Skip to main content
Top
Published in: BMC Anesthesiology 1/2020

Open Access 01-12-2020 | Electroencephalography | Research article

Monitoring of anesthetic depth and EEG band power using phase lag entropy during propofol anesthesia

Authors: Hye Won Shin, Hyun Jung Kim, Yoo Kyung Jang, Hae Sun You, Hyub Huh, Yoon Ji Choi, Seung Uk Choi, Ji Su Hong

Published in: BMC Anesthesiology | Issue 1/2020

Login to get access

Abstract

Background

Phase lag entropy (PLE) is a novel anesthetic depth indicator that uses four-channel electroencephalography (EEG) to measure the temporal pattern diversity in the phase relationship of frequency signals in the brain. The purpose of the study was to evaluate the anesthetic depth monitoring using PLE and to evaluate the correlation between PLE and bispectral index (BIS) values during propofol anesthesia.

Methods

In thirty-five adult patients undergoing elective surgery, anesthesia was induced with propofol using target-controlled infusion (the Schneider model). We recorded the PLE value, raw EEG, BIS value, and hemodynamic data when the target effect-site concentration (Ce) of propofol reached 2, 3, 4, 5, and 6 μg/ml before intubation and 6, 5, 4, 3, 2 μg/ml after intubation and injection of muscle relaxant. We analyzed whether PLE and raw EEG data from the PLE monitor reflected the anesthetic depth as the Ce of propofol changed, and whether PLE values were comparable to BIS values.

Results

PLE values were inversely correlated to changes in propofol Ce (propofol Ce from 0 to 6.0 μg/ml, r2 = − 0.83; propofol Ce from 6.0 to 2.0 μg/ml, r2 = − 0.46). In the spectral analysis of EEG acquired from the PLE monitor, the persistence spectrogram revealed a wide distribution of power at loss of consciousness (LOC) and recovery of consciousness (ROC), with a narrow distribution during unconsciousness. The power spectrogram showed the typical pattern seen in propofol anesthesia with slow alpha frequency band oscillation. The PLE value demonstrated a strong correlation with the BIS value during the change in propofol Ce from 0 to 6.0 μg/ml (r2 = 0.84). PLE and BIS values were similar at LOC (62.3 vs. 61.8) (P > 0.05), but PLE values were smaller than BIS values at ROC (64.4 vs 75.7) (P < 0.05).

Conclusions

The PLE value is a useful anesthetic depth indicator, similar to the BIS value, during propofol anesthesia. Spectral analysis of EEG acquired from the PLE monitor demonstrated the typical patterns seen in propofol anesthesia.

Trial registration

This clinical trial was retrospectively registered at ClinicalTrials.gov at October 2017 (NCT03299621).
Literature
1.
go back to reference Dehaene S, Changeux JP. Experimental and theoretical approaches to conscious processing. Neuron. 2011;70:200–27.CrossRef Dehaene S, Changeux JP. Experimental and theoretical approaches to conscious processing. Neuron. 2011;70:200–27.CrossRef
2.
go back to reference Alkire MT, Hudetz AG, Tononi G. Consciousness and anesthesia. Science. 2008;322:876–80.CrossRef Alkire MT, Hudetz AG, Tononi G. Consciousness and anesthesia. Science. 2008;322:876–80.CrossRef
3.
go back to reference Lee U, Kim S, Noh GJ, Choi BM, Hwang E, Mashour GA. The directionality and functional organization of frontoparietal connectivity during consciousness and anesthesia in humans. Conscious Cogn. 2009;18:1069–78.CrossRef Lee U, Kim S, Noh GJ, Choi BM, Hwang E, Mashour GA. The directionality and functional organization of frontoparietal connectivity during consciousness and anesthesia in humans. Conscious Cogn. 2009;18:1069–78.CrossRef
4.
go back to reference Lee H, Noh GJ, Joo P, Choi BM, Silverstein BH, Kim M, et al. Diversity of functional connectivity patterns is reduced in propofol-induced unconsciousness. Hum Brain Mapp. 2017;38:4980–95.CrossRef Lee H, Noh GJ, Joo P, Choi BM, Silverstein BH, Kim M, et al. Diversity of functional connectivity patterns is reduced in propofol-induced unconsciousness. Hum Brain Mapp. 2017;38:4980–95.CrossRef
5.
go back to reference Barttfeld P, Uhrig L, Sitt JD, Sigman M, Jarraya B, Dehaene S. Signature of consciousness in the dynamics of resting-state brain activity. Proc Natl Acad Sci. 2015;112:887–92.CrossRef Barttfeld P, Uhrig L, Sitt JD, Sigman M, Jarraya B, Dehaene S. Signature of consciousness in the dynamics of resting-state brain activity. Proc Natl Acad Sci. 2015;112:887–92.CrossRef
6.
go back to reference Fahy BG, Chau DF. The Technology of Processed Electroencephalogram Monitoring Devices for assessment of depth of anesthesia. Anesth Analg. 2018;126:111–7.CrossRef Fahy BG, Chau DF. The Technology of Processed Electroencephalogram Monitoring Devices for assessment of depth of anesthesia. Anesth Analg. 2018;126:111–7.CrossRef
7.
go back to reference Purdon PL, Sampson A, Pavone KJ, Brown EN. Clinical electroencephalography for anesthesiologists. Anesthesiology. 2015;123:937–60.CrossRef Purdon PL, Sampson A, Pavone KJ, Brown EN. Clinical electroencephalography for anesthesiologists. Anesthesiology. 2015;123:937–60.CrossRef
8.
go back to reference Purdon PL, Pierce ET, Mukamel EA, Prerau MJ, Walsh JL, Wong KFK, et al. Electroencephalogram signatures of loss and recovery of consciousness from propofol. Proc Natl Acad Sci. 2013;110:E1142–51.CrossRef Purdon PL, Pierce ET, Mukamel EA, Prerau MJ, Walsh JL, Wong KFK, et al. Electroencephalogram signatures of loss and recovery of consciousness from propofol. Proc Natl Acad Sci. 2013;110:E1142–51.CrossRef
9.
go back to reference Hudetz AG, Liu X, Pillay S. Dynamic repertoire of intrinsic brain states is reduced in Propofol-induced unconsciousness. Brain Connect. 2015;5:10–22.CrossRef Hudetz AG, Liu X, Pillay S. Dynamic repertoire of intrinsic brain states is reduced in Propofol-induced unconsciousness. Brain Connect. 2015;5:10–22.CrossRef
10.
go back to reference Lee U, Ku S, Noh G, Baek S, Choi B, Mashour GA. Disruption of frontal–parietal communication by ketamine, Propofol, and Sevoflurane. Anesthesiology. 2013;118:1264–75.CrossRef Lee U, Ku S, Noh G, Baek S, Choi B, Mashour GA. Disruption of frontal–parietal communication by ketamine, Propofol, and Sevoflurane. Anesthesiology. 2013;118:1264–75.CrossRef
11.
go back to reference Ward LM, Ku S-W, Lee U, Noh G-J, Jun I-G, Mashour GA. Preferential inhibition of frontal-to-parietal feedback connectivity is a neurophysiologic correlate of general anesthesia in surgical patients. PLoS One. 2011;6:e25155.CrossRef Ward LM, Ku S-W, Lee U, Noh G-J, Jun I-G, Mashour GA. Preferential inhibition of frontal-to-parietal feedback connectivity is a neurophysiologic correlate of general anesthesia in surgical patients. PLoS One. 2011;6:e25155.CrossRef
12.
go back to reference Akeju O, Westover MB, Pavone KJ, Sampson AL, Hartnack KE, Brown EN, et al. Effects of Sevoflurane and Propofol on frontal electroencephalogram power and coherence. Anesthesiology. 2014;121:990–8.CrossRef Akeju O, Westover MB, Pavone KJ, Sampson AL, Hartnack KE, Brown EN, et al. Effects of Sevoflurane and Propofol on frontal electroencephalogram power and coherence. Anesthesiology. 2014;121:990–8.CrossRef
13.
go back to reference Hajat Z, Ahmad N, Andrzejowski J. The role and limitations of EEG-based depth of anaesthesia monitoring in theatres and intensive care. Anaesthesia. 2017;72:38–47.CrossRef Hajat Z, Ahmad N, Andrzejowski J. The role and limitations of EEG-based depth of anaesthesia monitoring in theatres and intensive care. Anaesthesia. 2017;72:38–47.CrossRef
14.
go back to reference Johansen JW. Update on bispectral index monitoring. Best Pract Res Clin Anaesthesiol. 2006;20:81–99.CrossRef Johansen JW. Update on bispectral index monitoring. Best Pract Res Clin Anaesthesiol. 2006;20:81–99.CrossRef
15.
go back to reference Cimenser A, Purdon PL, Pierce ET, Walsh JL, Salazar-Gomez AF, Harrell PG, et al. Tracking brain states under general anesthesia by using global coherence analysis. Proc Natl Acad Sci. 2011;108:8832–7.CrossRef Cimenser A, Purdon PL, Pierce ET, Walsh JL, Salazar-Gomez AF, Harrell PG, et al. Tracking brain states under general anesthesia by using global coherence analysis. Proc Natl Acad Sci. 2011;108:8832–7.CrossRef
16.
go back to reference Punjasawadwong Y, Phongchiewboon A, Bunchungmongkol N. Bispectral index for improving anaesthetic delivery and postoperative recovery. Cochrane Database Syst Rev. 2014;17:CD003843. Punjasawadwong Y, Phongchiewboon A, Bunchungmongkol N. Bispectral index for improving anaesthetic delivery and postoperative recovery. Cochrane Database Syst Rev. 2014;17:CD003843.
17.
go back to reference Nasraway SA, Wu EC, Kelleher RM, Yasuda CM, Donnelly AM. How reliable is the Bispectral index in critically ill patients? A prospective, comparative, single-blinded observer study. Crit Care Med. 2002;30:1483–7.CrossRef Nasraway SA, Wu EC, Kelleher RM, Yasuda CM, Donnelly AM. How reliable is the Bispectral index in critically ill patients? A prospective, comparative, single-blinded observer study. Crit Care Med. 2002;30:1483–7.CrossRef
18.
go back to reference Ki S, Kim KM, Lee YH, Bang JY, Choi BM, Noh GJ. Phase lag entropy as a hypnotic depth indicator during propofol sedation. Anaesthesia. 2019;74:1033–40.PubMed Ki S, Kim KM, Lee YH, Bang JY, Choi BM, Noh GJ. Phase lag entropy as a hypnotic depth indicator during propofol sedation. Anaesthesia. 2019;74:1033–40.PubMed
19.
go back to reference Seo KH, Kim KM, Lee SK, John H, Lee J. Comparative analysis of phase lag entropy and Bispectral index as anesthetic depth indicators in patients undergoing thyroid surgery with nerve integrity monitoring. J Korean Med Sci. 2019;34:e151.CrossRef Seo KH, Kim KM, Lee SK, John H, Lee J. Comparative analysis of phase lag entropy and Bispectral index as anesthetic depth indicators in patients undergoing thyroid surgery with nerve integrity monitoring. J Korean Med Sci. 2019;34:e151.CrossRef
20.
go back to reference Jun MR, Yoo JH, Park SY, Na S, Kwon H, Nho J-H, et al. Assessment of phase-lag entropy, a new measure of electroencephalographic signals, for propofol-induced sedation. Korean J Anesthesiol. 2019;72:351.CrossRef Jun MR, Yoo JH, Park SY, Na S, Kwon H, Nho J-H, et al. Assessment of phase-lag entropy, a new measure of electroencephalographic signals, for propofol-induced sedation. Korean J Anesthesiol. 2019;72:351.CrossRef
21.
go back to reference Fulop SA, Fitz K. Algorithms for computing the time-corrected instantaneous frequency (reassigned) spectrogram, with applications. J Acoust Soc Am. 2006;119:360–71.CrossRef Fulop SA, Fitz K. Algorithms for computing the time-corrected instantaneous frequency (reassigned) spectrogram, with applications. J Acoust Soc Am. 2006;119:360–71.CrossRef
22.
go back to reference Babadi B, Brown EN. A review of multitaper spectral analysis. IEEE Trans Biomed Eng. 2014;61:1555–64.CrossRef Babadi B, Brown EN. A review of multitaper spectral analysis. IEEE Trans Biomed Eng. 2014;61:1555–64.CrossRef
23.
go back to reference Musialowicz T, Lahtinen P, Pitkänen O, Kurola J, Parviainen I. Comparison of spectral entropy and BIS VISTA™ monitor during general anesthesia for cardiac surgery. J Clin Monit Comput. 2011;25:95–103.CrossRef Musialowicz T, Lahtinen P, Pitkänen O, Kurola J, Parviainen I. Comparison of spectral entropy and BIS VISTA™ monitor during general anesthesia for cardiac surgery. J Clin Monit Comput. 2011;25:95–103.CrossRef
24.
go back to reference Koo BN, Lee JR, Noh GJ, Lee JH, Kang YR, Han DW. A pharmacodynamic analysis of factors affecting recovery from anesthesia with propofol-remifentanil target controlled infusion. Acta Pharmacol Sin. 2012;33:1080–4.CrossRef Koo BN, Lee JR, Noh GJ, Lee JH, Kang YR, Han DW. A pharmacodynamic analysis of factors affecting recovery from anesthesia with propofol-remifentanil target controlled infusion. Acta Pharmacol Sin. 2012;33:1080–4.CrossRef
25.
go back to reference Hemmings HC Jr, Akabas MH, Goldstein PA, Trudell JR, Orser BA, Harrison NL. Emerging molecular mechanisms of general anesthetic action. Trends Pharmacol Sci. 2005;26:503–10.CrossRef Hemmings HC Jr, Akabas MH, Goldstein PA, Trudell JR, Orser BA, Harrison NL. Emerging molecular mechanisms of general anesthetic action. Trends Pharmacol Sci. 2005;26:503–10.CrossRef
26.
go back to reference Tinker JH, Sharbrough FW, Michenfelder JD. Anterior shift of the dominant EEG rhytham during anesthesia in the Java monkey: correlation with anesthetic potency. Anesthesiology. 1977;46(4):252–9.CrossRef Tinker JH, Sharbrough FW, Michenfelder JD. Anterior shift of the dominant EEG rhytham during anesthesia in the Java monkey: correlation with anesthetic potency. Anesthesiology. 1977;46(4):252–9.CrossRef
27.
go back to reference Lewis LD, Weiner VS, Mukamel EA, Donoghue JA, Eskandar EN, Madsen JR, et al. Rapid fragmentation of neuronal networks at the onset of propofol-induced unconsciousness. Proc Natl Acad Sci. 2012;109:E3377–86.CrossRef Lewis LD, Weiner VS, Mukamel EA, Donoghue JA, Eskandar EN, Madsen JR, et al. Rapid fragmentation of neuronal networks at the onset of propofol-induced unconsciousness. Proc Natl Acad Sci. 2012;109:E3377–86.CrossRef
28.
go back to reference Devor M, Zalkind V. Reversible analgesia, atonia, and loss of consciousness on bilateral intracerebral microinjection of pentobarbital. Pain. 2001;94:101–12.CrossRef Devor M, Zalkind V. Reversible analgesia, atonia, and loss of consciousness on bilateral intracerebral microinjection of pentobarbital. Pain. 2001;94:101–12.CrossRef
29.
go back to reference Lee JM, Akeju O, Terzakis K, Pavone KJ, Deng H, Houle TT, et al. A prospective study of age-dependent changes in Propofol-induced electroencephalogram oscillations in children. Anesthesiology. 2017;127:293–306.CrossRef Lee JM, Akeju O, Terzakis K, Pavone KJ, Deng H, Houle TT, et al. A prospective study of age-dependent changes in Propofol-induced electroencephalogram oscillations in children. Anesthesiology. 2017;127:293–306.CrossRef
30.
go back to reference Choi B-M. Characteristics of electroencephalogram signatures in sedated patients induced by various anesthetic agents. J Dent Anesth Pain Med. 2017;17:241–51.CrossRef Choi B-M. Characteristics of electroencephalogram signatures in sedated patients induced by various anesthetic agents. J Dent Anesth Pain Med. 2017;17:241–51.CrossRef
31.
go back to reference Messner M, Beese U, Romstöck J, Dinkel M, Tschaikowsky K. The bispectral index declines during neuromuscular block in fully awake persons. Anesth Analg. 2003;97:488–91.CrossRef Messner M, Beese U, Romstöck J, Dinkel M, Tschaikowsky K. The bispectral index declines during neuromuscular block in fully awake persons. Anesth Analg. 2003;97:488–91.CrossRef
32.
go back to reference Shin YC, Kim SI, Ok SY, Kim SC. The influence of a muscle relaxant on bispectral index during the propofol induction of anesthesia. Korean J Anesthesiol. 2008;54:373–7.CrossRef Shin YC, Kim SI, Ok SY, Kim SC. The influence of a muscle relaxant on bispectral index during the propofol induction of anesthesia. Korean J Anesthesiol. 2008;54:373–7.CrossRef
33.
go back to reference Bruhn J, Bouillon TW, Shafer SL. Electromyographic activity falsely elevates the bispectral index. Anesthesiology. 2000;92:1485–7.CrossRef Bruhn J, Bouillon TW, Shafer SL. Electromyographic activity falsely elevates the bispectral index. Anesthesiology. 2000;92:1485–7.CrossRef
Metadata
Title
Monitoring of anesthetic depth and EEG band power using phase lag entropy during propofol anesthesia
Authors
Hye Won Shin
Hyun Jung Kim
Yoo Kyung Jang
Hae Sun You
Hyub Huh
Yoon Ji Choi
Seung Uk Choi
Ji Su Hong
Publication date
01-12-2020
Publisher
BioMed Central
Published in
BMC Anesthesiology / Issue 1/2020
Electronic ISSN: 1471-2253
DOI
https://doi.org/10.1186/s12871-020-00964-5

Other articles of this Issue 1/2020

BMC Anesthesiology 1/2020 Go to the issue