1995, 76: 401-407. 10.1099/0022-1317-76-2-401PubMedCrossRef
6.
go back to reference Westaway EG, Block J: Taxonomy and evolutionary relationships of flavivirus. pp. 147-173. Walling Ford: CAB International; 1997. Westaway EG, Block J: Taxonomy and evolutionary relationships of flavivirus. pp. 147-173. Walling Ford: CAB International; 1997.
7.
go back to reference Monath TP, Heinz FX: Flaviviruses,p.961–1034. In Fields virology. 3rd edition. Edited by: Fields BN, Knipe DM, Howley PM. Philadephia, Pa: Lip- pincott-Raven; 1996. Monath TP, Heinz FX: Flaviviruses,p.961–1034. In Fields virology. 3rd edition. Edited by: Fields BN, Knipe DM, Howley PM. Philadephia, Pa: Lip- pincott-Raven; 1996.
8.
go back to reference Rey FA, Heinz FX, Mandl C, Kunz C, Harrison SC: The envelope glycoprotein from tick-borne encephalitis virus at 2 A resolution. Nature 1995, 375: 291-298. 10.1038/375291a0PubMedCrossRef Rey FA, Heinz FX, Mandl C, Kunz C, Harrison SC: The envelope glycoprotein from tick-borne encephalitis virus at 2 A resolution. Nature 1995, 375: 291-298. 10.1038/375291a0PubMedCrossRef
9.
go back to reference Gritsun TS, Holmes EC, Gould EA: Analysis of flavivirus envelope proteins reveals variable domains that reflect their antigenicity and may determine their pathogenesis. VirusRes 1995, 35: 307-321. Gritsun TS, Holmes EC, Gould EA: Analysis of flavivirus envelope proteins reveals variable domains that reflect their antigenicity and may determine their pathogenesis. VirusRes 1995, 35: 307-321.
10.
go back to reference Hung JJ, Hsieh MT, Young MJ, Kao CL, King CC, Chang W: An external loop region of domain III of denguevirus type 2 envelope protein is involved in serotype-specific binding to mosquito but not mammalian cells. J Virol 2004, 78: 378-388. 10.1128/JVI.78.1.378-388.2004PubMedPubMedCentralCrossRef Hung JJ, Hsieh MT, Young MJ, Kao CL, King CC, Chang W: An external loop region of domain III of denguevirus type 2 envelope protein is involved in serotype-specific binding to mosquito but not mammalian cells. J Virol 2004, 78: 378-388. 10.1128/JVI.78.1.378-388.2004PubMedPubMedCentralCrossRef
11.
go back to reference Liu H, Chiou S-S, Chen W-J: Differential binding efficiency between the envelope protein of Japanese encephalitis virus variants and heparin sulfate on the cell surface. J Med Virol 2004, 72: 618-624. 10.1002/jmv.20025PubMedCrossRef Liu H, Chiou S-S, Chen W-J: Differential binding efficiency between the envelope protein of Japanese encephalitis virus variants and heparin sulfate on the cell surface. J Med Virol 2004, 72: 618-624. 10.1002/jmv.20025PubMedCrossRef
12.
go back to reference Zhao Z, Date T, Li Y, Kato T, Miyamoto M, Yasui K, Wakita T: Characterization of the E-138(Glu/Lys) mutation in Japanese encephalitis virus By using a stable, full-length, infectious cDNA clone. J Gen Virol 2005, 86: 2209-2220. 10.1099/vir.0.80638-0PubMedCrossRef Zhao Z, Date T, Li Y, Kato T, Miyamoto M, Yasui K, Wakita T: Characterization of the E-138(Glu/Lys) mutation in Japanese encephalitis virus By using a stable, full-length, infectious cDNA clone. J Gen Virol 2005, 86: 2209-2220. 10.1099/vir.0.80638-0PubMedCrossRef
13.
go back to reference Mangada MN M, Takegami T: Molecular characterization of the Japanese encephalitis virus representative immunotype strain JaGAr01. Virus Res 1999, 59: 101±112.CrossRef Mangada MN M, Takegami T: Molecular characterization of the Japanese encephalitis virus representative immunotype strain JaGAr01. Virus Res 1999, 59: 101±112.CrossRef
14.
go back to reference Monath TP, Arroyo J, Levenbook I, Zhang ZX, Catalan J, Draper K, Guirakhoo F: Single mutation in the flavivirus envelope protein hinge region increases neurovirulence for mice and monkeys but decreases viscerotropism for monkeys: relevance to development and safety testing of live,attenuated vaccines. J Virol 2002, 76: 1932-1943. 10.1128/JVI.76.4.1932-1943.2002PubMedPubMedCentralCrossRef Monath TP, Arroyo J, Levenbook I, Zhang ZX, Catalan J, Draper K, Guirakhoo F: Single mutation in the flavivirus envelope protein hinge region increases neurovirulence for mice and monkeys but decreases viscerotropism for monkeys: relevance to development and safety testing of live,attenuated vaccines. J Virol 2002, 76: 1932-1943. 10.1128/JVI.76.4.1932-1943.2002PubMedPubMedCentralCrossRef
15.
go back to reference Williams DT, Wang LF, Daniels PW, Mackenzie JS: Molecular characterization of the first Australian isolate of Japanese encephalitis virus, the FU strain. J Gen Virol 2000, 81: 2471-2480.PubMedCrossRef Williams DT, Wang LF, Daniels PW, Mackenzie JS: Molecular characterization of the first Australian isolate of Japanese encephalitis virus, the FU strain. J Gen Virol 2000, 81: 2471-2480.PubMedCrossRef
16.
go back to reference Yun SM, Cho JE, Ju YR: Molecular epidemiology of Japanese encephalitis virus circulating in South Korea,1983-2005. Viro J 2010, 7: 127. 10.1186/1743-422X-7-127CrossRef Yun SM, Cho JE, Ju YR: Molecular epidemiology of Japanese encephalitis virus circulating in South Korea,1983-2005. Viro J 2010, 7: 127. 10.1186/1743-422X-7-127CrossRef
17.
go back to reference Wang HY, Takasaki T, Fu SH, Sun XH, Zhang HL, Wang ZX, Hao ZY, Zhang JK, Tang Q, Kotaki A, Tajima S, Liang XF, Yang WZ, Kurane I, Liang GD: Molecular epidemio-logical analysis of Japanese encephalitis virus in China. J Gen Virol 2007, 88: 885-894. 10.1099/vir.0.82185-0PubMedCrossRef Wang HY, Takasaki T, Fu SH, Sun XH, Zhang HL, Wang ZX, Hao ZY, Zhang JK, Tang Q, Kotaki A, Tajima S, Liang XF, Yang WZ, Kurane I, Liang GD: Molecular epidemio-logical analysis of Japanese encephalitis virus in China. J Gen Virol 2007, 88: 885-894. 10.1099/vir.0.82185-0PubMedCrossRef
18.
go back to reference Nerome R, Tajima S, Takasaki T, Yoshida T, Kotaki A, Lim CK, Ito M, Sugiyama A, Yamauchi A, Yano T, Kameyama T, Morishita I, Kuwayama M, Ogawa T, Sahara K, Ikegaya A: Molecular epidemiological analyses of Japanese encephalitis virus isolates from swine in Japan from 2002 to 2004. J Gen Virol 2007, 88: 2762-2768. 10.1099/vir.0.82941-0PubMedCrossRef Nerome R, Tajima S, Takasaki T, Yoshida T, Kotaki A, Lim CK, Ito M, Sugiyama A, Yamauchi A, Yano T, Kameyama T, Morishita I, Kuwayama M, Ogawa T, Sahara K, Ikegaya A: Molecular epidemiological analyses of Japanese encephalitis virus isolates from swine in Japan from 2002 to 2004. J Gen Virol 2007, 88: 2762-2768. 10.1099/vir.0.82941-0PubMedCrossRef
Metadata
Title
Genomic analysis of a newly isolated of Japanese encephalitis virus strain, CQ11-66, from a pediatric patient in China
Authors
Li-Juan Xu
Ruixi Liu
Sheng Ye
Hua Ling
Chao-Min Zhu
Publication date
01-12-2013
Publisher
BioMed Central
Published in
Virology Journal / Issue 1/2013
Electronic ISSN: 1743-422X
DOI
https://doi.org/10.1186/1743-422X-10-101

Other articles of this Issue 1/2013

Virology Journal 1/2013 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.