Skip to main content
Top
Published in: BMC Anesthesiology 1/2020

Open Access 01-12-2020 | General Anesthesia | Research article

Intraoperative mechanical ventilation practice in thoracic surgery patients and its association with postoperative pulmonary complications: results of a multicenter prospective observational study

Authors: Christopher Uhlig, Ary Serpa Neto, Meta van der Woude, Thomas Kiss, Jakob Wittenstein, Benjamin Shelley, Helen Scholes, Michael Hiesmayr, Marcos Francisco Vidal Melo, Daniele Sances, Nesil Coskunfirat, Paolo Pelosi, Marcus Schultz, Marcelo Gama de Abreu, LAS VEGAS# investigators, Protective Ventilation Network (PROVEnet), Clinical Trial Network of the European Society of Anaesthesiology

Published in: BMC Anesthesiology | Issue 1/2020

Login to get access

Abstract

Background

Intraoperative mechanical ventilation may influence postoperative pulmonary complications (PPCs). Current practice during thoracic surgery is not well described.

Methods

This is a post-hoc analysis of the prospective multicenter cross-sectional LAS VEGAS study focusing on patients who underwent thoracic surgery. Consecutive adult patients receiving invasive ventilation during general anesthesia were included in a one-week period in 2013. Baseline characteristics, intraoperative and postoperative data were registered. PPCs were collected as composite endpoint until the 5th postoperative day. Patients were stratified into groups based on the use of one lung ventilation (OLV) or two lung ventilation (TLV), endoscopic vs. non-endoscopic approach and ARISCAT score risk for PPCs. Differences between subgroups were compared using χ2 or Fisher exact tests or Student’s t-test. Kaplan–Meier estimates of the cumulative probability of development of PPC and hospital discharge were performed. Cox-proportional hazard models without adjustment for covariates were used to assess the effect of the subgroups on outcome.

Results

From 10,520 patients enrolled in the LAS VEGAS study, 302 patients underwent thoracic procedures and were analyzed. There were no differences in patient characteristics between OLV vs. TLV, or endoscopic vs. open surgery. Patients received VT of 7.4 ± 1.6 mL/kg, a PEEP of 3.5 ± 2.4 cmH2O, and driving pressure of 14.4 ± 4.6 cmH2O. Compared with TLV, patients receiving OLV had lower VT and higher peak, plateau and driving pressures, higher PEEP and respiratory rate, and received more recruitment maneuvers. There was no difference in the incidence of PPCs in OLV vs. TLV or in endoscopic vs. open procedures. Patients at high risk had a higher incidence of PPCs compared with patients at low risk (48.1% vs. 28.9%; hazard ratio, 1.95; 95% CI 1.05–3.61; p = 0.033). There was no difference in the incidence of severe PPCs. The in-hospital length of stay (LOS) was longer in patients who developed PPCs. Patients undergoing OLV, endoscopic procedures and at low risk for PPC had shorter LOS.

Conclusion

PPCs occurred frequently and prolonged hospital LOS following thoracic surgery. Proportionally large tidal volumes and high driving pressure were commonly used in this sub-population. However, large RCTs are needed to confirm these findings.

Trial registration

This trial was prospectively registered at the Clinical Trial Register (www.clinicaltrials.gov; NCT01601223; registered May 17, 2012.)
Appendix
Available only for authorised users
Literature
1.
go back to reference Weiser TG, Regenbogen SE, Thompson KD, Haynes AB, Lipsitz SR, Berry WR, Gawande AA. An estimation of the global volume of surgery: a modelling strategy based on available data. Lancet. 2008;372(9633):139–44.CrossRef Weiser TG, Regenbogen SE, Thompson KD, Haynes AB, Lipsitz SR, Berry WR, Gawande AA. An estimation of the global volume of surgery: a modelling strategy based on available data. Lancet. 2008;372(9633):139–44.CrossRef
2.
go back to reference Bainbridge D, Martin J, Arango M, Cheng D, Evidence-based Peri-operative clinical outcomes research G. Perioperative and anaesthetic-related mortality in developed and developing countries: a systematic review and meta-analysis. Lancet. 2012;380(9847):1075–81.CrossRef Bainbridge D, Martin J, Arango M, Cheng D, Evidence-based Peri-operative clinical outcomes research G. Perioperative and anaesthetic-related mortality in developed and developing countries: a systematic review and meta-analysis. Lancet. 2012;380(9847):1075–81.CrossRef
3.
go back to reference Investigators LV. Epidemiology, practice of ventilation and outcome for patients at increased risk of postoperative pulmonary complications: LAS VEGAS - an observational study in 29 countries. Eur J Anaesthesiol. 2017;34(8):492–507.CrossRef Investigators LV. Epidemiology, practice of ventilation and outcome for patients at increased risk of postoperative pulmonary complications: LAS VEGAS - an observational study in 29 countries. Eur J Anaesthesiol. 2017;34(8):492–507.CrossRef
4.
go back to reference Senturk M. New concepts of the management of one-lung ventilation. Curr Opin Anaesthesiol. 2006;19(1):1–4.CrossRef Senturk M. New concepts of the management of one-lung ventilation. Curr Opin Anaesthesiol. 2006;19(1):1–4.CrossRef
5.
go back to reference Severgnini P, Selmo G, Lanza C, Chiesa A, Frigerio A, Bacuzzi A, Dionigi G, Novario R, Gregoretti C, de Abreu MG, et al. Protective mechanical ventilation during general anesthesia for open abdominal surgery improves postoperative pulmonary function. Anesthesiology. 2013;118(6):1307–21.CrossRef Severgnini P, Selmo G, Lanza C, Chiesa A, Frigerio A, Bacuzzi A, Dionigi G, Novario R, Gregoretti C, de Abreu MG, et al. Protective mechanical ventilation during general anesthesia for open abdominal surgery improves postoperative pulmonary function. Anesthesiology. 2013;118(6):1307–21.CrossRef
6.
go back to reference Hemmes SN, Serpa Neto A, Schultz MJ. Intraoperative ventilatory strategies to prevent postoperative pulmonary complications: a meta-analysis. Curr Opin Anaesthesiol. 2013;26(2):126–33.CrossRef Hemmes SN, Serpa Neto A, Schultz MJ. Intraoperative ventilatory strategies to prevent postoperative pulmonary complications: a meta-analysis. Curr Opin Anaesthesiol. 2013;26(2):126–33.CrossRef
7.
go back to reference PROVE Network Investigators for the Clinical Trial Network of the European Society of Anaesthesiology; Sabrine N T Hemmes, Marcelo Gama de Abreu, Pelosi P, Schultz MJ. High versus low positive end-expiratory pressure during general anaesthesia for open abdominal surgery (PROVHILO trial): a multicentre randomised controlled trial. Lancet. 2014;384(9942):495–503. PROVE Network Investigators for the Clinical Trial Network of the European Society of Anaesthesiology; Sabrine N T Hemmes, Marcelo Gama de Abreu, Pelosi P, Schultz MJ. High versus low positive end-expiratory pressure during general anaesthesia for open abdominal surgery (PROVHILO trial): a multicentre randomised controlled trial. Lancet. 2014;384(9942):495–503.
8.
go back to reference Young CC, Harris EM, Vacchiano C, Bodnar S, Bukowy B, Elliott RRD, Migliarese J, Ragains C, Trethewey B, Woodward A, et al. Lung-protective ventilation for the surgical patient: international expert panel-based consensus recommendations. Br J Anaesth. 2019;123(6):898–913.CrossRef Young CC, Harris EM, Vacchiano C, Bodnar S, Bukowy B, Elliott RRD, Migliarese J, Ragains C, Trethewey B, Woodward A, et al. Lung-protective ventilation for the surgical patient: international expert panel-based consensus recommendations. Br J Anaesth. 2019;123(6):898–913.CrossRef
9.
go back to reference Hemmes SN, de Abreu MG, Pelosi P, Schultz MJ. ESA clinical trials network 2012: LAS VEGAS--local assessment of Ventilatory management during general Anaesthesia for surgery and its effects on postoperative pulmonary complications: a prospective, observational, international, multicentre cohort study. Eur J Anaesthesiol. 2013;30(5):205–7.CrossRef Hemmes SN, de Abreu MG, Pelosi P, Schultz MJ. ESA clinical trials network 2012: LAS VEGAS--local assessment of Ventilatory management during general Anaesthesia for surgery and its effects on postoperative pulmonary complications: a prospective, observational, international, multicentre cohort study. Eur J Anaesthesiol. 2013;30(5):205–7.CrossRef
10.
go back to reference Arozullah AM, Daley J, Henderson WG, Khuri SF. Multifactorial risk index for predicting postoperative respiratory failure in men after major noncardiac surgery. The National Veterans Administration Surgical Quality Improvement Program. Ann Surg. 2000;232(2):242–53.CrossRef Arozullah AM, Daley J, Henderson WG, Khuri SF. Multifactorial risk index for predicting postoperative respiratory failure in men after major noncardiac surgery. The National Veterans Administration Surgical Quality Improvement Program. Ann Surg. 2000;232(2):242–53.CrossRef
11.
go back to reference Arozullah AM, Khuri SF, Henderson WG, Daley J, Participants in the National Veterans Affairs Surgical Quality Improvement P. Development and validation of a multifactorial risk index for predicting postoperative pneumonia after major noncardiac surgery. Ann Intern Med. 2001;135(10):847–57.CrossRef Arozullah AM, Khuri SF, Henderson WG, Daley J, Participants in the National Veterans Affairs Surgical Quality Improvement P. Development and validation of a multifactorial risk index for predicting postoperative pneumonia after major noncardiac surgery. Ann Intern Med. 2001;135(10):847–57.CrossRef
12.
go back to reference Canet J, Gallart L, Gomar C, Paluzie G, Valles J, Castillo J, Sabate S, Mazo V, Briones Z, Sanchis J, et al. Prediction of postoperative pulmonary complications in a population-based surgical cohort. Anesthesiology. 2010;113(6):1338–50.CrossRef Canet J, Gallart L, Gomar C, Paluzie G, Valles J, Castillo J, Sabate S, Mazo V, Briones Z, Sanchis J, et al. Prediction of postoperative pulmonary complications in a population-based surgical cohort. Anesthesiology. 2010;113(6):1338–50.CrossRef
13.
go back to reference Smetana GW. Preoperative pulmonary evaluation: identifying and reducing risks for pulmonary complications. Cleve Clin J Med. 2006;73(Suppl 1):S36–41.CrossRef Smetana GW. Preoperative pulmonary evaluation: identifying and reducing risks for pulmonary complications. Cleve Clin J Med. 2006;73(Suppl 1):S36–41.CrossRef
14.
go back to reference Guldner A, Kiss T, Serpa Neto A, Hemmes SN, Canet J, Spieth PM, Rocco PR, Schultz MJ, Pelosi P, Gama de Abreu M. Intraoperative protective mechanical ventilation for prevention of postoperative pulmonary complications: a comprehensive review of the role of tidal volume, positive end-expiratory pressure, and lung recruitment maneuvers. Anesthesiology. 2015;123(3):692–713.CrossRef Guldner A, Kiss T, Serpa Neto A, Hemmes SN, Canet J, Spieth PM, Rocco PR, Schultz MJ, Pelosi P, Gama de Abreu M. Intraoperative protective mechanical ventilation for prevention of postoperative pulmonary complications: a comprehensive review of the role of tidal volume, positive end-expiratory pressure, and lung recruitment maneuvers. Anesthesiology. 2015;123(3):692–713.CrossRef
15.
go back to reference Serpa Neto A, Hemmes SN, Barbas CS, Beiderlinden M, Biehl M, Binnekade JM, Canet J, Fernandez-Bustamante A, Futier E, Gajic O, et al. Protective versus conventional ventilation for surgery: a systematic review and individual patient data Meta-analysis. Anesthesiology. 2015;123(1):66–78.CrossRef Serpa Neto A, Hemmes SN, Barbas CS, Beiderlinden M, Biehl M, Binnekade JM, Canet J, Fernandez-Bustamante A, Futier E, Gajic O, et al. Protective versus conventional ventilation for surgery: a systematic review and individual patient data Meta-analysis. Anesthesiology. 2015;123(1):66–78.CrossRef
16.
go back to reference Futier E, Marret E, Jaber S. Perioperative positive pressure ventilation: an integrated approach to improve pulmonary care. Anesthesiology. 2014;121(2):400–8.CrossRef Futier E, Marret E, Jaber S. Perioperative positive pressure ventilation: an integrated approach to improve pulmonary care. Anesthesiology. 2014;121(2):400–8.CrossRef
17.
go back to reference Slutsky AS, Ranieri VM. Ventilator-induced lung injury. N Engl J Med. 2013;369(22):2126–36.CrossRef Slutsky AS, Ranieri VM. Ventilator-induced lung injury. N Engl J Med. 2013;369(22):2126–36.CrossRef
18.
go back to reference Kiss T, Wittenstein J, Becker C, Birr K, Cinnella G, Cohen E, El Tahan MR, Falcao LF, Gregoretti C, Granell M, et al. Protective ventilation with high versus low positive end-expiratory pressure during one-lung ventilation for thoracic surgery (PROTHOR): study protocol for a randomized controlled trial. Trials. 2019;20(1):213.CrossRef Kiss T, Wittenstein J, Becker C, Birr K, Cinnella G, Cohen E, El Tahan MR, Falcao LF, Gregoretti C, Granell M, et al. Protective ventilation with high versus low positive end-expiratory pressure during one-lung ventilation for thoracic surgery (PROTHOR): study protocol for a randomized controlled trial. Trials. 2019;20(1):213.CrossRef
19.
go back to reference Marret E, Cinotti R, Berard L, Piriou V, Jobard J, Barrucand B, Radu D, Jaber S, Bonnet F, the PPVsg. Protective ventilation during anaesthesia reduces major postoperative complications after lung cancer surgery: a double-blind randomised controlled trial. Eur J Anaesthesiol. 2018;35(10):727–35.CrossRef Marret E, Cinotti R, Berard L, Piriou V, Jobard J, Barrucand B, Radu D, Jaber S, Bonnet F, the PPVsg. Protective ventilation during anaesthesia reduces major postoperative complications after lung cancer surgery: a double-blind randomised controlled trial. Eur J Anaesthesiol. 2018;35(10):727–35.CrossRef
20.
go back to reference Lohser J, Slinger P. Lung injury after one-lung ventilation: a review of the pathophysiologic mechanisms affecting the ventilated and the collapsed lung. Anesth Analg. 2015;121(2):302–18.CrossRef Lohser J, Slinger P. Lung injury after one-lung ventilation: a review of the pathophysiologic mechanisms affecting the ventilated and the collapsed lung. Anesth Analg. 2015;121(2):302–18.CrossRef
21.
go back to reference von Elm E, Altman DG, Egger M, Pocock SJ, Gotzsche PC, Vandenbroucke JP, Initiative S. The strengthening the reporting of observational studies in epidemiology (STROBE) statement: guidelines for reporting observational studies. Int J Surg. 2014;12(12):1495–9.CrossRef von Elm E, Altman DG, Egger M, Pocock SJ, Gotzsche PC, Vandenbroucke JP, Initiative S. The strengthening the reporting of observational studies in epidemiology (STROBE) statement: guidelines for reporting observational studies. Int J Surg. 2014;12(12):1495–9.CrossRef
22.
go back to reference Bendixen HH, Hedley-Whyte J, Laver MB. Impaired oxygenation in surgical patients during general anesthesia with controlled ventilation. A concept of atelectasis. N Engl J Med. 1963;269:991–6.CrossRef Bendixen HH, Hedley-Whyte J, Laver MB. Impaired oxygenation in surgical patients during general anesthesia with controlled ventilation. A concept of atelectasis. N Engl J Med. 1963;269:991–6.CrossRef
23.
go back to reference Benumof J. Conventional and differential lung management of one-lung ventilation. In: Anesthesia for thoracic surgery. Philadelphia: Saunders, W.B; 1995. p. 799. Benumof J. Conventional and differential lung management of one-lung ventilation. In: Anesthesia for thoracic surgery. Philadelphia: Saunders, W.B; 1995. p. 799.
24.
go back to reference Slinger P. Perioperative lung injury. Best Pract Res Clin Anaesthesiol. 2008;22(1):177–91.CrossRef Slinger P. Perioperative lung injury. Best Pract Res Clin Anaesthesiol. 2008;22(1):177–91.CrossRef
25.
go back to reference Futier E, Constantin JM, Paugam-Burtz C, Pascal J, Eurin M, Neuschwander A, Marret E, Beaussier M, Gutton C, Lefrant JY, et al. A trial of intraoperative low-tidal-volume ventilation in abdominal surgery. N Engl J Med. 2013;369(5):428–37.CrossRef Futier E, Constantin JM, Paugam-Burtz C, Pascal J, Eurin M, Neuschwander A, Marret E, Beaussier M, Gutton C, Lefrant JY, et al. A trial of intraoperative low-tidal-volume ventilation in abdominal surgery. N Engl J Med. 2013;369(5):428–37.CrossRef
26.
go back to reference Blank RS, Colquhoun DA, Durieux ME, Kozower BD, McMurry TL, Bender SP, Naik BI. Management of one-lung Ventilation: impact of tidal volume on complications after thoracic surgery. Anesthesiology. 2016;124(6):1286–95.CrossRef Blank RS, Colquhoun DA, Durieux ME, Kozower BD, McMurry TL, Bender SP, Naik BI. Management of one-lung Ventilation: impact of tidal volume on complications after thoracic surgery. Anesthesiology. 2016;124(6):1286–95.CrossRef
27.
go back to reference Colquhoun DA, Naik BI, Durieux ME, Shanks AM, Kheterpal S, Bender SP, Blank RS, Investigators M. Management of 1-lung ventilation-variation and trends in clinical practice: a report from the multicenter perioperative outcomes group. Anesth Analg. 2018;126(2):495–502.CrossRef Colquhoun DA, Naik BI, Durieux ME, Shanks AM, Kheterpal S, Bender SP, Blank RS, Investigators M. Management of 1-lung ventilation-variation and trends in clinical practice: a report from the multicenter perioperative outcomes group. Anesth Analg. 2018;126(2):495–502.CrossRef
28.
go back to reference Blank RS, Lesh RE. Low tidal volume ventilation in the surgical patient: not particularly low and perhaps not particularly protective. Anesth Analg. 2019;128(4):831–3.CrossRef Blank RS, Lesh RE. Low tidal volume ventilation in the surgical patient: not particularly low and perhaps not particularly protective. Anesth Analg. 2019;128(4):831–3.CrossRef
29.
go back to reference Ball L, Hemmes SNT, Serpa Neto A, Bluth T, Canet J, Hiesmayr M, Hollmann MW, Mills GH, Vidal Melo MF, Putensen C, et al. Intraoperative ventilation settings and their associations with postoperative pulmonary complications in obese patients. Br J Anaesth. 2018;121(4):899–908.CrossRef Ball L, Hemmes SNT, Serpa Neto A, Bluth T, Canet J, Hiesmayr M, Hollmann MW, Mills GH, Vidal Melo MF, Putensen C, et al. Intraoperative ventilation settings and their associations with postoperative pulmonary complications in obese patients. Br J Anaesth. 2018;121(4):899–908.CrossRef
30.
go back to reference Baudouin SV. Lung injury after thoracotomy. Br J Anaesth. 2003;91(1):132–42.CrossRef Baudouin SV. Lung injury after thoracotomy. Br J Anaesth. 2003;91(1):132–42.CrossRef
31.
go back to reference Cao C, Louie BE, Melfi F, Veronesi G, Razzak R, Romano G, Novellis P, Ranganath NK, Park BJ. Impact of pulmonary function on pulmonary complications after robotic-assisted thoracoscopic lobectomy. Eur J Cardiothorac Surg. 2020; 57(2):338–342. Cao C, Louie BE, Melfi F, Veronesi G, Razzak R, Romano G, Novellis P, Ranganath NK, Park BJ. Impact of pulmonary function on pulmonary complications after robotic-assisted thoracoscopic lobectomy. Eur J Cardiothorac Surg. 2020; 57(2):338–342.
32.
go back to reference Im Y, Park HY, Shin S, Shin SH, Lee H, Ahn JH, Sohn I, Cho JH, Kim HK, Zo JI, et al. Prevalence of and risk factors for pulmonary complications after curative resection in otherwise healthy elderly patients with early stage lung cancer. Respir Res. 2019;20(1):136.CrossRef Im Y, Park HY, Shin S, Shin SH, Lee H, Ahn JH, Sohn I, Cho JH, Kim HK, Zo JI, et al. Prevalence of and risk factors for pulmonary complications after curative resection in otherwise healthy elderly patients with early stage lung cancer. Respir Res. 2019;20(1):136.CrossRef
33.
go back to reference Serpa Neto A, Hemmes SN, Barbas CS, Beiderlinden M, Fernandez-Bustamante A, Futier E, Hollmann MW, Jaber S, Kozian A, Licker M, et al. Incidence of mortality and morbidity related to postoperative lung injury in patients who have undergone abdominal or thoracic surgery: a systematic review and meta-analysis. Lancet Respir Med. 2014;2(12):1007–15.CrossRef Serpa Neto A, Hemmes SN, Barbas CS, Beiderlinden M, Fernandez-Bustamante A, Futier E, Hollmann MW, Jaber S, Kozian A, Licker M, et al. Incidence of mortality and morbidity related to postoperative lung injury in patients who have undergone abdominal or thoracic surgery: a systematic review and meta-analysis. Lancet Respir Med. 2014;2(12):1007–15.CrossRef
34.
go back to reference Writing Committee for the PCGotPVNftCTNotESoA, Bluth T, Serpa Neto A, Schultz MJ, Pelosi P, Gama de Abreu M. Effect of Intraoperative High Positive End-Expiratory Pressure (PEEP) With Recruitment Maneuvers vs Low PEEP on Postoperative Pulmonary Complications in Obese Patients: A Randomized Clinical Trial. JAMA. 2019;321(23):2292–305.CrossRef Writing Committee for the PCGotPVNftCTNotESoA, Bluth T, Serpa Neto A, Schultz MJ, Pelosi P, Gama de Abreu M. Effect of Intraoperative High Positive End-Expiratory Pressure (PEEP) With Recruitment Maneuvers vs Low PEEP on Postoperative Pulmonary Complications in Obese Patients: A Randomized Clinical Trial. JAMA. 2019;321(23):2292–305.CrossRef
35.
go back to reference Pelosi P, Rocco PRM, Gama de Abreu M. Close down the lungs and keep them resting to minimize ventilator-induced lung injury. Crit Care. 2018;22(1):72.CrossRef Pelosi P, Rocco PRM, Gama de Abreu M. Close down the lungs and keep them resting to minimize ventilator-induced lung injury. Crit Care. 2018;22(1):72.CrossRef
Metadata
Title
Intraoperative mechanical ventilation practice in thoracic surgery patients and its association with postoperative pulmonary complications: results of a multicenter prospective observational study
Authors
Christopher Uhlig
Ary Serpa Neto
Meta van der Woude
Thomas Kiss
Jakob Wittenstein
Benjamin Shelley
Helen Scholes
Michael Hiesmayr
Marcos Francisco Vidal Melo
Daniele Sances
Nesil Coskunfirat
Paolo Pelosi
Marcus Schultz
Marcelo Gama de Abreu
LAS VEGAS# investigators, Protective Ventilation Network (PROVEnet), Clinical Trial Network of the European Society of Anaesthesiology
Publication date
01-12-2020
Publisher
BioMed Central
Published in
BMC Anesthesiology / Issue 1/2020
Electronic ISSN: 1471-2253
DOI
https://doi.org/10.1186/s12871-020-01098-4

Other articles of this Issue 1/2020

BMC Anesthesiology 1/2020 Go to the issue