Skip to main content
Top
Published in: BMC Cancer 1/2024

Open Access 01-12-2024 | Research

Genome-wide quantification of copy-number aberration impact on gene expression in ovarian high-grade serous carcinoma

Authors: Sanaz Jamalzadeh, Jun Dai, Kari Lavikka, Yilin Li, Jing Jiang, Kaisa Huhtinen, Anni Virtanen, Jaana Oikkonen, Sakari Hietanen, Johanna Hynninen, Anna Vähärautio, Antti Häkkinen, Sampsa Hautaniemi

Published in: BMC Cancer | Issue 1/2024

Login to get access

Abstract

Copy-number alterations (CNAs) are a hallmark of cancer and can regulate cancer cell states via altered gene expression values. Herein, we have developed a copy-number impact (CNI) analysis method that quantifies the degree to which a gene expression value is impacted by CNAs and leveraged this analysis at the pathway level. Our results show that a high CNA is not necessarily reflected at the gene expression level, and our method is capable of detecting genes and pathways whose activity is strongly influenced by CNAs. Furthermore, the CNI analysis enables unbiased categorization of CNA categories, such as deletions and amplifications. We identified six CNI-driven pathways associated with poor treatment response in ovarian high-grade serous carcinoma (HGSC), which we found to be the most CNA-driven cancer across 14 cancer types. The key driver in most of these pathways was amplified wild-type KRAS, which we validated functionally using CRISPR modulation. Our results suggest that wild-type KRAS amplification is a driver of chemotherapy resistance in HGSC and may serve as a potential treatment target.
Appendix
Available only for authorised users
Literature
1.
go back to reference Stuart D, Sellers WR. Linking somatic genetic alterations in cancer to therapeutics. Curr Opin Cell Biol. 2009;21:304–10.PubMedCrossRef Stuart D, Sellers WR. Linking somatic genetic alterations in cancer to therapeutics. Curr Opin Cell Biol. 2009;21:304–10.PubMedCrossRef
4.
go back to reference Louhimo R, Lepikhova T, Monni O, Hautaniemi S. Comparative analysis of algorithms for integration of copy number and expression data. Nat Methods. 2012;9:351–5.PubMedCrossRef Louhimo R, Lepikhova T, Monni O, Hautaniemi S. Comparative analysis of algorithms for integration of copy number and expression data. Nat Methods. 2012;9:351–5.PubMedCrossRef
5.
go back to reference Marone M, et al. Analysis of cyclin E and CDK2 in ovarian cancer: gene amplification and RNA overexpression. Int j cancer. 1998;75:34–9.PubMedCrossRef Marone M, et al. Analysis of cyclin E and CDK2 in ovarian cancer: gene amplification and RNA overexpression. Int j cancer. 1998;75:34–9.PubMedCrossRef
9.
go back to reference Etemadmoghadam D, et al. Integrated genome-wide DNA copy number and expression analysis identifies distinct mechanisms of primary chemoresistance in ovarian carcinomas. Clin Cancer Res. 2009;15:1417–27.PubMedPubMedCentralCrossRef Etemadmoghadam D, et al. Integrated genome-wide DNA copy number and expression analysis identifies distinct mechanisms of primary chemoresistance in ovarian carcinomas. Clin Cancer Res. 2009;15:1417–27.PubMedPubMedCentralCrossRef
15.
go back to reference McKenna A, et al. The Genome Analysis Toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010;20:1297–303.PubMedPubMedCentralCrossRef McKenna A, et al. The Genome Analysis Toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010;20:1297–303.PubMedPubMedCentralCrossRef
16.
17.
go back to reference Cervera A, et al. Anduril 2: upgraded large-scale data integration framework. Bioinformatics. 2019;35:3815–7.PubMedCrossRef Cervera A, et al. Anduril 2: upgraded large-scale data integration framework. Bioinformatics. 2019;35:3815–7.PubMedCrossRef
18.
go back to reference Van der Auwera, G. A. & O’Connor, B. D. Genomics in the Cloud. (O’Reilly Media, Inc.). Van der Auwera, G. A. & O’Connor, B. D. Genomics in the Cloud. (O’Reilly Media, Inc.).
20.
go back to reference Amemiya HM, Kundaje A, Boyle AP. The ENCODE Blacklist: Identification of Problematic Regions of the Genome. Sci Rep. 2019;9:1–5.CrossRef Amemiya HM, Kundaje A, Boyle AP. The ENCODE Blacklist: Identification of Problematic Regions of the Genome. Sci Rep. 2019;9:1–5.CrossRef
21.
go back to reference Van Loo P, et al. Allele-specific copy number analysis of tumors. Proc Natl Acad Sci U S A. 2010;107:6910–5. Van Loo P, et al. Allele-specific copy number analysis of tumors. Proc Natl Acad Sci U S A. 2010;107:6910–5.
22.
go back to reference Icay K, et al. SePIA: RNA and small RNA sequence processing, integration, and analysis. BioData Min. 2016;9 Icay K, et al. SePIA: RNA and small RNA sequence processing, integration, and analysis. BioData Min. 2016;9
23.
24.
go back to reference Roberts A, Pachter L. Streaming fragment assignment for real-time analysis of sequencing experiments. Nat Methods. 2013;10:71–3.PubMedCrossRef Roberts A, Pachter L. Streaming fragment assignment for real-time analysis of sequencing experiments. Nat Methods. 2013;10:71–3.PubMedCrossRef
25.
go back to reference Häkkinen A, et al. PRISM: recovering cell-type-specific expression profiles from individual composite RNA-seq samples. Bioinformatics. 2021;37:2882–8.PubMedPubMedCentralCrossRef Häkkinen A, et al. PRISM: recovering cell-type-specific expression profiles from individual composite RNA-seq samples. Bioinformatics. 2021;37:2882–8.PubMedPubMedCentralCrossRef
27.
28.
go back to reference Holmström S, Hautaniemi S, Häkkinen A. POIBM: batch correction of heterogeneous RNA-seq datasets through latent sample matching. Bioinformatics. 2022;38:2474–80.PubMedPubMedCentralCrossRef Holmström S, Hautaniemi S, Häkkinen A. POIBM: batch correction of heterogeneous RNA-seq datasets through latent sample matching. Bioinformatics. 2022;38:2474–80.PubMedPubMedCentralCrossRef
31.
go back to reference Darmanis S, et al. Single-Cell RNA-Seq Analysis of Infiltrating Neoplastic Cells at the Migrating Front of Human Glioblastoma. Cell Rep. 2017;21:1399–410.PubMedPubMedCentralCrossRef Darmanis S, et al. Single-Cell RNA-Seq Analysis of Infiltrating Neoplastic Cells at the Migrating Front of Human Glioblastoma. Cell Rep. 2017;21:1399–410.PubMedPubMedCentralCrossRef
34.
go back to reference Hothorn T, Lausen B. On the Exact Distribution of Maximally Selected Rank Statistics. 2002. Hothorn T, Lausen B. On the Exact Distribution of Maximally Selected Rank Statistics. 2002.
35.
go back to reference Cao J, et al. An easy and efficient inducible CRISPR/Cas9 platform with improved specificity for multiple gene targeting. Nucleic Acids Res. 2016;44: e149.PubMedPubMedCentral Cao J, et al. An easy and efficient inducible CRISPR/Cas9 platform with improved specificity for multiple gene targeting. Nucleic Acids Res. 2016;44: e149.PubMedPubMedCentral
42.
go back to reference Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 455, (2008). Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 455, (2008).
43.
go back to reference Liu S-H, et al. DriverDBv3: a multi-omics database for cancer driver gene research. Nucleic Acids Res. 2020;48:D863–70.PubMed Liu S-H, et al. DriverDBv3: a multi-omics database for cancer driver gene research. Nucleic Acids Res. 2020;48:D863–70.PubMed
46.
go back to reference Domcke S, Sinha R, Levine DA, Sander C, Schultz N. Evaluating cell lines as tumour models by comparison of genomic profiles. Nat Commun. 2013;4:1–10.CrossRef Domcke S, Sinha R, Levine DA, Sander C, Schultz N. Evaluating cell lines as tumour models by comparison of genomic profiles. Nat Commun. 2013;4:1–10.CrossRef
48.
go back to reference Bennecke M, et al. Ink4a/Arf and oncogene-induced senescence prevent tumor progression during alternative colorectal tumorigenesis. Cancer Cell. 2010;18:135–46. Bennecke M, et al. Ink4a/Arf and oncogene-induced senescence prevent tumor progression during alternative colorectal tumorigenesis. Cancer Cell. 2010;18:135–46.
49.
go back to reference Yeddula N, Xia Y, Ke E, Beumer J, Verma IM. Screening for tumor suppressors: Loss of ephrin receptor A2 cooperates with oncogenic KRas in promoting lung adenocarcinoma. Proc Natl Acad Sci U S A. 2015;112:E6476–85.ADSPubMedPubMedCentralCrossRef Yeddula N, Xia Y, Ke E, Beumer J, Verma IM. Screening for tumor suppressors: Loss of ephrin receptor A2 cooperates with oncogenic KRas in promoting lung adenocarcinoma. Proc Natl Acad Sci U S A. 2015;112:E6476–85.ADSPubMedPubMedCentralCrossRef
50.
go back to reference Auner V, et al. KRAS mutation analysis in ovarian samples using a high sensitivity biochip assay. BMC Cancer. 2009;9:1–8.CrossRef Auner V, et al. KRAS mutation analysis in ovarian samples using a high sensitivity biochip assay. BMC Cancer. 2009;9:1–8.CrossRef
53.
go back to reference Cepero V, et al. MET and KRAS gene amplification mediates acquired resistance to MET tyrosine kinase inhibitors. Cancer Res. 2010;70:7580–90.PubMedCrossRef Cepero V, et al. MET and KRAS gene amplification mediates acquired resistance to MET tyrosine kinase inhibitors. Cancer Res. 2010;70:7580–90.PubMedCrossRef
54.
go back to reference Bahcall M, et al. Amplification of Wild-type KRAS Imparts Resistance to Crizotinib in MET Exon 14 Mutant Non-Small Cell Lung Cancer. Clin Cancer Res. 2018;24:5963–76.PubMedPubMedCentralCrossRef Bahcall M, et al. Amplification of Wild-type KRAS Imparts Resistance to Crizotinib in MET Exon 14 Mutant Non-Small Cell Lung Cancer. Clin Cancer Res. 2018;24:5963–76.PubMedPubMedCentralCrossRef
56.
go back to reference Masoodi T, et al. Genetic heterogeneity and evolutionary history of high-grade ovarian carcinoma and matched distant metastases. Br J Cancer. 2020;122:1219–30.PubMedPubMedCentralCrossRef Masoodi T, et al. Genetic heterogeneity and evolutionary history of high-grade ovarian carcinoma and matched distant metastases. Br J Cancer. 2020;122:1219–30.PubMedPubMedCentralCrossRef
57.
go back to reference Tomar T, et al. Methylome analysis of extreme chemoresponsive patients identifies novel markers of platinum sensitivity in high-grade serous ovarian cancer. BMC Med. 2017;15:1–16.MathSciNetCrossRef Tomar T, et al. Methylome analysis of extreme chemoresponsive patients identifies novel markers of platinum sensitivity in high-grade serous ovarian cancer. BMC Med. 2017;15:1–16.MathSciNetCrossRef
58.
go back to reference Lisio M-A, Fu L, Goyeneche A, Gao Z-H, Telleria C. High-Grade Serous Ovarian Cancer: Basic Sciences, Clinical and Therapeutic Standpoints. Int J Mol Sci. 2019;20:952.PubMedPubMedCentralCrossRef Lisio M-A, Fu L, Goyeneche A, Gao Z-H, Telleria C. High-Grade Serous Ovarian Cancer: Basic Sciences, Clinical and Therapeutic Standpoints. Int J Mol Sci. 2019;20:952.PubMedPubMedCentralCrossRef
Metadata
Title
Genome-wide quantification of copy-number aberration impact on gene expression in ovarian high-grade serous carcinoma
Authors
Sanaz Jamalzadeh
Jun Dai
Kari Lavikka
Yilin Li
Jing Jiang
Kaisa Huhtinen
Anni Virtanen
Jaana Oikkonen
Sakari Hietanen
Johanna Hynninen
Anna Vähärautio
Antti Häkkinen
Sampsa Hautaniemi
Publication date
01-12-2024
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2024
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/s12885-024-11895-6

Other articles of this Issue 1/2024

BMC Cancer 1/2024 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine