Skip to main content
Top
Published in: Journal of Translational Medicine 1/2022

Open Access 01-12-2022 | Gene Therapy in Oncology | Review

Current advances in gene therapy of mitochondrial diseases

Authors: Vladislav O. Soldatov, Marina V. Kubekina, Marina Yu. Skorkina, Andrei E. Belykh, Tatiana V. Egorova, Mikhail V. Korokin, Mikhail V. Pokrovskiy, Alexey V. Deykin, Plamena R. Angelova

Published in: Journal of Translational Medicine | Issue 1/2022

Login to get access

Abstract

Mitochondrial diseases (MD) are a heterogeneous group of multisystem disorders involving metabolic errors. MD are characterized by extremely heterogeneous symptoms, ranging from organ-specific to multisystem dysfunction with different clinical courses. Most primary MD are autosomal recessive but maternal inheritance (from mtDNA), autosomal dominant, and X-linked inheritance is also known. Mitochondria are unique energy-generating cellular organelles designed to survive and contain their own unique genetic coding material, a circular mtDNA fragment of approximately 16,000 base pairs. The mitochondrial genetic system incorporates closely interacting bi-genomic factors encoded by the nuclear and mitochondrial genomes. Understanding the dynamics of mitochondrial genetics supporting mitochondrial biogenesis is especially important for the development of strategies for the treatment of rare and difficult-to-diagnose diseases. Gene therapy is one of the methods for correcting mitochondrial disorders.

Graphical Abstract

Literature
1.
go back to reference Stenton SL, Prokisch H. Genetics of mitochondrial diseases: identifying mutations to help diagnosis. EBioMedicine. 2020;56:102784.CrossRef Stenton SL, Prokisch H. Genetics of mitochondrial diseases: identifying mutations to help diagnosis. EBioMedicine. 2020;56:102784.CrossRef
2.
go back to reference Angelova PR. Sources and triggers of oxidative damage in neurodegeneration. Free Radical Biol Med. 2021;173:52–63.CrossRef Angelova PR. Sources and triggers of oxidative damage in neurodegeneration. Free Radical Biol Med. 2021;173:52–63.CrossRef
3.
go back to reference Kanungo S, Morton J, Neelakantan M, Ching K, Saeedian J, Goldstein A. Mitochondrial disorders. Ann Transl Med. 2018;6:475–475.CrossRef Kanungo S, Morton J, Neelakantan M, Ching K, Saeedian J, Goldstein A. Mitochondrial disorders. Ann Transl Med. 2018;6:475–475.CrossRef
4.
go back to reference Angelova PR, Esteras N, Abramov AY. Mitochondria and lipid peroxidation in the mechanism of neurodegeneration: finding ways for prevention. Med Res Rev. 2021;41:770–84.CrossRef Angelova PR, Esteras N, Abramov AY. Mitochondria and lipid peroxidation in the mechanism of neurodegeneration: finding ways for prevention. Med Res Rev. 2021;41:770–84.CrossRef
5.
go back to reference Avula S, Parikh S, Demarest S, Kurz J, Gropman A. Treatment of mitochondrial disorders. Curr Treat Options Neurol. 2014;16:292.CrossRef Avula S, Parikh S, Demarest S, Kurz J, Gropman A. Treatment of mitochondrial disorders. Curr Treat Options Neurol. 2014;16:292.CrossRef
6.
go back to reference Ganetzky RD, Falk MJ. 8-year retrospective analysis of intravenous arginine therapy for acute metabolic strokes in pediatric mitochondrial disease. Mol Genet Metab. 2018;123:301–8.CrossRef Ganetzky RD, Falk MJ. 8-year retrospective analysis of intravenous arginine therapy for acute metabolic strokes in pediatric mitochondrial disease. Mol Genet Metab. 2018;123:301–8.CrossRef
7.
go back to reference Ikawa M, Povalko N, Koga Y. Arginine therapy in mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes. Curr Opin Clin Nutr Metab Care. 2020;23:17–22.CrossRef Ikawa M, Povalko N, Koga Y. Arginine therapy in mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes. Curr Opin Clin Nutr Metab Care. 2020;23:17–22.CrossRef
8.
go back to reference Wu S-S, Li Q-C, Yin C-Q, Xue W, Song C-Q. Advances in CRISPR/Cas-based gene therapy in human genetic diseases. Theranostics. 2020;10:4374–82.CrossRef Wu S-S, Li Q-C, Yin C-Q, Xue W, Song C-Q. Advances in CRISPR/Cas-based gene therapy in human genetic diseases. Theranostics. 2020;10:4374–82.CrossRef
9.
go back to reference Skulachev VP. Mitochondrial physiology and pathology; concepts of programmed death of organelles, cells and organisms. Mol Aspects Med. 1999;20:139–84.CrossRef Skulachev VP. Mitochondrial physiology and pathology; concepts of programmed death of organelles, cells and organisms. Mol Aspects Med. 1999;20:139–84.CrossRef
10.
go back to reference Schmidt O, Pfanner N, Meisinger C. Mitochondrial protein import: from proteomics to functional mechanisms. Nat Rev Mol Cell Biol. 2010;11:655–67.CrossRef Schmidt O, Pfanner N, Meisinger C. Mitochondrial protein import: from proteomics to functional mechanisms. Nat Rev Mol Cell Biol. 2010;11:655–67.CrossRef
11.
go back to reference Kadenbach B. Introduction to mitochondrial oxidative phosphorylation. In: Kadenbach B, editor. Mitochondrial oxidative phosphorylation. New York: Springer; 2012.CrossRef Kadenbach B. Introduction to mitochondrial oxidative phosphorylation. In: Kadenbach B, editor. Mitochondrial oxidative phosphorylation. New York: Springer; 2012.CrossRef
12.
go back to reference Liu YJ, McIntyre RL, Janssens GE, Houtkooper RH. Mitochondrial fission and fusion: a dynamic role in aging and potential target for age-related disease. Mech Ageing Dev. 2020;186:111212.CrossRef Liu YJ, McIntyre RL, Janssens GE, Houtkooper RH. Mitochondrial fission and fusion: a dynamic role in aging and potential target for age-related disease. Mech Ageing Dev. 2020;186:111212.CrossRef
13.
go back to reference Quirós PM, Langer T, López-Otín C. New roles for mitochondrial proteases in health, ageing and disease. Nat Rev Mol Cell Biol. 2015;16:345–59.CrossRef Quirós PM, Langer T, López-Otín C. New roles for mitochondrial proteases in health, ageing and disease. Nat Rev Mol Cell Biol. 2015;16:345–59.CrossRef
14.
go back to reference Nguyen TN, Padman BS, Lazarou M. Deciphering the molecular signals of PINK1/parkin mitophagy. Trends Cell Biol. 2016;26:733–44.CrossRef Nguyen TN, Padman BS, Lazarou M. Deciphering the molecular signals of PINK1/parkin mitophagy. Trends Cell Biol. 2016;26:733–44.CrossRef
15.
go back to reference Youle RJ, van der Bliek AM. Mitochondrial fission, fusion, and stress. Science. 2012;337:1062–5.CrossRef Youle RJ, van der Bliek AM. Mitochondrial fission, fusion, and stress. Science. 2012;337:1062–5.CrossRef
16.
go back to reference D’Souza AR, Minczuk M. Mitochondrial transcription and translation: overview. Essays Biochem. 2018;62:309–20.CrossRef D’Souza AR, Minczuk M. Mitochondrial transcription and translation: overview. Essays Biochem. 2018;62:309–20.CrossRef
17.
go back to reference Filograna R, Mennuni M, Alsina D, Larsson N. Mitochondrial DNA copy number in human disease: the more the better? FEBS Lett. 2021;595:976–1002.CrossRef Filograna R, Mennuni M, Alsina D, Larsson N. Mitochondrial DNA copy number in human disease: the more the better? FEBS Lett. 2021;595:976–1002.CrossRef
18.
go back to reference Wallace DC, Chalkia D. Mitochondrial DNA genetics and the heteroplasmy conundrum in evolution and disease. Cold Spring Harb Perspect Biol. 2013;5:a021220–a021220.CrossRef Wallace DC, Chalkia D. Mitochondrial DNA genetics and the heteroplasmy conundrum in evolution and disease. Cold Spring Harb Perspect Biol. 2013;5:a021220–a021220.CrossRef
19.
go back to reference Shtolz N, Mishmar D. The mitochondrial genome–on selective constraints and signatures at the organism, cell, and single mitochondrion levels. Front Ecol Evol. 2019;7:342.CrossRef Shtolz N, Mishmar D. The mitochondrial genome–on selective constraints and signatures at the organism, cell, and single mitochondrion levels. Front Ecol Evol. 2019;7:342.CrossRef
20.
go back to reference Schon EA, Gilkerson RW. Functional complementation of mitochondrial DNAs: Mobilizing mitochondrial genetics against dysfunction. Biochim Biophys Acta. 2010;1800:245–9.CrossRef Schon EA, Gilkerson RW. Functional complementation of mitochondrial DNAs: Mobilizing mitochondrial genetics against dysfunction. Biochim Biophys Acta. 2010;1800:245–9.CrossRef
21.
go back to reference Thorburn DR, Dahl H-HM. Mitochondrial disorders: genetics, counseling, prenatal diagnosis and reproductive options. Am J Med Genet. 2001;106:102–14.CrossRef Thorburn DR, Dahl H-HM. Mitochondrial disorders: genetics, counseling, prenatal diagnosis and reproductive options. Am J Med Genet. 2001;106:102–14.CrossRef
22.
go back to reference DiMauro S, Schon EA. Mitochondrial respiratory-chain diseases. N Engl J Med. 2003;348:2656–68.CrossRef DiMauro S, Schon EA. Mitochondrial respiratory-chain diseases. N Engl J Med. 2003;348:2656–68.CrossRef
23.
go back to reference Gardner JL, Craven L, Turnbull DM, Taylor RW. Experimental strategies towards treating mitochondrial DNA disorders. Biosci Rep. 2007;27:139–50.CrossRef Gardner JL, Craven L, Turnbull DM, Taylor RW. Experimental strategies towards treating mitochondrial DNA disorders. Biosci Rep. 2007;27:139–50.CrossRef
24.
go back to reference Chinnery PF, et al. Primary mitochondrial disorders overview. In: Adam MP, Mirzaa GM, Pagon RA, Wallace SE, Bean LJ, Gripp KW, et al., editors. Genereviews®. Seattle, WA: University of Washington; 1993. Chinnery PF, et al. Primary mitochondrial disorders overview. In: Adam MP, Mirzaa GM, Pagon RA, Wallace SE, Bean LJ, Gripp KW, et al., editors. Genereviews®. Seattle, WA: University of Washington; 1993.
25.
go back to reference Kirby DM, Crawford M, Cleary MA, Dahl H-HM, Dennett X, Thorburn DR. Respiratory chain complex I deficiency: an underdiagnosed energy generation disorder. Neurology. 1999;52:1255–1255.CrossRef Kirby DM, Crawford M, Cleary MA, Dahl H-HM, Dennett X, Thorburn DR. Respiratory chain complex I deficiency: an underdiagnosed energy generation disorder. Neurology. 1999;52:1255–1255.CrossRef
26.
go back to reference Fassone E, Rahman S. Complex I deficiency: clinical features, biochemistry and molecular genetics. J Med Genet. 2012;49:578–90.CrossRef Fassone E, Rahman S. Complex I deficiency: clinical features, biochemistry and molecular genetics. J Med Genet. 2012;49:578–90.CrossRef
27.
go back to reference Abramov AY, Angelova PR. Cellular mechanisms of complex I-associated pathology. Biochem Soc Trans. 2019;47:1963–9.CrossRef Abramov AY, Angelova PR. Cellular mechanisms of complex I-associated pathology. Biochem Soc Trans. 2019;47:1963–9.CrossRef
28.
go back to reference Parikh S, Saneto R, Falk MJ, Anselm I, Cohen BH, Haas R, Medicine Society TM. A modern approach to the treatment of mitochondrial disease. Curr Treat Options Neurol. 2009;11:414–30.CrossRef Parikh S, Saneto R, Falk MJ, Anselm I, Cohen BH, Haas R, Medicine Society TM. A modern approach to the treatment of mitochondrial disease. Curr Treat Options Neurol. 2009;11:414–30.CrossRef
29.
go back to reference Prietsch V, Lindner M, Zschocke J, Nyhan WL, Hoffmann GF. Emergency management of inherited metabolic diseases. J Inherit Metab Dis. 2002;25:531–46.CrossRef Prietsch V, Lindner M, Zschocke J, Nyhan WL, Hoffmann GF. Emergency management of inherited metabolic diseases. J Inherit Metab Dis. 2002;25:531–46.CrossRef
30.
go back to reference Barshop BA, Naviaux RK, McGowan KA, Levine F, Nyhan WL, Loupis-Geller A, et al. Chronic treatment of mitochondrial disease patients with dichloroacetate. Mol Genet Metab. 2004;83:138–49.CrossRef Barshop BA, Naviaux RK, McGowan KA, Levine F, Nyhan WL, Loupis-Geller A, et al. Chronic treatment of mitochondrial disease patients with dichloroacetate. Mol Genet Metab. 2004;83:138–49.CrossRef
31.
go back to reference Khan NA, Govindaraj P, Meena AK, Thangaraj K. Mitochondrial disorders: challenges in diagnosis & treatment. Indian J Med Res. 2015;141:13.CrossRef Khan NA, Govindaraj P, Meena AK, Thangaraj K. Mitochondrial disorders: challenges in diagnosis & treatment. Indian J Med Res. 2015;141:13.CrossRef
32.
go back to reference Morava E, Rodenburg R, van Essen HZ, De Vries M, Smeitink J. Dietary intervention and oxidative phosphorylation capacity. J Inherit Metab Dis. 2006;29:589–589.CrossRef Morava E, Rodenburg R, van Essen HZ, De Vries M, Smeitink J. Dietary intervention and oxidative phosphorylation capacity. J Inherit Metab Dis. 2006;29:589–589.CrossRef
33.
go back to reference Bough KJ, Wetherington J, Hassel B, Pare JF, Gawryluk JW, Greene JG, et al. Mitochondrial biogenesis in the anticonvulsant mechanism of the ketogenic diet. Ann Neurol. 2006;60:223–35.CrossRef Bough KJ, Wetherington J, Hassel B, Pare JF, Gawryluk JW, Greene JG, et al. Mitochondrial biogenesis in the anticonvulsant mechanism of the ketogenic diet. Ann Neurol. 2006;60:223–35.CrossRef
34.
go back to reference Viscomi C, Bottani E, Zeviani M. Emerging concepts in the therapy of mitochondrial disease. Biochim Biophys Acta. 2015;1847:544–57.CrossRef Viscomi C, Bottani E, Zeviani M. Emerging concepts in the therapy of mitochondrial disease. Biochim Biophys Acta. 2015;1847:544–57.CrossRef
35.
go back to reference Tinker RJ, Lim AZ, Stefanetti RJ, McFarland R. Current and emerging clinical treatment in mitochondrial disease. Mol Diagn Ther. 2021;25:181–206.CrossRef Tinker RJ, Lim AZ, Stefanetti RJ, McFarland R. Current and emerging clinical treatment in mitochondrial disease. Mol Diagn Ther. 2021;25:181–206.CrossRef
36.
37.
go back to reference Borenfreund E, Bendich A. A study of the penetration of mammalian cells by deoxyribonucleic acids. J Biophys Biochem Cytol. 1961;9:81–91.CrossRef Borenfreund E, Bendich A. A study of the penetration of mammalian cells by deoxyribonucleic acids. J Biophys Biochem Cytol. 1961;9:81–91.CrossRef
38.
go back to reference Szybalska EH, Szybalski W. Genetics of human cell lines, IV. DNA-mediated heritable transformation of a biochemical trait. Proc Natl Acad Sci USA. 1962;48:2026–34.CrossRef Szybalska EH, Szybalski W. Genetics of human cell lines, IV. DNA-mediated heritable transformation of a biochemical trait. Proc Natl Acad Sci USA. 1962;48:2026–34.CrossRef
40.
go back to reference Rao RC, Zacks DN. Cell and gene therapy. In: Casaroli-Marano RP, Zarbin MA, editors. Developments in ophthalmology. S. Karger AG: Basel; 2014. p. 167–77. Rao RC, Zacks DN. Cell and gene therapy. In: Casaroli-Marano RP, Zarbin MA, editors. Developments in ophthalmology. S. Karger AG: Basel; 2014. p. 167–77.
41.
go back to reference Crudele JM, Chamberlain JS. AAV-based gene therapies for the muscular dystrophies. Hum Mol Genet. 2019;28:R102–7.CrossRef Crudele JM, Chamberlain JS. AAV-based gene therapies for the muscular dystrophies. Hum Mol Genet. 2019;28:R102–7.CrossRef
42.
go back to reference Li H, Yang Y, Hong W, Huang M, Wu M, Zhao X. Applications of genome editing technology in the targeted therapy of human diseases: mechanisms, advances and prospects. Sig Transduct Target Ther. 2020;5:1.CrossRef Li H, Yang Y, Hong W, Huang M, Wu M, Zhao X. Applications of genome editing technology in the targeted therapy of human diseases: mechanisms, advances and prospects. Sig Transduct Target Ther. 2020;5:1.CrossRef
43.
go back to reference Maestro S, Weber ND, Zabaleta N, Aldabe R, Gonzalez-Aseguinolaza G. Novel vectors and approaches for gene therapy in liver diseases. JHEP Reports. 2021;3:100300.CrossRef Maestro S, Weber ND, Zabaleta N, Aldabe R, Gonzalez-Aseguinolaza G. Novel vectors and approaches for gene therapy in liver diseases. JHEP Reports. 2021;3:100300.CrossRef
45.
go back to reference Gillmore JD, Gane E, Taubel J, Kao J, Fontana M, Maitland ML, et al. CRISPR-Cas9 in vivo gene editing for transthyretin amyloidosis. N Engl J Med. 2021;385:493–502.CrossRef Gillmore JD, Gane E, Taubel J, Kao J, Fontana M, Maitland ML, et al. CRISPR-Cas9 in vivo gene editing for transthyretin amyloidosis. N Engl J Med. 2021;385:493–502.CrossRef
46.
go back to reference Kim YG, Cha J, Chandrasegaran S. Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain. Proc Natl Acad Sci USA. 1996;93:1156–60.CrossRef Kim YG, Cha J, Chandrasegaran S. Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain. Proc Natl Acad Sci USA. 1996;93:1156–60.CrossRef
47.
go back to reference Christian M, Cermak T, Doyle EL, Schmidt C, Zhang F, Hummel A, et al. Targeting DNA double-strand breaks with TAL effector nucleases. Genetics. 2010;186:757–61.CrossRef Christian M, Cermak T, Doyle EL, Schmidt C, Zhang F, Hummel A, et al. Targeting DNA double-strand breaks with TAL effector nucleases. Genetics. 2010;186:757–61.CrossRef
48.
go back to reference Cho SW, Kim S, Kim Y, Kweon J, Kim HS, Bae S, et al. Analysis of off-target effects of CRISPR/Cas-derived RNA-guided endonucleases and nickases. Genome Res. 2014;24:132–41.CrossRef Cho SW, Kim S, Kim Y, Kweon J, Kim HS, Bae S, et al. Analysis of off-target effects of CRISPR/Cas-derived RNA-guided endonucleases and nickases. Genome Res. 2014;24:132–41.CrossRef
49.
go back to reference Hendel A, Fine EJ, Bao G, Porteus MH. Quantifying on- and off-target genome editing. Trends Biotechnol. 2015;33:132–40.CrossRef Hendel A, Fine EJ, Bao G, Porteus MH. Quantifying on- and off-target genome editing. Trends Biotechnol. 2015;33:132–40.CrossRef
50.
go back to reference Doudna JA, Charpentier E. The new frontier of genome engineering with CRISPR-Cas9. Science. 2014;346:1258096.CrossRef Doudna JA, Charpentier E. The new frontier of genome engineering with CRISPR-Cas9. Science. 2014;346:1258096.CrossRef
51.
go back to reference Doman JL, Raguram A, Newby GA, Liu DR. Evaluation and minimization of Cas9-independent off-target DNA editing by cytosine base editors. Nat Biotechnol. 2020;38:620–8.CrossRef Doman JL, Raguram A, Newby GA, Liu DR. Evaluation and minimization of Cas9-independent off-target DNA editing by cytosine base editors. Nat Biotechnol. 2020;38:620–8.CrossRef
52.
go back to reference Wijshake T, Baker DJ, van de Sluis B. Endonucleases: new tools to edit the mouse genome. Biochim Biophys Acta. 2014;1842:1942–50.CrossRef Wijshake T, Baker DJ, van de Sluis B. Endonucleases: new tools to edit the mouse genome. Biochim Biophys Acta. 2014;1842:1942–50.CrossRef
53.
go back to reference Mileshina D, Niazi AK, Weber-Lotfi F, Gualberto J, Dietrich A. Mitochondrial genetic manipulation. In: Li X-Q, Donnelly DJ, Jensen TG, editors. Somatic genome manipulation. New York, NY: Springer; 2015. p. 275–321.CrossRef Mileshina D, Niazi AK, Weber-Lotfi F, Gualberto J, Dietrich A. Mitochondrial genetic manipulation. In: Li X-Q, Donnelly DJ, Jensen TG, editors. Somatic genome manipulation. New York, NY: Springer; 2015. p. 275–321.CrossRef
54.
go back to reference Jang Y, Ahn SR, Shim J, Lim K. Engineering genetic systems for treating mitochondrial diseases. Pharmaceutics. 2021;13:810.CrossRef Jang Y, Ahn SR, Shim J, Lim K. Engineering genetic systems for treating mitochondrial diseases. Pharmaceutics. 2021;13:810.CrossRef
55.
go back to reference Zu H, Gao D. Non-viral vectors in gene therapy: recent development, challenges, and prospects. AAPS J. 2021;23:78.CrossRef Zu H, Gao D. Non-viral vectors in gene therapy: recent development, challenges, and prospects. AAPS J. 2021;23:78.CrossRef
56.
go back to reference Bottani E, Lamperti C, Prigione A, Tiranti V, Persico N, Brunetti D. Therapeutic approaches to treat mitochondrial diseases: “one-size-fits-all” and “precision medicine” strategies. Pharmaceutics. 2020;12:1083.CrossRef Bottani E, Lamperti C, Prigione A, Tiranti V, Persico N, Brunetti D. Therapeutic approaches to treat mitochondrial diseases: “one-size-fits-all” and “precision medicine” strategies. Pharmaceutics. 2020;12:1083.CrossRef
57.
go back to reference Slone J, Huang T. The special considerations of gene therapy for mitochondrial diseases. npj Genom Med. 2020;5:7.CrossRef Slone J, Huang T. The special considerations of gene therapy for mitochondrial diseases. npj Genom Med. 2020;5:7.CrossRef
58.
go back to reference Ballon DJ, Rosenberg JB, Fung EK, Nikolopoulou A, Kothari P, De BP, et al. Quantitative whole-body imaging of I-124-labeled adeno-associated viral vector biodistribution in nonhuman primates. Hum Gene Ther. 2020;31:1237–59.CrossRef Ballon DJ, Rosenberg JB, Fung EK, Nikolopoulou A, Kothari P, De BP, et al. Quantitative whole-body imaging of I-124-labeled adeno-associated viral vector biodistribution in nonhuman primates. Hum Gene Ther. 2020;31:1237–59.CrossRef
59.
go back to reference Daily JL, Burstein SR, Keiser NW, Cobb SR. A non-human primate biodistribution study comparing multiple routes of administration of AAV9. Mol Ther. 2021;29:171–2. Daily JL, Burstein SR, Keiser NW, Cobb SR. A non-human primate biodistribution study comparing multiple routes of administration of AAV9. Mol Ther. 2021;29:171–2.
60.
go back to reference Bish LT, Sleeper MM, Brainard B, Cole S, Russell N, Withnall E, et al. Percutaneous transendocardial delivery of self-complementary adeno-associated virus 6 achieves global cardiac gene transfer in canines. Mol Ther. 2008;16:1953–9.CrossRef Bish LT, Sleeper MM, Brainard B, Cole S, Russell N, Withnall E, et al. Percutaneous transendocardial delivery of self-complementary adeno-associated virus 6 achieves global cardiac gene transfer in canines. Mol Ther. 2008;16:1953–9.CrossRef
61.
go back to reference Gao G, Bish LT, Sleeper MM, Mu X, Sun L, Lou Y, et al. Transendocardial delivery of AAV6 results in highly efficient and global cardiac gene transfer in rhesus macaques. Hum Gene Ther. 2011;22:979–84.CrossRef Gao G, Bish LT, Sleeper MM, Mu X, Sun L, Lou Y, et al. Transendocardial delivery of AAV6 results in highly efficient and global cardiac gene transfer in rhesus macaques. Hum Gene Ther. 2011;22:979–84.CrossRef
62.
go back to reference Weber-Adrian D, Kofoed RH, Silburt J, Noroozian Z, Shah K, Burgess A, et al. Systemic AAV6-synapsin-GFP administration results in lower liver biodistribution, compared to AAV1&2 and AAV9, with neuronal expression following ultrasound-mediated brain delivery. Sci Rep. 2021;11:1934.CrossRef Weber-Adrian D, Kofoed RH, Silburt J, Noroozian Z, Shah K, Burgess A, et al. Systemic AAV6-synapsin-GFP administration results in lower liver biodistribution, compared to AAV1&2 and AAV9, with neuronal expression following ultrasound-mediated brain delivery. Sci Rep. 2021;11:1934.CrossRef
63.
go back to reference Chan KY, Jang MJ, Yoo BB, Greenbaum A, Ravi N, Wu W-L, et al. Engineered AAVs for efficient noninvasive gene delivery to the central and peripheral nervous systems. Nat Neurosci. 2017;20:1172–9.CrossRef Chan KY, Jang MJ, Yoo BB, Greenbaum A, Ravi N, Wu W-L, et al. Engineered AAVs for efficient noninvasive gene delivery to the central and peripheral nervous systems. Nat Neurosci. 2017;20:1172–9.CrossRef
64.
go back to reference Nonnenmacher M, Wang W, Child MA, Ren X-Q, Huang C, Ren AZ, et al. Rapid evolution of blood-brain-barrier-penetrating AAV capsids by RNA-driven biopanning. Mol Ther Methods Clin Dev. 2021;20:366–78.CrossRef Nonnenmacher M, Wang W, Child MA, Ren X-Q, Huang C, Ren AZ, et al. Rapid evolution of blood-brain-barrier-penetrating AAV capsids by RNA-driven biopanning. Mol Ther Methods Clin Dev. 2021;20:366–78.CrossRef
65.
go back to reference Hanaford AR, Cho Y-J, Nakai H. AAV-vector based gene therapy for mitochondrial disease: progress and future perspectives. Orphanet J Rare Dis. 2022;17:217.CrossRef Hanaford AR, Cho Y-J, Nakai H. AAV-vector based gene therapy for mitochondrial disease: progress and future perspectives. Orphanet J Rare Dis. 2022;17:217.CrossRef
66.
go back to reference Mori S, Takeuchi T, Enomoto Y, Kondo K, Sato K, Ono F, et al. Biodistribution of a low dose of intravenously administered AAV-2, 10, and 11 vectors to cynomolgus monkeys. Jpn J Infect Dis. 2006;59:285–93. Mori S, Takeuchi T, Enomoto Y, Kondo K, Sato K, Ono F, et al. Biodistribution of a low dose of intravenously administered AAV-2, 10, and 11 vectors to cynomolgus monkeys. Jpn J Infect Dis. 2006;59:285–93.
67.
go back to reference Herzog CD, Bishop KM, Brown L, Wilson A, Kordower JH, Bartus RT. Gene transfer provides a practical means for safe, long-term, targeted delivery of biologically active neurotrophic factor proteins for neurodegenerative diseases. Drug Deliv and Transl Res. 2011;1:361–82.CrossRef Herzog CD, Bishop KM, Brown L, Wilson A, Kordower JH, Bartus RT. Gene transfer provides a practical means for safe, long-term, targeted delivery of biologically active neurotrophic factor proteins for neurodegenerative diseases. Drug Deliv and Transl Res. 2011;1:361–82.CrossRef
68.
go back to reference Salegio EA, Kells AP, Richardson RM, Hadaczek P, Forsayeth J, Bringas J, et al. Magnetic resonance imaging-guided delivery of adeno-associated virus type 2 to the primate brain for the treatment of lysosomal storage disorders. Hum Gene Ther. 2010;21:1093–103.CrossRef Salegio EA, Kells AP, Richardson RM, Hadaczek P, Forsayeth J, Bringas J, et al. Magnetic resonance imaging-guided delivery of adeno-associated virus type 2 to the primate brain for the treatment of lysosomal storage disorders. Hum Gene Ther. 2010;21:1093–103.CrossRef
69.
go back to reference Spronck E, Vallès A, Lampen M, Montenegro-Miranda P, Keskin S, Heijink L, et al. Intrastriatal administration of AAV5-miHTT in non-human primates and rats is well tolerated and results in miHTT transgene expression in key areas of huntington disease pathology. Brain Sci. 2021;11:129.CrossRef Spronck E, Vallès A, Lampen M, Montenegro-Miranda P, Keskin S, Heijink L, et al. Intrastriatal administration of AAV5-miHTT in non-human primates and rats is well tolerated and results in miHTT transgene expression in key areas of huntington disease pathology. Brain Sci. 2021;11:129.CrossRef
70.
go back to reference Nathwani AC, Rosales C, McIntosh J, Rastegarlari G, Nathwani D, Raj D, et al. Long-term safety and efficacy following systemic administration of a self-complementary AAV vector encoding human FIX pseudotyped with serotype 5 and 8 capsid proteins. Mol Ther. 2011;19:876–85.CrossRef Nathwani AC, Rosales C, McIntosh J, Rastegarlari G, Nathwani D, Raj D, et al. Long-term safety and efficacy following systemic administration of a self-complementary AAV vector encoding human FIX pseudotyped with serotype 5 and 8 capsid proteins. Mol Ther. 2011;19:876–85.CrossRef
71.
go back to reference Hordeaux J, Hinderer C, Buza EL, Louboutin J-P, Jahan T, Bell P, et al. Safe and sustained expression of human iduronidase after intrathecal administration of adeno-associated virus serotype 9 in infant rhesus monkeys. Hum Gene Ther. 2019;30:957–66.CrossRef Hordeaux J, Hinderer C, Buza EL, Louboutin J-P, Jahan T, Bell P, et al. Safe and sustained expression of human iduronidase after intrathecal administration of adeno-associated virus serotype 9 in infant rhesus monkeys. Hum Gene Ther. 2019;30:957–66.CrossRef
72.
go back to reference Bevan AK, Duque S, Foust KD, Morales PR, Braun L, Schmelzer L, et al. Systemic gene delivery in large species for targeting spinal cord, brain, and peripheral tissues for pediatric disorders. Mol Ther. 2011;19:1971–80.CrossRef Bevan AK, Duque S, Foust KD, Morales PR, Braun L, Schmelzer L, et al. Systemic gene delivery in large species for targeting spinal cord, brain, and peripheral tissues for pediatric disorders. Mol Ther. 2011;19:1971–80.CrossRef
73.
go back to reference Rosenberg JB, Sondhi D, Rubin DG, Monette S, Chen A, Cram S, et al. Comparative efficacy and safety of multiple routes of direct CNS administration of adeno-associated virus gene transfer vector serotype rh.10 expressing the human arylsulfatase a cDNA to nonhuman primates. Hum Gene Ther Clin Dev. 2014;25:164–77.CrossRef Rosenberg JB, Sondhi D, Rubin DG, Monette S, Chen A, Cram S, et al. Comparative efficacy and safety of multiple routes of direct CNS administration of adeno-associated virus gene transfer vector serotype rh.10 expressing the human arylsulfatase a cDNA to nonhuman primates. Hum Gene Ther Clin Dev. 2014;25:164–77.CrossRef
74.
go back to reference Yang B, Li S, Wang H, Guo Y, Gessler DJ, Cao C, et al. Global CNS transduction of adult mice by intravenously delivered rAAVrh.8 and rAAVrh.10 and nonhuman primates by rAAVrh.10. Mol Ther. 2014;22:1299–309.CrossRef Yang B, Li S, Wang H, Guo Y, Gessler DJ, Cao C, et al. Global CNS transduction of adult mice by intravenously delivered rAAVrh.8 and rAAVrh.10 and nonhuman primates by rAAVrh.10. Mol Ther. 2014;22:1299–309.CrossRef
75.
go back to reference Hocquemiller M, Hemsley KM, Douglass ML, Tamang SJ, Neumann D, King BM, et al. AAVrh10 vector corrects disease pathology in MPS IIIA mice and achieves widespread distribution of SGSH in large animal brains. Mol Ther Methods Clin Dev. 2020;17:174–87.CrossRef Hocquemiller M, Hemsley KM, Douglass ML, Tamang SJ, Neumann D, King BM, et al. AAVrh10 vector corrects disease pathology in MPS IIIA mice and achieves widespread distribution of SGSH in large animal brains. Mol Ther Methods Clin Dev. 2020;17:174–87.CrossRef
76.
go back to reference Rosenberg JB, Kaplitt MG, De BP, Chen A, Flagiello T, Salami C, et al. AAVrh.10-mediated APOE2 central nervous system gene therapy for APOE4-associated Alzheimer’s disease. Hum Gene Ther Clin Dev. 2018;29:24–47.CrossRef Rosenberg JB, Kaplitt MG, De BP, Chen A, Flagiello T, Salami C, et al. AAVrh.10-mediated APOE2 central nervous system gene therapy for APOE4-associated Alzheimer’s disease. Hum Gene Ther Clin Dev. 2018;29:24–47.CrossRef
77.
go back to reference Frederick A, Sullivan J, Liu L, Adamowicz M, Lukason M, Raymer J, et al. Engineered capsids for efficient gene delivery to the retina and cornea. Hum Gene Ther. 2020;31:756–74.CrossRef Frederick A, Sullivan J, Liu L, Adamowicz M, Lukason M, Raymer J, et al. Engineered capsids for efficient gene delivery to the retina and cornea. Hum Gene Ther. 2020;31:756–74.CrossRef
78.
go back to reference Pavlou M, Schön C, Occelli LM, Rossi A, Meumann N, Boyd RF, et al. Novel AAV capsids for intravitreal gene therapy of photoreceptor disorders. EMBO Mol Med. 2021;13:e13392.CrossRef Pavlou M, Schön C, Occelli LM, Rossi A, Meumann N, Boyd RF, et al. Novel AAV capsids for intravitreal gene therapy of photoreceptor disorders. EMBO Mol Med. 2021;13:e13392.CrossRef
79.
go back to reference Vandenberghe LH, Bell P, Maguire AM, Xiao R, Hopkins TB, Grant R, et al. AAV9 targets cone photoreceptors in the nonhuman primate retina. PLoS ONE. 2013;8:e53463.CrossRef Vandenberghe LH, Bell P, Maguire AM, Xiao R, Hopkins TB, Grant R, et al. AAV9 targets cone photoreceptors in the nonhuman primate retina. PLoS ONE. 2013;8:e53463.CrossRef
80.
go back to reference Pacak CA, Mah CS, Thattaliyath BD, Conlon TJ, Lewis MA, Cloutier DE, et al. Recombinant adeno-associated virus serotype 9 leads to preferential cardiac transduction in vivo. Circ Res. 2006;99:e3-9.CrossRef Pacak CA, Mah CS, Thattaliyath BD, Conlon TJ, Lewis MA, Cloutier DE, et al. Recombinant adeno-associated virus serotype 9 leads to preferential cardiac transduction in vivo. Circ Res. 2006;99:e3-9.CrossRef
81.
go back to reference Potter RA, Griffin DA, Sondergaard PC, Johnson RW, Pozsgai ER, Heller KN, et al. Systemic delivery of dysferlin overlap vectors provides long-term gene expression and functional improvement for dysferlinopathy. Hum Gene Ther. 2018;29:749–62.CrossRef Potter RA, Griffin DA, Sondergaard PC, Johnson RW, Pozsgai ER, Heller KN, et al. Systemic delivery of dysferlin overlap vectors provides long-term gene expression and functional improvement for dysferlinopathy. Hum Gene Ther. 2018;29:749–62.CrossRef
82.
go back to reference Gao G, Lu Y, Calcedo R, Grant RL, Bell P, Wang L, et al. Biology of AAV serotype vectors in liver-directed gene transfer to nonhuman primates. Mol Ther. 2006;13:77–87.CrossRef Gao G, Lu Y, Calcedo R, Grant RL, Bell P, Wang L, et al. Biology of AAV serotype vectors in liver-directed gene transfer to nonhuman primates. Mol Ther. 2006;13:77–87.CrossRef
83.
go back to reference Li S, Ling C, Zhong L, Li M, Su Q, He R, et al. Efficient and targeted transduction of nonhuman primate liver with systemically delivered optimized AAV3B vectors. Mol Ther. 2015;23:1867–76.CrossRef Li S, Ling C, Zhong L, Li M, Su Q, He R, et al. Efficient and targeted transduction of nonhuman primate liver with systemically delivered optimized AAV3B vectors. Mol Ther. 2015;23:1867–76.CrossRef
84.
go back to reference Gao G, Wang Q, Calcedo R, Mays L, Bell P, Wang L, et al. Adeno-associated virus-mediated gene transfer to nonhuman primate liver can elicit destructive transgene-specific T cell responses. Hum Gene Ther. 2009;20:930–42.CrossRef Gao G, Wang Q, Calcedo R, Mays L, Bell P, Wang L, et al. Adeno-associated virus-mediated gene transfer to nonhuman primate liver can elicit destructive transgene-specific T cell responses. Hum Gene Ther. 2009;20:930–42.CrossRef
85.
go back to reference Calvo SE, Julien O, Clauser KR, Shen H, Kamer KJ, Wells JA, et al. Comparative analysis of mitochondrial n-termini from mouse, human, and yeast. Mol Cell Proteomics. 2017;16:512–23.CrossRef Calvo SE, Julien O, Clauser KR, Shen H, Kamer KJ, Wells JA, et al. Comparative analysis of mitochondrial n-termini from mouse, human, and yeast. Mol Cell Proteomics. 2017;16:512–23.CrossRef
86.
go back to reference Backes S, Herrmann JM. Protein translocation into the intermembrane space and matrix of mitochondria: mechanisms and driving forces. Front Mol Biosci. 2017;4:83.CrossRef Backes S, Herrmann JM. Protein translocation into the intermembrane space and matrix of mitochondria: mechanisms and driving forces. Front Mol Biosci. 2017;4:83.CrossRef
87.
go back to reference Vögtle F-N, Wortelkamp S, Zahedi RP, Becker D, Leidhold C, Gevaert K, et al. Global analysis of the mitochondrial N-proteome identifies a processing peptidase critical for protein stability. Cell. 2009;139:428–39.CrossRef Vögtle F-N, Wortelkamp S, Zahedi RP, Becker D, Leidhold C, Gevaert K, et al. Global analysis of the mitochondrial N-proteome identifies a processing peptidase critical for protein stability. Cell. 2009;139:428–39.CrossRef
88.
go back to reference Meng Y, Sun D, Qin Y, Dong X, Luo G, Liu Y. Cell-penetrating peptides enhance the transduction of adeno-associated virus serotype 9 in the central nervous system. Mol Ther Methods Clin Dev. 2021;21:28–41.CrossRef Meng Y, Sun D, Qin Y, Dong X, Luo G, Liu Y. Cell-penetrating peptides enhance the transduction of adeno-associated virus serotype 9 in the central nervous system. Mol Ther Methods Clin Dev. 2021;21:28–41.CrossRef
89.
go back to reference Yu H, Koilkonda RD, Chou T-H, Porciatti V, Ozdemir SS, Chiodo V, et al. Gene delivery to mitochondria by targeting modified adenoassociated virus suppresses Leber’s hereditary optic neuropathy in a mouse model. Proc Natl Acad Sci USA. 2012;109:e1238.CrossRef Yu H, Koilkonda RD, Chou T-H, Porciatti V, Ozdemir SS, Chiodo V, et al. Gene delivery to mitochondria by targeting modified adenoassociated virus suppresses Leber’s hereditary optic neuropathy in a mouse model. Proc Natl Acad Sci USA. 2012;109:e1238.CrossRef
90.
go back to reference Jeandard D, Smirnova A, Tarassov I, Barrey E, Smirnov A, Entelis N. Import of non-coding RNAs into human mitochondria: a critical review and emerging approaches. Cells. 2019;8:286.CrossRef Jeandard D, Smirnova A, Tarassov I, Barrey E, Smirnov A, Entelis N. Import of non-coding RNAs into human mitochondria: a critical review and emerging approaches. Cells. 2019;8:286.CrossRef
91.
go back to reference Kolesnikova OA, Entelis NS, Jacquin-Becker C, Goltzene F, Chrzanowska-Lightowlers ZM, Lightowlers RN, et al. Nuclear DNA-encoded tRNAs targeted into mitochondria can rescue a mitochondrial DNA mutation associated with the MERRF syndrome in cultured human cells. Hum Mol Genet. 2004;13:2519–34.CrossRef Kolesnikova OA, Entelis NS, Jacquin-Becker C, Goltzene F, Chrzanowska-Lightowlers ZM, Lightowlers RN, et al. Nuclear DNA-encoded tRNAs targeted into mitochondria can rescue a mitochondrial DNA mutation associated with the MERRF syndrome in cultured human cells. Hum Mol Genet. 2004;13:2519–34.CrossRef
92.
go back to reference Karicheva OZ, Kolesnikova OA, Schirtz T, Vysokikh MY, Mager-Heckel A-M, Lombès A, et al. Correction of the consequences of mitochondrial 3243A>G mutation in the MT-TL1 gene causing the MELAS syndrome by tRNA import into mitochondria. Nucleic Acids Res. 2011;39:8173–86.CrossRef Karicheva OZ, Kolesnikova OA, Schirtz T, Vysokikh MY, Mager-Heckel A-M, Lombès A, et al. Correction of the consequences of mitochondrial 3243A>G mutation in the MT-TL1 gene causing the MELAS syndrome by tRNA import into mitochondria. Nucleic Acids Res. 2011;39:8173–86.CrossRef
93.
go back to reference Martin RP, Schneller JM, Stahl AJ, Dirheimer G. Import of nuclear deoxyribonucleic acid coded lysine-accepting transfer ribonucleic acid (anticodon C-U-U) into yeast mitochondria. Biochemistry. 1979;18:4600–5.CrossRef Martin RP, Schneller JM, Stahl AJ, Dirheimer G. Import of nuclear deoxyribonucleic acid coded lysine-accepting transfer ribonucleic acid (anticodon C-U-U) into yeast mitochondria. Biochemistry. 1979;18:4600–5.CrossRef
94.
go back to reference Kolesnikova O, Kazakova H, Comte C, Steinberg S, Kamenski P, Martin RP, et al. Selection of RNA aptamers imported into yeast and human mitochondria. RNA. 2010;16:926–41.CrossRef Kolesnikova O, Kazakova H, Comte C, Steinberg S, Kamenski P, Martin RP, et al. Selection of RNA aptamers imported into yeast and human mitochondria. RNA. 2010;16:926–41.CrossRef
95.
go back to reference Golani-Armon A, Arava Y. Localization of nuclear-encoded mRNAs to mitochondria outer surface. Biochemistry (Mosc). 2016;81:1038–43.CrossRef Golani-Armon A, Arava Y. Localization of nuclear-encoded mRNAs to mitochondria outer surface. Biochemistry (Mosc). 2016;81:1038–43.CrossRef
96.
go back to reference Michaud M, Maréchal-Drouard L, Duchêne A-M. Targeting of cytosolic mRNA to mitochondria: naked RNA can bind to the mitochondrial surface. Biochimie. 2014;100:159–66.CrossRef Michaud M, Maréchal-Drouard L, Duchêne A-M. Targeting of cytosolic mRNA to mitochondria: naked RNA can bind to the mitochondrial surface. Biochimie. 2014;100:159–66.CrossRef
97.
go back to reference Kaltimbacher V, Bonnet C, Lecoeuvre G, Forster V, Sahel J-A, Corral-Debrinski M. mRNA localization to the mitochondrial surface allows the efficient translocation inside the organelle of a nuclear recoded ATP6 protein. RNA. 2006;12:1408–17.CrossRef Kaltimbacher V, Bonnet C, Lecoeuvre G, Forster V, Sahel J-A, Corral-Debrinski M. mRNA localization to the mitochondrial surface allows the efficient translocation inside the organelle of a nuclear recoded ATP6 protein. RNA. 2006;12:1408–17.CrossRef
98.
go back to reference Sieber F, Placido A, El Farouk-Ameqrane S, Duchêne A-M, Maréchal-Drouard L. A protein shuttle system to target RNA into mitochondria. Nucleic Acids Res. 2011;39:e96–e96.CrossRef Sieber F, Placido A, El Farouk-Ameqrane S, Duchêne A-M, Maréchal-Drouard L. A protein shuttle system to target RNA into mitochondria. Nucleic Acids Res. 2011;39:e96–e96.CrossRef
99.
go back to reference Jo A, Ham S, Lee GH, Lee Y-I, Kim S, Lee Y-S, et al. Efficient mitochondrial genome editing by CRISPR/Cas9. Biomed Res Int. 2015;2015:305716.CrossRef Jo A, Ham S, Lee GH, Lee Y-I, Kim S, Lee Y-S, et al. Efficient mitochondrial genome editing by CRISPR/Cas9. Biomed Res Int. 2015;2015:305716.CrossRef
100.
go back to reference Liew SS, Qin X, Zhou J, Li L, Huang W, Yao SQ. Smart design of nanomaterials for mitochondria-targeted nanotherapeutics. Angew Chem Int Ed. 2021;60:2232–56.CrossRef Liew SS, Qin X, Zhou J, Li L, Huang W, Yao SQ. Smart design of nanomaterials for mitochondria-targeted nanotherapeutics. Angew Chem Int Ed. 2021;60:2232–56.CrossRef
101.
go back to reference Yu H, Sant DW, Wang G, Guy J. Mitochondrial transfer of the mutant human ND6T14484C gene causes visual loss and optic neuropathy. Trans Vis Sci Tech. 2020;9:1.CrossRef Yu H, Sant DW, Wang G, Guy J. Mitochondrial transfer of the mutant human ND6T14484C gene causes visual loss and optic neuropathy. Trans Vis Sci Tech. 2020;9:1.CrossRef
102.
go back to reference Yasuzaki Y, Yamada Y, Kanefuji T, Harashima H. Localization of exogenous DNA to mitochondria in skeletal muscle following hydrodynamic limb vein injection. J Control Release. 2013;172:805–11.CrossRef Yasuzaki Y, Yamada Y, Kanefuji T, Harashima H. Localization of exogenous DNA to mitochondria in skeletal muscle following hydrodynamic limb vein injection. J Control Release. 2013;172:805–11.CrossRef
103.
go back to reference Yamada Y, Akita H, Kamiya H, Kogure K, Yamamoto T, Shinohara Y, et al. MITO-Porter: A liposome-based carrier system for delivery of macromolecules into mitochondria via membrane fusion. Biochim Biophys Acta. 2008;1778:423–32.CrossRef Yamada Y, Akita H, Kamiya H, Kogure K, Yamamoto T, Shinohara Y, et al. MITO-Porter: A liposome-based carrier system for delivery of macromolecules into mitochondria via membrane fusion. Biochim Biophys Acta. 2008;1778:423–32.CrossRef
104.
go back to reference Yamada Y, Harashima H. Delivery of bioactive molecules to the mitochondrial genome using a membrane-fusing, liposome-based carrier DF-MITO-Porter. Biomaterials. 2012;33:1589–95.CrossRef Yamada Y, Harashima H. Delivery of bioactive molecules to the mitochondrial genome using a membrane-fusing, liposome-based carrier DF-MITO-Porter. Biomaterials. 2012;33:1589–95.CrossRef
105.
go back to reference Yamada Y, Kawamura E, Harashima H. Mitochondrial-targeted DNA delivery using a DF-MITO-Porter, an innovative nano carrier with cytoplasmic and mitochondrial fusogenic envelopes. J Nanopart Res. 2012;14:1013.CrossRef Yamada Y, Kawamura E, Harashima H. Mitochondrial-targeted DNA delivery using a DF-MITO-Porter, an innovative nano carrier with cytoplasmic and mitochondrial fusogenic envelopes. J Nanopart Res. 2012;14:1013.CrossRef
106.
go back to reference Yamada Y, Harashima H. MITO-porter for mitochondrial delivery and mitochondrial functional analysis. In: Singh H, Sheu S-S, editors. Pharmacology of mitochondria. Cham: Springer International Publishing; 2016. p. 457–72.CrossRef Yamada Y, Harashima H. MITO-porter for mitochondrial delivery and mitochondrial functional analysis. In: Singh H, Sheu S-S, editors. Pharmacology of mitochondria. Cham: Springer International Publishing; 2016. p. 457–72.CrossRef
107.
go back to reference Yamada Y, Maruyama M, Kita T, Usami S, Kitajiri S, Harashima H. The use of a MITO-Porter to deliver exogenous therapeutic RNA to a mitochondrial disease’s cell with a A1555G mutation in the mitochondrial 12S rRNA gene results in an increase in mitochondrial respiratory activity. Mitochondrion. 2020;55:134–44.CrossRef Yamada Y, Maruyama M, Kita T, Usami S, Kitajiri S, Harashima H. The use of a MITO-Porter to deliver exogenous therapeutic RNA to a mitochondrial disease’s cell with a A1555G mutation in the mitochondrial 12S rRNA gene results in an increase in mitochondrial respiratory activity. Mitochondrion. 2020;55:134–44.CrossRef
108.
go back to reference Jang Y, Lim K. Recent advances in mitochondria-targeted gene delivery. Molecules. 2018;23:2316.CrossRef Jang Y, Lim K. Recent advances in mitochondria-targeted gene delivery. Molecules. 2018;23:2316.CrossRef
109.
go back to reference Wallace DC. Mouse models for mitochondrial disease. Am J Med Genet. 2001;106:71–93.CrossRef Wallace DC. Mouse models for mitochondrial disease. Am J Med Genet. 2001;106:71–93.CrossRef
110.
go back to reference Hirano M, Silvestri G, Blake DM, Lombes A, Minetti C, Bonilla E, et al. Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE): clinical, biochemical, and genetic features of an autosomal recessive mitochondrial disorder. Neurology. 1994;44:721–7.CrossRef Hirano M, Silvestri G, Blake DM, Lombes A, Minetti C, Bonilla E, et al. Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE): clinical, biochemical, and genetic features of an autosomal recessive mitochondrial disorder. Neurology. 1994;44:721–7.CrossRef
111.
go back to reference Spinazzola A, Marti R, Nishino I, Andreu AL, Naini A, Tadesse S, et al. Altered thymidine metabolism due to defects of thymidine phosphorylase. J Biol Chem. 2002;277:4128–33.CrossRef Spinazzola A, Marti R, Nishino I, Andreu AL, Naini A, Tadesse S, et al. Altered thymidine metabolism due to defects of thymidine phosphorylase. J Biol Chem. 2002;277:4128–33.CrossRef
112.
go back to reference Martí R, Nishigaki Y, Hirano M. Elevated plasma deoxyuridine in patients with thymidine phosphorylase deficiency. Biochem Biophys Res Commun. 2003;303:14–8.CrossRef Martí R, Nishigaki Y, Hirano M. Elevated plasma deoxyuridine in patients with thymidine phosphorylase deficiency. Biochem Biophys Res Commun. 2003;303:14–8.CrossRef
113.
go back to reference Torres-Torronteras J, Gómez A, Eixarch H, Palenzuela L, Pizzorno G, Hirano M, et al. Hematopoietic gene therapy restores thymidine phosphorylase activity in a cell culture and a murine model of MNGIE. Gene Ther. 2011;18:795–806.CrossRef Torres-Torronteras J, Gómez A, Eixarch H, Palenzuela L, Pizzorno G, Hirano M, et al. Hematopoietic gene therapy restores thymidine phosphorylase activity in a cell culture and a murine model of MNGIE. Gene Ther. 2011;18:795–806.CrossRef
114.
go back to reference Torres-Torronteras J, Viscomi C, Cabrera-Pérez R, Cámara Y, Di Meo I, Barquinero J, et al. Gene therapy using a liver-targeted AAV vector restores nucleoside and nucleotide homeostasis in a murine model of MNGIE. Mol Ther. 2014;22:901–7.CrossRef Torres-Torronteras J, Viscomi C, Cabrera-Pérez R, Cámara Y, Di Meo I, Barquinero J, et al. Gene therapy using a liver-targeted AAV vector restores nucleoside and nucleotide homeostasis in a murine model of MNGIE. Mol Ther. 2014;22:901–7.CrossRef
115.
go back to reference Torres-Torronteras J, Cabrera-Pérez R, Vila-Julià F, Viscomi C, Cámara Y, Hirano M, et al. Long-term sustained effect of liver-targeted adeno-associated virus gene therapy for mitochondrial neurogastrointestinal encephalomyopathy. Hum Gene Ther. 2018;29:708–18.CrossRef Torres-Torronteras J, Cabrera-Pérez R, Vila-Julià F, Viscomi C, Cámara Y, Hirano M, et al. Long-term sustained effect of liver-targeted adeno-associated virus gene therapy for mitochondrial neurogastrointestinal encephalomyopathy. Hum Gene Ther. 2018;29:708–18.CrossRef
116.
go back to reference Vila-Julià F, Cabrera-Pérez R, Cámara Y, Molina-Berenguer M, Lope-Piedrafita S, Hirano M, et al. Efficacy of adeno-associated virus gene therapy in a MNGIE murine model enhanced by chronic exposure to nucleosides. eBioMedicine. 2020;62:103133.CrossRef Vila-Julià F, Cabrera-Pérez R, Cámara Y, Molina-Berenguer M, Lope-Piedrafita S, Hirano M, et al. Efficacy of adeno-associated virus gene therapy in a MNGIE murine model enhanced by chronic exposure to nucleosides. eBioMedicine. 2020;62:103133.CrossRef
117.
go back to reference Yang L, Slone J, Li Z, Lou X, Hu Y-C, Queme LF, et al. Systemic administration of AAV-Slc25a46 mitigates mitochondrial neuropathy in Slc25a46-/- mice. Hum Mol Genet. 2020;29:649–61.CrossRef Yang L, Slone J, Li Z, Lou X, Hu Y-C, Queme LF, et al. Systemic administration of AAV-Slc25a46 mitigates mitochondrial neuropathy in Slc25a46-/- mice. Hum Mol Genet. 2020;29:649–61.CrossRef
118.
go back to reference Civiletto G, Varanita T, Cerutti R, Gorletta T, Barbaro S, Marchet S, et al. Opa1 overexpression ameliorates the phenotype of two mitochondrial disease mouse models. Cell Metab. 2015;21:845–54.CrossRef Civiletto G, Varanita T, Cerutti R, Gorletta T, Barbaro S, Marchet S, et al. Opa1 overexpression ameliorates the phenotype of two mitochondrial disease mouse models. Cell Metab. 2015;21:845–54.CrossRef
119.
go back to reference Delettre C, Lenaers G, Pelloquin L, Belenguer P, Hamel CP. OPA1 (Kjer type) dominant optic atrophy: a novel mitochondrial disease. Mol Genet Metab. 2002;75:97–107.CrossRef Delettre C, Lenaers G, Pelloquin L, Belenguer P, Hamel CP. OPA1 (Kjer type) dominant optic atrophy: a novel mitochondrial disease. Mol Genet Metab. 2002;75:97–107.CrossRef
120.
go back to reference Lenaers G, Hamel C, Delettre C, Amati-Bonneau P, Procaccio V, Bonneau D, et al. Dominant optic atrophy. Orphanet J Rare Dis. 2012;7:46.CrossRef Lenaers G, Hamel C, Delettre C, Amati-Bonneau P, Procaccio V, Bonneau D, et al. Dominant optic atrophy. Orphanet J Rare Dis. 2012;7:46.CrossRef
121.
go back to reference Sarzi E, Seveno M, Piro-Mégy C, Elzière L, Quilès M, Péquignot M, et al. OPA1 gene therapy prevents retinal ganglion cell loss in a dominant optic atrophy mouse model. Sci Rep. 2018;8:2468.CrossRef Sarzi E, Seveno M, Piro-Mégy C, Elzière L, Quilès M, Péquignot M, et al. OPA1 gene therapy prevents retinal ganglion cell loss in a dominant optic atrophy mouse model. Sci Rep. 2018;8:2468.CrossRef
122.
go back to reference Palmer G, Horgan DJ, Tisdale H, Singer TP, Beinert H. Studies on the respiratory chain-linked reduced nicotinamide adenine dinucleotide dehydrogenase. XIV. Location of the sites of inhibition of rotenone, barbiturates, and piericidin by means of electron paramagnetic resonance spectroscopy. J Biol Chem. 1968;243:844–7.CrossRef Palmer G, Horgan DJ, Tisdale H, Singer TP, Beinert H. Studies on the respiratory chain-linked reduced nicotinamide adenine dinucleotide dehydrogenase. XIV. Location of the sites of inhibition of rotenone, barbiturates, and piericidin by means of electron paramagnetic resonance spectroscopy. J Biol Chem. 1968;243:844–7.CrossRef
123.
go back to reference Maloney DM, Chadderton N, Millington-Ward S, Palfi A, Shortall C, O’Byrne JJ, et al. Optimized OPA1 Isoforms 1 and 7 provide therapeutic benefit in models of mitochondrial dysfunction. Front Neurosci. 2020;14:571479.CrossRef Maloney DM, Chadderton N, Millington-Ward S, Palfi A, Shortall C, O’Byrne JJ, et al. Optimized OPA1 Isoforms 1 and 7 provide therapeutic benefit in models of mitochondrial dysfunction. Front Neurosci. 2020;14:571479.CrossRef
124.
go back to reference Sun Y, Xue W, Song Z, Huang K, Zheng L. Restoration of Opa1-long isoform inhibits retinal injury-induced neurodegeneration. J Mol Med. 2016;94:335–46.CrossRef Sun Y, Xue W, Song Z, Huang K, Zheng L. Restoration of Opa1-long isoform inhibits retinal injury-induced neurodegeneration. J Mol Med. 2016;94:335–46.CrossRef
125.
go back to reference Lai Y, Lin P, Chen M, Zhang Y, Chen J, Zheng M, et al. Restoration of L-OPA1 alleviates acute ischemic stroke injury in rats via inhibiting neuronal apoptosis and preserving mitochondrial function. Redox Biol. 2020;34:101503.CrossRef Lai Y, Lin P, Chen M, Zhang Y, Chen J, Zheng M, et al. Restoration of L-OPA1 alleviates acute ischemic stroke injury in rats via inhibiting neuronal apoptosis and preserving mitochondrial function. Redox Biol. 2020;34:101503.CrossRef
126.
go back to reference Budde SMS, van den Heuvel LPWJ, Smeets RJP, Skladal D, Mayr JA, Boelen C, et al. Clinical heterogeneity in patients with mutations in the NDUFS4 gene of mitochondrial complex I. J Inherit Metab Dis. 2003;26:813–5.CrossRef Budde SMS, van den Heuvel LPWJ, Smeets RJP, Skladal D, Mayr JA, Boelen C, et al. Clinical heterogeneity in patients with mutations in the NDUFS4 gene of mitochondrial complex I. J Inherit Metab Dis. 2003;26:813–5.CrossRef
127.
go back to reference Di Meo I, Marchet S, Lamperti C, Zeviani M, Viscomi C. AAV9-based gene therapy partially ameliorates the clinical phenotype of a mouse model of Leigh syndrome. Gene Ther. 2017;24:661–7.CrossRef Di Meo I, Marchet S, Lamperti C, Zeviani M, Viscomi C. AAV9-based gene therapy partially ameliorates the clinical phenotype of a mouse model of Leigh syndrome. Gene Ther. 2017;24:661–7.CrossRef
128.
go back to reference Silva-Pinheiro P, Cerutti R, Luna-Sanchez M, Zeviani M, Viscomi C. A single intravenous injection of AAV-PHP.B-hNDUFS4 ameliorates the phenotype of Ndufs4 Mice. Mol Ther Methods Clin Dev. 2020;17:1071–8.CrossRef Silva-Pinheiro P, Cerutti R, Luna-Sanchez M, Zeviani M, Viscomi C. A single intravenous injection of AAV-PHP.B-hNDUFS4 ameliorates the phenotype of Ndufs4 Mice. Mol Ther Methods Clin Dev. 2020;17:1071–8.CrossRef
129.
go back to reference Reynaud-Dulaurier R, Benegiamo G, Marrocco E, Al-Tannir R, Surace EM, Auwerx J, et al. Gene replacement therapy provides benefit in an adult mouse model of Leigh syndrome. Brain. 2020;143:1686–96.CrossRef Reynaud-Dulaurier R, Benegiamo G, Marrocco E, Al-Tannir R, Surace EM, Auwerx J, et al. Gene replacement therapy provides benefit in an adult mouse model of Leigh syndrome. Brain. 2020;143:1686–96.CrossRef
130.
go back to reference Yang L, Slone J, Zou W, Queme LF, Jankowski MP, Yin F, et al. Systemic delivery of AAV-Fdxr mitigates the phenotypes of mitochondrial disorders in Fdxr mutant Mice. Mol Ther Methods Clin Dev. 2020;18:84–97.CrossRef Yang L, Slone J, Zou W, Queme LF, Jankowski MP, Yin F, et al. Systemic delivery of AAV-Fdxr mitigates the phenotypes of mitochondrial disorders in Fdxr mutant Mice. Mol Ther Methods Clin Dev. 2020;18:84–97.CrossRef
131.
go back to reference Tiranti V, Viscomi C, Hildebrandt T, Di Meo I, Mineri R, Tiveron C, et al. Loss of ETHE1, a mitochondrial dioxygenase, causes fatal sulfide toxicity in ethylmalonic encephalopathy. Nat Med. 2009;15:200–5.CrossRef Tiranti V, Viscomi C, Hildebrandt T, Di Meo I, Mineri R, Tiveron C, et al. Loss of ETHE1, a mitochondrial dioxygenase, causes fatal sulfide toxicity in ethylmalonic encephalopathy. Nat Med. 2009;15:200–5.CrossRef
132.
go back to reference Hildebrandt TM, Grieshaber MK. Three enzymatic activities catalyze the oxidation of sulfide to thiosulfate in mammalian and invertebrate mitochondria. FEBS J. 2008;275:3352–61.CrossRef Hildebrandt TM, Grieshaber MK. Three enzymatic activities catalyze the oxidation of sulfide to thiosulfate in mammalian and invertebrate mitochondria. FEBS J. 2008;275:3352–61.CrossRef
133.
go back to reference Di Meo I, Auricchio A, Lamperti C, Burlina A, Viscomi C, Zeviani M. Effective AAV-mediated gene therapy in a mouse model of ethylmalonic encephalopathy. EMBO Mol Med. 2012;4:1008–14.CrossRef Di Meo I, Auricchio A, Lamperti C, Burlina A, Viscomi C, Zeviani M. Effective AAV-mediated gene therapy in a mouse model of ethylmalonic encephalopathy. EMBO Mol Med. 2012;4:1008–14.CrossRef
134.
go back to reference Tyynismaa H, Sun R, Ahola-Erkkila S, Almusa H, Poyhonen R, Korpela M, et al. Thymidine kinase 2 mutations in autosomal recessive progressive external ophthalmoplegia with multiple mitochondrial DNA deletions. Hum Mol Genet. 2012;21:66–75.CrossRef Tyynismaa H, Sun R, Ahola-Erkkila S, Almusa H, Poyhonen R, Korpela M, et al. Thymidine kinase 2 mutations in autosomal recessive progressive external ophthalmoplegia with multiple mitochondrial DNA deletions. Hum Mol Genet. 2012;21:66–75.CrossRef
135.
go back to reference Krishnan S, Paredes JA, Zhou X, Kuiper RV, Hultenby K, Curbo S, et al. Long term expression of drosophila melanogaster nucleoside kinase in thymidine kinase 2-deficient Mice with no lethal effects caused by nucleotide pool imbalances. J Biol Chem. 2014;289:32835–44.CrossRef Krishnan S, Paredes JA, Zhou X, Kuiper RV, Hultenby K, Curbo S, et al. Long term expression of drosophila melanogaster nucleoside kinase in thymidine kinase 2-deficient Mice with no lethal effects caused by nucleotide pool imbalances. J Biol Chem. 2014;289:32835–44.CrossRef
136.
go back to reference Lopez-Gomez C, Sanchez-Quintero MJ, Lee EJ, Kleiner G, Tadesse S, Xie J, et al. Synergistic deoxynucleoside and gene therapies for thymidine kinase 2 deficiency. Ann Neurol. 2021;90:640–52.CrossRef Lopez-Gomez C, Sanchez-Quintero MJ, Lee EJ, Kleiner G, Tadesse S, Xie J, et al. Synergistic deoxynucleoside and gene therapies for thymidine kinase 2 deficiency. Ann Neurol. 2021;90:640–52.CrossRef
137.
go back to reference Artika IM. Allotopic expression of mitochondrial genes: basic strategy and progress. Genes Dis. 2020;7:578–84.CrossRef Artika IM. Allotopic expression of mitochondrial genes: basic strategy and progress. Genes Dis. 2020;7:578–84.CrossRef
138.
go back to reference Marella M, Seo BB, Thomas BB, Matsuno-Yagi A, Yagi T. Successful amelioration of mitochondrial optic neuropathy using the yeast NDI1 gene in a rat animal model. PLoS ONE. 2010;5:e11472.CrossRef Marella M, Seo BB, Thomas BB, Matsuno-Yagi A, Yagi T. Successful amelioration of mitochondrial optic neuropathy using the yeast NDI1 gene in a rat animal model. PLoS ONE. 2010;5:e11472.CrossRef
139.
go back to reference Fan ACY, Bhangoo MK, Young JC. Hsp90 functions in the targeting and outer membrane translocation steps of Tom70-mediated mitochondrial import. J Biol Chem. 2006;281:33313–24.CrossRef Fan ACY, Bhangoo MK, Young JC. Hsp90 functions in the targeting and outer membrane translocation steps of Tom70-mediated mitochondrial import. J Biol Chem. 2006;281:33313–24.CrossRef
140.
go back to reference Turnbull DM, Lightowlers RN. A roundabout route to gene therapy. Nat Genet. 2002;30:345–6.CrossRef Turnbull DM, Lightowlers RN. A roundabout route to gene therapy. Nat Genet. 2002;30:345–6.CrossRef
141.
go back to reference Manfredi G, Fu J, Ojaimi J, Sadlock JE, Kwong JQ, Guy J, et al. Rescue of a deficiency in ATP synthesis by transfer of MTATP6, a mitochondrial DNA-encoded gene, to the nucleus. Nat Genet. 2002;30:394–9.CrossRef Manfredi G, Fu J, Ojaimi J, Sadlock JE, Kwong JQ, Guy J, et al. Rescue of a deficiency in ATP synthesis by transfer of MTATP6, a mitochondrial DNA-encoded gene, to the nucleus. Nat Genet. 2002;30:394–9.CrossRef
142.
go back to reference Wallace DC, Singh G, Lott MT, Hodge JA, Schurr TG, Lezza AM, et al. Mitochondrial DNA mutation associated with Leber’s hereditary optic neuropathy. Science. 1988;242:1427–30.CrossRef Wallace DC, Singh G, Lott MT, Hodge JA, Schurr TG, Lezza AM, et al. Mitochondrial DNA mutation associated with Leber’s hereditary optic neuropathy. Science. 1988;242:1427–30.CrossRef
143.
go back to reference Brown MD, Torroni A, Reckord CL, Wallace DC. Phylogenetic analysis of Leber’s hereditary optic neuropathy mitochondrial DNA’s indicates multiple independent occurrences of the common mutations. Hum Mutat. 1995;6:311–25.CrossRef Brown MD, Torroni A, Reckord CL, Wallace DC. Phylogenetic analysis of Leber’s hereditary optic neuropathy mitochondrial DNA’s indicates multiple independent occurrences of the common mutations. Hum Mutat. 1995;6:311–25.CrossRef
144.
go back to reference Qi X, Sun L, Lewin AS, Hauswirth WW, Guy J. The mutant human ND4 subunit of complex I induces optic neuropathy in the mouse. Invest Ophthalmol Vis Sci. 2007;48:1–10.CrossRef Qi X, Sun L, Lewin AS, Hauswirth WW, Guy J. The mutant human ND4 subunit of complex I induces optic neuropathy in the mouse. Invest Ophthalmol Vis Sci. 2007;48:1–10.CrossRef
145.
go back to reference Ellouze S, Augustin S, Bouaita A, Bonnet C, Simonutti M, Forster V, et al. Optimized allotopic expression of the human mitochondrial ND4 prevents blindness in a rat model of mitochondrial dysfunction. Am J Hum Genet. 2008;83:373–87.CrossRef Ellouze S, Augustin S, Bouaita A, Bonnet C, Simonutti M, Forster V, et al. Optimized allotopic expression of the human mitochondrial ND4 prevents blindness in a rat model of mitochondrial dysfunction. Am J Hum Genet. 2008;83:373–87.CrossRef
146.
go back to reference Guy J, Qi X, Koilkonda RD, Arguello T, Chou T-H, Ruggeri M, et al. Efficiency and safety of AAV-mediated gene delivery of the human ND4 complex I subunit in the mouse visual system. Invest Ophthalmol Vis Sci. 2009;50:4205.CrossRef Guy J, Qi X, Koilkonda RD, Arguello T, Chou T-H, Ruggeri M, et al. Efficiency and safety of AAV-mediated gene delivery of the human ND4 complex I subunit in the mouse visual system. Invest Ophthalmol Vis Sci. 2009;50:4205.CrossRef
147.
go back to reference Guy J, Feuer WJ, Davis JL, Porciatti V, Gonzalez PJ, Koilkonda RD, et al. Gene therapy for Leber hereditary optic neuropathy: low- and medium-dose visual results. Ophthalmology. 2017;124:1621–34.CrossRef Guy J, Feuer WJ, Davis JL, Porciatti V, Gonzalez PJ, Koilkonda RD, et al. Gene therapy for Leber hereditary optic neuropathy: low- and medium-dose visual results. Ophthalmology. 2017;124:1621–34.CrossRef
148.
go back to reference Finsterer J, Zarrouk-Mahjoub S. Re: Guy et al.: gene therapy for Leber hereditary optic neuropathy: low-and medium-dose visual results ( ophthalmology. 2017;124:1621–1634). Ophthalmology. 2018;125:e14-5.CrossRef Finsterer J, Zarrouk-Mahjoub S. Re: Guy et al.: gene therapy for Leber hereditary optic neuropathy: low-and medium-dose visual results ( ophthalmology. 2017;124:1621–1634). Ophthalmology. 2018;125:e14-5.CrossRef
149.
go back to reference Wan X, Pei H, Zhao M, Yang S, Hu W, He H, et al. Efficacy and safety of rAAV2-ND4 treatment for Leber’s hereditary optic neuropathy. Sci Rep. 2016;6:21587.CrossRef Wan X, Pei H, Zhao M, Yang S, Hu W, He H, et al. Efficacy and safety of rAAV2-ND4 treatment for Leber’s hereditary optic neuropathy. Sci Rep. 2016;6:21587.CrossRef
150.
go back to reference Newman NJ, Yu-Wai-Man P, Carelli V, Biousse V, Moster ML, Vignal-Clermont C, et al. Intravitreal gene therapy vs. natural history in patients with Leber hereditary optic neuropathy carrying the m.11778G>A ND4 mutation: systematic review and indirect comparison. Front Neurol. 2021;12:662838.CrossRef Newman NJ, Yu-Wai-Man P, Carelli V, Biousse V, Moster ML, Vignal-Clermont C, et al. Intravitreal gene therapy vs. natural history in patients with Leber hereditary optic neuropathy carrying the m.11778G>A ND4 mutation: systematic review and indirect comparison. Front Neurol. 2021;12:662838.CrossRef
151.
go back to reference Yagi T, Seo BB, Nakamaru-Ogiso E, Marella M, Barber-Singh J, Yamashita T, et al. Possibility of transkingdom gene therapy for Complex I diseases. Biochim Biophys Acta. 2006;1757:708–14.CrossRef Yagi T, Seo BB, Nakamaru-Ogiso E, Marella M, Barber-Singh J, Yamashita T, et al. Possibility of transkingdom gene therapy for Complex I diseases. Biochim Biophys Acta. 2006;1757:708–14.CrossRef
152.
go back to reference Seo BB, Kitajima-Ihara T, Chan EK, Scheffler IE, Matsuno-Yagi A, Yagi T. Molecular remedy of complex I defects: rotenone-insensitive internal NADH-quinone oxidoreductase of Saccharomyces cerevisiae mitochondria restores the NADH oxidase activity of complex I-deficient mammalian cells. Proc Natl Acad Sci U S A. 1998;95:9167–71.CrossRef Seo BB, Kitajima-Ihara T, Chan EK, Scheffler IE, Matsuno-Yagi A, Yagi T. Molecular remedy of complex I defects: rotenone-insensitive internal NADH-quinone oxidoreductase of Saccharomyces cerevisiae mitochondria restores the NADH oxidase activity of complex I-deficient mammalian cells. Proc Natl Acad Sci U S A. 1998;95:9167–71.CrossRef
153.
go back to reference Seo BB, Matsuno-Yagi A, Yagi T. Modulation of oxidative phosphorylation of human kidney 293 cells by transfection with the internal rotenone-insensitive NADH-quinone oxidoreductase (NDI1) gene of Saccharomyces cerevisiae. Biochim Biophys Acta. 1999;1412:56–65.CrossRef Seo BB, Matsuno-Yagi A, Yagi T. Modulation of oxidative phosphorylation of human kidney 293 cells by transfection with the internal rotenone-insensitive NADH-quinone oxidoreductase (NDI1) gene of Saccharomyces cerevisiae. Biochim Biophys Acta. 1999;1412:56–65.CrossRef
154.
go back to reference Seo BB, Nakamaru-Ogiso E, Flotte TR, Yagi T, Matsuno-Yagi A. A single-subunit NADH-quinone oxidoreductase renders resistance to mammalian nerve cells against complex I inhibition. Mol Ther. 2002;6:336–41.CrossRef Seo BB, Nakamaru-Ogiso E, Flotte TR, Yagi T, Matsuno-Yagi A. A single-subunit NADH-quinone oxidoreductase renders resistance to mammalian nerve cells against complex I inhibition. Mol Ther. 2002;6:336–41.CrossRef
155.
go back to reference Bai Y, Hájek P, Chomyn A, Chan E, Seo BB, Matsuno-Yagi A, et al. Lack of complex I activity in human cells carrying a mutation in MtDNA-encoded ND4 subunit is corrected by the Saccharomyces cerevisiae NADH-quinone oxidoreductase (NDI1) gene. J Biol Chem. 2001;276:38808–13.CrossRef Bai Y, Hájek P, Chomyn A, Chan E, Seo BB, Matsuno-Yagi A, et al. Lack of complex I activity in human cells carrying a mutation in MtDNA-encoded ND4 subunit is corrected by the Saccharomyces cerevisiae NADH-quinone oxidoreductase (NDI1) gene. J Biol Chem. 2001;276:38808–13.CrossRef
156.
go back to reference Chadderton N, Palfi A, Millington-Ward S, Gobbo O, Overlack N, Carrigan M, et al. Intravitreal delivery of AAV-NDI1 provides functional benefit in a murine model of Leber hereditary optic neuropathy. Eur J Hum Genet. 2013;21:62–8.CrossRef Chadderton N, Palfi A, Millington-Ward S, Gobbo O, Overlack N, Carrigan M, et al. Intravitreal delivery of AAV-NDI1 provides functional benefit in a murine model of Leber hereditary optic neuropathy. Eur J Hum Genet. 2013;21:62–8.CrossRef
157.
go back to reference Hagstrom JE, Hegge J, Zhang G, Noble M, Budker V, Lewis DL, et al. A facile nonviral method for delivering genes and siRNAs to skeletal muscle of mammalian limbs. Mol Ther. 2004;10:386–98.CrossRef Hagstrom JE, Hegge J, Zhang G, Noble M, Budker V, Lewis DL, et al. A facile nonviral method for delivering genes and siRNAs to skeletal muscle of mammalian limbs. Mol Ther. 2004;10:386–98.CrossRef
158.
go back to reference Stewart JB, Chinnery PF. The dynamics of mitochondrial DNA heteroplasmy: implications for human health and disease. Nat Rev Genet. 2015;16:530–42.CrossRef Stewart JB, Chinnery PF. The dynamics of mitochondrial DNA heteroplasmy: implications for human health and disease. Nat Rev Genet. 2015;16:530–42.CrossRef
159.
go back to reference Jackson CB, Turnbull DM, Minczuk M, Gammage PA. Therapeutic manipulation of mtDNA Heteroplasmy: a Shifting Perspective. Trends Mol Med. 2020;26:698–709.CrossRef Jackson CB, Turnbull DM, Minczuk M, Gammage PA. Therapeutic manipulation of mtDNA Heteroplasmy: a Shifting Perspective. Trends Mol Med. 2020;26:698–709.CrossRef
160.
go back to reference Taylor RW, Chinnery PF, Turnbull DM, Lightowlers RN. Selective inhibition of mutant human mitochondrial DNA replication in vitro by peptide nucleic acids. Nat Genet. 1997;15:212–5.CrossRef Taylor RW, Chinnery PF, Turnbull DM, Lightowlers RN. Selective inhibition of mutant human mitochondrial DNA replication in vitro by peptide nucleic acids. Nat Genet. 1997;15:212–5.CrossRef
161.
go back to reference Egholm M, Buchardt O, Nielsen PE, Berg RH. Peptide nucleic acids (PNA). Oligonucleotide analogs with an achiral peptide backbone. J Am Chem Soc. 1992;114:1895–7.CrossRef Egholm M, Buchardt O, Nielsen PE, Berg RH. Peptide nucleic acids (PNA). Oligonucleotide analogs with an achiral peptide backbone. J Am Chem Soc. 1992;114:1895–7.CrossRef
162.
go back to reference Muratovska A. Targeting peptide nucleic acid (PNA) oligomers to mitochondria within cells by conjugation to lipophilic cations: implications for mitochondrial DNA replication, expression and disease. Nucleic Acids Res. 2001;29:1852–63.CrossRef Muratovska A. Targeting peptide nucleic acid (PNA) oligomers to mitochondria within cells by conjugation to lipophilic cations: implications for mitochondrial DNA replication, expression and disease. Nucleic Acids Res. 2001;29:1852–63.CrossRef
163.
go back to reference Clayton DA. Transcription and replication of mitochondrial DNA. Hum Reprod. 2000;15(Suppl 2):11–7.CrossRef Clayton DA. Transcription and replication of mitochondrial DNA. Hum Reprod. 2000;15(Suppl 2):11–7.CrossRef
164.
go back to reference Loutre R, Heckel A-M, Jeandard D, Tarassov I, Entelis N. Anti-replicative recombinant 5S rRNA molecules can modulate the mtDNA heteroplasmy in a glucose-dependent manner. PLoS ONE. 2018;13:e0199258.CrossRef Loutre R, Heckel A-M, Jeandard D, Tarassov I, Entelis N. Anti-replicative recombinant 5S rRNA molecules can modulate the mtDNA heteroplasmy in a glucose-dependent manner. PLoS ONE. 2018;13:e0199258.CrossRef
165.
go back to reference Comte C, Tonin Y, Heckel-Mager A-M, Boucheham A, Smirnov A, Auré K, et al. Mitochondrial targeting of recombinant RNAs modulates the level of a heteroplasmic mutation in human mitochondrial DNA associated with Kearns Sayre Syndrome. Nucleic Acids Res. 2013;41:418–33.CrossRef Comte C, Tonin Y, Heckel-Mager A-M, Boucheham A, Smirnov A, Auré K, et al. Mitochondrial targeting of recombinant RNAs modulates the level of a heteroplasmic mutation in human mitochondrial DNA associated with Kearns Sayre Syndrome. Nucleic Acids Res. 2013;41:418–33.CrossRef
166.
go back to reference Tonin Y, Heckel A-M, Vysokikh M, Dovydenko I, Meschaninova M, Rötig A, et al. Modeling of antigenomic therapy of mitochondrial diseases by mitochondrially addressed RNA targeting a pathogenic point mutation in mitochondrial DNA. J Biol Chem. 2014;289:13323–34.CrossRef Tonin Y, Heckel A-M, Vysokikh M, Dovydenko I, Meschaninova M, Rötig A, et al. Modeling of antigenomic therapy of mitochondrial diseases by mitochondrially addressed RNA targeting a pathogenic point mutation in mitochondrial DNA. J Biol Chem. 2014;289:13323–34.CrossRef
167.
go back to reference Arimura S. Effects of mitoTALENs-directed double-strand breaks on plant mitochondrial genomes. Genes. 2021;12:153.CrossRef Arimura S. Effects of mitoTALENs-directed double-strand breaks on plant mitochondrial genomes. Genes. 2021;12:153.CrossRef
168.
go back to reference Bian W-P, Chen Y-L, Luo J-J, Wang C, Xie S-L, Pei D-S. Knock-in strategy for editing human and zebrafish mitochondrial DNA using mito-CRISPR/Cas9 system. ACS Synth Biol. 2019;8:621–32.CrossRef Bian W-P, Chen Y-L, Luo J-J, Wang C, Xie S-L, Pei D-S. Knock-in strategy for editing human and zebrafish mitochondrial DNA using mito-CRISPR/Cas9 system. ACS Synth Biol. 2019;8:621–32.CrossRef
169.
go back to reference Moraes CT. What regulates mitochondrial DNA copy number in animal cells? Trends Genet. 2001;17:199–205.CrossRef Moraes CT. What regulates mitochondrial DNA copy number in animal cells? Trends Genet. 2001;17:199–205.CrossRef
170.
go back to reference Peeva V, Blei D, Trombly G, Corsi S, Szukszto MJ, Rebelo-Guiomar P, et al. Linear mitochondrial DNA is rapidly degraded by components of the replication machinery. Nat Commun. 2018;9:1727.CrossRef Peeva V, Blei D, Trombly G, Corsi S, Szukszto MJ, Rebelo-Guiomar P, et al. Linear mitochondrial DNA is rapidly degraded by components of the replication machinery. Nat Commun. 2018;9:1727.CrossRef
171.
go back to reference Moretton A, Morel F, Macao B, Lachaume P, Ishak L, Lefebvre M, et al. Selective mitochondrial DNA degradation following double-strand breaks. PLoS ONE. 2017;12:e0176795.CrossRef Moretton A, Morel F, Macao B, Lachaume P, Ishak L, Lefebvre M, et al. Selective mitochondrial DNA degradation following double-strand breaks. PLoS ONE. 2017;12:e0176795.CrossRef
172.
go back to reference Nissanka N, Bacman SR, Plastini MJ, Moraes CT. The mitochondrial DNA polymerase gamma degrades linear DNA fragments precluding the formation of deletions. Nat Commun. 2018;9:2491.CrossRef Nissanka N, Bacman SR, Plastini MJ, Moraes CT. The mitochondrial DNA polymerase gamma degrades linear DNA fragments precluding the formation of deletions. Nat Commun. 2018;9:2491.CrossRef
173.
go back to reference Srivastava S. Manipulating mitochondrial DNA heteroplasmy by a mitochondrially targeted restriction endonuclease. Hum Mol Genet. 2001;10:3093–9.CrossRef Srivastava S. Manipulating mitochondrial DNA heteroplasmy by a mitochondrially targeted restriction endonuclease. Hum Mol Genet. 2001;10:3093–9.CrossRef
174.
go back to reference Minczuk M, Papworth MA, Kolasinska P, Murphy MP, Klug A. Sequence-specific modification of mitochondrial DNA using a chimeric zinc finger methylase. Proc Natl Acad Sci USA. 2006;103:19689–94.CrossRef Minczuk M, Papworth MA, Kolasinska P, Murphy MP, Klug A. Sequence-specific modification of mitochondrial DNA using a chimeric zinc finger methylase. Proc Natl Acad Sci USA. 2006;103:19689–94.CrossRef
175.
go back to reference D’Aquila P, Ronchetti D, Gallo Cantafio ME, Todoerti K, Taiana E, Fabiani F, et al. epigenetic regulation of mitochondrial quality control genes in multiple myeloma: a sequenom massARRAY pilot investigation on HMCLs. JCM. 2021;10:1295.CrossRef D’Aquila P, Ronchetti D, Gallo Cantafio ME, Todoerti K, Taiana E, Fabiani F, et al. epigenetic regulation of mitochondrial quality control genes in multiple myeloma: a sequenom massARRAY pilot investigation on HMCLs. JCM. 2021;10:1295.CrossRef
176.
go back to reference Bacman SR, Williams SL, Pinto M, Peralta S, Moraes CT. Specific elimination of mutant mitochondrial genomes in patient-derived cells by mitoTALENs. Nat Med. 2013;19:1111–3.CrossRef Bacman SR, Williams SL, Pinto M, Peralta S, Moraes CT. Specific elimination of mutant mitochondrial genomes in patient-derived cells by mitoTALENs. Nat Med. 2013;19:1111–3.CrossRef
177.
go back to reference Hashimoto M, Bacman SR, Peralta S, Falk MJ, Chomyn A, Chan DC, et al. MitoTALEN: a general approach to reduce mutant mtDNA loads and restore oxidative phosphorylation function in mitochondrial diseases. Mol Ther. 2015;23:1592–9.CrossRef Hashimoto M, Bacman SR, Peralta S, Falk MJ, Chomyn A, Chan DC, et al. MitoTALEN: a general approach to reduce mutant mtDNA loads and restore oxidative phosphorylation function in mitochondrial diseases. Mol Ther. 2015;23:1592–9.CrossRef
178.
go back to reference Yang Y, Wu H, Kang X, Liang Y, Lan T, Li T, et al. Targeted elimination of mutant mitochondrial DNA in MELAS-iPSCs by mitoTALENs. Protein Cell. 2018;9:283–97.CrossRef Yang Y, Wu H, Kang X, Liang Y, Lan T, Li T, et al. Targeted elimination of mutant mitochondrial DNA in MELAS-iPSCs by mitoTALENs. Protein Cell. 2018;9:283–97.CrossRef
179.
go back to reference Reddy P, Ocampo A, Suzuki K, Luo J, Bacman SR, Williams SL, et al. Selective elimination of mitochondrial mutations in the germline by genome editing. Cell. 2015;161:459–69.CrossRef Reddy P, Ocampo A, Suzuki K, Luo J, Bacman SR, Williams SL, et al. Selective elimination of mitochondrial mutations in the germline by genome editing. Cell. 2015;161:459–69.CrossRef
180.
go back to reference Kazama T, Okuno M, Watari Y, Yanase S, Koizuka C, Tsuruta Y, et al. Curing cytoplasmic male sterility via TALEN-mediated mitochondrial genome editing. Nat Plants. 2019;5:722–30.CrossRef Kazama T, Okuno M, Watari Y, Yanase S, Koizuka C, Tsuruta Y, et al. Curing cytoplasmic male sterility via TALEN-mediated mitochondrial genome editing. Nat Plants. 2019;5:722–30.CrossRef
181.
go back to reference Arimura S, Ayabe H, Sugaya H, Okuno M, Tamura Y, Tsuruta Y, et al. Targeted gene disruption of ATP synthases 6–1 and 6–2 in the mitochondrial genome of Arabidopsis thaliana by mitoTALENs. Plant J. 2020;104:1459–71.CrossRef Arimura S, Ayabe H, Sugaya H, Okuno M, Tamura Y, Tsuruta Y, et al. Targeted gene disruption of ATP synthases 6–1 and 6–2 in the mitochondrial genome of Arabidopsis thaliana by mitoTALENs. Plant J. 2020;104:1459–71.CrossRef
182.
go back to reference Omukai S, Arimura S, Toriyama K, Kazama T. Disruption of mitochondrial open reading frame 352 partially restores pollen development in cytoplasmic male sterile rice. Plant Physiol. 2021;187:236–46.CrossRef Omukai S, Arimura S, Toriyama K, Kazama T. Disruption of mitochondrial open reading frame 352 partially restores pollen development in cytoplasmic male sterile rice. Plant Physiol. 2021;187:236–46.CrossRef
183.
go back to reference Yahata N, Matsumoto Y, Omi M, Yamamoto N, Hata R. TALEN-mediated shift of mitochondrial DNA heteroplasmy in MELAS-iPSCs with m.13513G>A mutation. Sci Rep. 2017;7:15557.CrossRef Yahata N, Matsumoto Y, Omi M, Yamamoto N, Hata R. TALEN-mediated shift of mitochondrial DNA heteroplasmy in MELAS-iPSCs with m.13513G>A mutation. Sci Rep. 2017;7:15557.CrossRef
184.
go back to reference Pereira CV, Bacman SR, Arguello T, Zekonyte U, Williams SL, Edgell DR, et al. mitoTev-TALE: a monomeric DNA editing enzyme to reduce mutant mitochondrial DNA levels. EMBO Mol Med. 2018;10:e8084.CrossRef Pereira CV, Bacman SR, Arguello T, Zekonyte U, Williams SL, Edgell DR, et al. mitoTev-TALE: a monomeric DNA editing enzyme to reduce mutant mitochondrial DNA levels. EMBO Mol Med. 2018;10:e8084.CrossRef
185.
go back to reference Phillips AF, Millet AR, Tigano M, Dubois SM, Crimmins H, Babin L, et al. Single-molecule analysis of mtDNA replication uncovers the basis of the common deletion. Mol Cell. 2017;65:527-538.e6.CrossRef Phillips AF, Millet AR, Tigano M, Dubois SM, Crimmins H, Babin L, et al. Single-molecule analysis of mtDNA replication uncovers the basis of the common deletion. Mol Cell. 2017;65:527-538.e6.CrossRef
186.
go back to reference Bacman SR, Kauppila JHK, Pereira CV, Nissanka N, Miranda M, Pinto M, et al. MitoTALEN reduces mutant mtDNA load and restores tRNAAla levels in a mouse model of heteroplasmic mtDNA mutation. Nat Med. 2018;24:1696–700.CrossRef Bacman SR, Kauppila JHK, Pereira CV, Nissanka N, Miranda M, Pinto M, et al. MitoTALEN reduces mutant mtDNA load and restores tRNAAla levels in a mouse model of heteroplasmic mtDNA mutation. Nat Med. 2018;24:1696–700.CrossRef
187.
go back to reference Kauppila JHK, Baines HL, Bratic A, Simard M-L, Freyer C, Mourier A, et al. A phenotype-driven approach to generate mouse models with pathogenic mtDNA mutations causing mitochondrial disease. Cell Rep. 2016;16:2980–90.CrossRef Kauppila JHK, Baines HL, Bratic A, Simard M-L, Freyer C, Mourier A, et al. A phenotype-driven approach to generate mouse models with pathogenic mtDNA mutations causing mitochondrial disease. Cell Rep. 2016;16:2980–90.CrossRef
188.
go back to reference Gammage PA, Viscomi C, Simard M-L, Costa ASH, Gaude E, Powell CA, et al. Genome editing in mitochondria corrects a pathogenic mtDNA mutation in vivo. Nat Med. 2018;24:1691–5.CrossRef Gammage PA, Viscomi C, Simard M-L, Costa ASH, Gaude E, Powell CA, et al. Genome editing in mitochondria corrects a pathogenic mtDNA mutation in vivo. Nat Med. 2018;24:1691–5.CrossRef
189.
go back to reference Pereira CV, Moraes CT. Current strategies towards therapeutic manipulation of mtDNA heteroplasmy. Front Biosci (Landmark Ed). 2017;22:991–1010.CrossRef Pereira CV, Moraes CT. Current strategies towards therapeutic manipulation of mtDNA heteroplasmy. Front Biosci (Landmark Ed). 2017;22:991–1010.CrossRef
190.
go back to reference Gammage PA, Moraes CT, Minczuk M. Mitochondrial genome engineering: the revolution may not be CRISPR-Ized. Trends Genet. 2018;34:101–10.CrossRef Gammage PA, Moraes CT, Minczuk M. Mitochondrial genome engineering: the revolution may not be CRISPR-Ized. Trends Genet. 2018;34:101–10.CrossRef
191.
go back to reference Antón Z, Mullally G, Ford H, van der Kamp MW, Szczelkun MD, Lane JD. Mitochondrial import, health and mtDNA copy number variability using type II and type V CRISPR effectors. J Cell Sci. 2020;133:jcs.248468.CrossRef Antón Z, Mullally G, Ford H, van der Kamp MW, Szczelkun MD, Lane JD. Mitochondrial import, health and mtDNA copy number variability using type II and type V CRISPR effectors. J Cell Sci. 2020;133:jcs.248468.CrossRef
192.
go back to reference Loutre R, Heckel A-M, Smirnova A, Entelis N, Tarassov I. Can Mitochondrial DNA be CRISPRized: pro and contra. IUBMB Life. 2018;70:1233–9.CrossRef Loutre R, Heckel A-M, Smirnova A, Entelis N, Tarassov I. Can Mitochondrial DNA be CRISPRized: pro and contra. IUBMB Life. 2018;70:1233–9.CrossRef
193.
go back to reference Hussain S-RA, Yalvac ME, Khoo B, Eckardt S, McLaughlin KJ. Adapting CRISPR/Cas9 system for targeting mitochondrial genome. Front Genet. 2021;12:627050.CrossRef Hussain S-RA, Yalvac ME, Khoo B, Eckardt S, McLaughlin KJ. Adapting CRISPR/Cas9 system for targeting mitochondrial genome. Front Genet. 2021;12:627050.CrossRef
194.
go back to reference Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. A Programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity. Science. 2012;337:816–21.CrossRef Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. A Programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity. Science. 2012;337:816–21.CrossRef
195.
go back to reference Mojica FJM, Díez-Villaseñor C, García-Martínez J, Almendros C. Short motif sequences determine the targets of the prokaryotic CRISPR defence system. Microbiology. 2009;155:733–40.CrossRef Mojica FJM, Díez-Villaseñor C, García-Martínez J, Almendros C. Short motif sequences determine the targets of the prokaryotic CRISPR defence system. Microbiology. 2009;155:733–40.CrossRef
196.
go back to reference Swarts DC. Making the cut(s): how Cas12a cleaves target and non-target DNA. Biochem Soc Trans. 2019;47:1499–510.CrossRef Swarts DC. Making the cut(s): how Cas12a cleaves target and non-target DNA. Biochem Soc Trans. 2019;47:1499–510.CrossRef
197.
go back to reference Tanaka M, Borgeld H-J, Zhang J, Muramatsu S, Gong J-S, Yoneda M, et al. Gene therapy for mitochondrial disease by delivering restriction endonuclease smai into mitochondria. J Biomed Sci. 2002;9:534–41. Tanaka M, Borgeld H-J, Zhang J, Muramatsu S, Gong J-S, Yoneda M, et al. Gene therapy for mitochondrial disease by delivering restriction endonuclease smai into mitochondria. J Biomed Sci. 2002;9:534–41.
198.
go back to reference Bayona-Bafaluy MP, Blits B, Battersby BJ, Shoubridge EA, Moraes CT. Rapid directional shift of mitochondrial DNA heteroplasmy in animal tissues by a mitochondrially targeted restriction endonuclease. Proc Natl Acad Sci USA. 2005;102:14392–7.CrossRef Bayona-Bafaluy MP, Blits B, Battersby BJ, Shoubridge EA, Moraes CT. Rapid directional shift of mitochondrial DNA heteroplasmy in animal tissues by a mitochondrially targeted restriction endonuclease. Proc Natl Acad Sci USA. 2005;102:14392–7.CrossRef
199.
go back to reference Komor AC, Kim YB, Packer MS, Zuris JA, Liu DR. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature. 2016;533:420–4.CrossRef Komor AC, Kim YB, Packer MS, Zuris JA, Liu DR. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature. 2016;533:420–4.CrossRef
200.
go back to reference Nishida K, Arazoe T, Yachie N, Banno S, Kakimoto M, Tabata M, et al. Targeted nucleotide editing using hybrid prokaryotic and vertebrate adaptive immune systems. Science. 2016;353:aaf8729.CrossRef Nishida K, Arazoe T, Yachie N, Banno S, Kakimoto M, Tabata M, et al. Targeted nucleotide editing using hybrid prokaryotic and vertebrate adaptive immune systems. Science. 2016;353:aaf8729.CrossRef
201.
go back to reference Gaudelli NM, Komor AC, Rees HA, Packer MS, Badran AH, Bryson DI, et al. Programmable base editing of A•T to G•C in genomic DNA without DNA cleavage. Nature. 2017;551:464–71.CrossRef Gaudelli NM, Komor AC, Rees HA, Packer MS, Badran AH, Bryson DI, et al. Programmable base editing of A•T to G•C in genomic DNA without DNA cleavage. Nature. 2017;551:464–71.CrossRef
202.
go back to reference Komor AC, Zhao KT, Packer MS, Gaudelli NM, Waterbury AL, Koblan LW, et al. Improved base excision repair inhibition and bacteriophage Mu Gam protein yields C:G-to-T: a base editors with higher efficiency and product purity. Sci Adv. 2017;3:eaao4774.CrossRef Komor AC, Zhao KT, Packer MS, Gaudelli NM, Waterbury AL, Koblan LW, et al. Improved base excision repair inhibition and bacteriophage Mu Gam protein yields C:G-to-T: a base editors with higher efficiency and product purity. Sci Adv. 2017;3:eaao4774.CrossRef
203.
go back to reference Salter JD, Smith HC. Modeling the embrace of a mutator: APOBEC selection of nucleic acid ligands. Trends Biochem Sci. 2018;43:606–22.CrossRef Salter JD, Smith HC. Modeling the embrace of a mutator: APOBEC selection of nucleic acid ligands. Trends Biochem Sci. 2018;43:606–22.CrossRef
204.
go back to reference Mok BY, de Moraes MH, Zeng J, Bosch DE, Kotrys AV, Raguram A, et al. A bacterial cytidine deaminase toxin enables CRISPR-free mitochondrial base editing. Nature. 2020;583:631–7.CrossRef Mok BY, de Moraes MH, Zeng J, Bosch DE, Kotrys AV, Raguram A, et al. A bacterial cytidine deaminase toxin enables CRISPR-free mitochondrial base editing. Nature. 2020;583:631–7.CrossRef
205.
go back to reference Lee H, Lee S, Baek G, Kim A, Kang B-C, Seo H, et al. Mitochondrial DNA editing in mice with DddA-TALE fusion deaminases. Nat Commun. 2021;12:1190.CrossRef Lee H, Lee S, Baek G, Kim A, Kang B-C, Seo H, et al. Mitochondrial DNA editing in mice with DddA-TALE fusion deaminases. Nat Commun. 2021;12:1190.CrossRef
206.
go back to reference Gorman GS, Schaefer AM, Ng Y, Gomez N, Blakely EL, Alston CL, et al. Prevalence of nuclear and mitochondrial DNA mutations related to adult mitochondrial disease. Ann Neurol. 2015;77:753–9.CrossRef Gorman GS, Schaefer AM, Ng Y, Gomez N, Blakely EL, Alston CL, et al. Prevalence of nuclear and mitochondrial DNA mutations related to adult mitochondrial disease. Ann Neurol. 2015;77:753–9.CrossRef
207.
go back to reference Sridharan K, Gogtay NJ. Therapeutic nucleic acids: current clinical status. Br J Clin Pharmacol. 2016;82:659–72.CrossRef Sridharan K, Gogtay NJ. Therapeutic nucleic acids: current clinical status. Br J Clin Pharmacol. 2016;82:659–72.CrossRef
208.
go back to reference Mercuri E, Darras BT, Chiriboga CA, Day JW, Campbell C, Connolly AM, et al. Nusinersen versus sham control in later-onset spinal muscular atrophy. N Engl J Med. 2018;378:625–35.CrossRef Mercuri E, Darras BT, Chiriboga CA, Day JW, Campbell C, Connolly AM, et al. Nusinersen versus sham control in later-onset spinal muscular atrophy. N Engl J Med. 2018;378:625–35.CrossRef
209.
go back to reference Kesselheim AS, Avorn J. Approving a problematic muscular dystrophy drug: implications for FDA policy. JAMA. 2016;316:2357–8.CrossRef Kesselheim AS, Avorn J. Approving a problematic muscular dystrophy drug: implications for FDA policy. JAMA. 2016;316:2357–8.CrossRef
210.
go back to reference Furukawa R, Yamada Y, Kawamura E, Harashima H. Mitochondrial delivery of antisense RNA by MITO-porter results in mitochondrial RNA knockdown, and has a functional impact on mitochondria. Biomaterials. 2015;57:107–15.CrossRef Furukawa R, Yamada Y, Kawamura E, Harashima H. Mitochondrial delivery of antisense RNA by MITO-porter results in mitochondrial RNA knockdown, and has a functional impact on mitochondria. Biomaterials. 2015;57:107–15.CrossRef
211.
go back to reference Kawamura E, Hibino M, Harashima H, Yamada Y. Targeted mitochondrial delivery of antisense RNA-containing nanoparticles by a MITO-Porter for safe and efficient mitochondrial gene silencing. Mitochondrion. 2019;49:178–88.CrossRef Kawamura E, Hibino M, Harashima H, Yamada Y. Targeted mitochondrial delivery of antisense RNA-containing nanoparticles by a MITO-Porter for safe and efficient mitochondrial gene silencing. Mitochondrion. 2019;49:178–88.CrossRef
212.
go back to reference Cerrato CP, Kivijärvi T, Tozzi R, Lehto T, Gestin M, Langel Ü. Intracellular delivery of therapeutic antisense oligonucleotides targeting mRNA coding mitochondrial proteins by cell-penetrating peptides. J Mater Chem B. 2020;8:10825–36.CrossRef Cerrato CP, Kivijärvi T, Tozzi R, Lehto T, Gestin M, Langel Ü. Intracellular delivery of therapeutic antisense oligonucleotides targeting mRNA coding mitochondrial proteins by cell-penetrating peptides. J Mater Chem B. 2020;8:10825–36.CrossRef
213.
go back to reference Venkatesh A, Ali S, Oh RS, Sonntag D, Li Z, McKenty T, et al. Antisense oligonucleotide mediated increase in OPA1 improves mitochondrial function in fibroblasts derived from patients with autosomal dominant optic atrophy (ADOA). Invest Ophthalmol Vis Sci. 2021;62:1482–1482. Venkatesh A, Ali S, Oh RS, Sonntag D, Li Z, McKenty T, et al. Antisense oligonucleotide mediated increase in OPA1 improves mitochondrial function in fibroblasts derived from patients with autosomal dominant optic atrophy (ADOA). Invest Ophthalmol Vis Sci. 2021;62:1482–1482.
214.
go back to reference Bonifert T, Gonzalez Menendez I, Battke F, Theurer Y, Synofzik M, Schöls L, et al. Antisense oligonucleotide mediated splice correction of a deep intronic mutation in OPA1. Mol Ther Nucleic Acids. 2016;5:e390.CrossRef Bonifert T, Gonzalez Menendez I, Battke F, Theurer Y, Synofzik M, Schöls L, et al. Antisense oligonucleotide mediated splice correction of a deep intronic mutation in OPA1. Mol Ther Nucleic Acids. 2016;5:e390.CrossRef
215.
go back to reference Wassmer SJ, De Repentigny Y, Sheppard D, Lagali PS, Fang L, Coupland SG, et al. XIAP protects retinal ganglion cells in the mutant ND4 mouse model of Leber hereditary optic neuropathy. Invest Ophthalmol Vis Sci. 2020;61:49.CrossRef Wassmer SJ, De Repentigny Y, Sheppard D, Lagali PS, Fang L, Coupland SG, et al. XIAP protects retinal ganglion cells in the mutant ND4 mouse model of Leber hereditary optic neuropathy. Invest Ophthalmol Vis Sci. 2020;61:49.CrossRef
216.
go back to reference Cheung CHA, Chang Y-C, Lin T-Y, Cheng SM, Leung E. Anti-apoptotic proteins in the autophagic world: an update on functions of XIAP, Survivin, and BRUCE. J Biomed Sci. 2020;27:31.CrossRef Cheung CHA, Chang Y-C, Lin T-Y, Cheng SM, Leung E. Anti-apoptotic proteins in the autophagic world: an update on functions of XIAP, Survivin, and BRUCE. J Biomed Sci. 2020;27:31.CrossRef
217.
go back to reference Perales-Clemente E, Fernández-Silva P, Acín-Pérez R, Pérez-Martos A, Enríquez JA. Allotopic expression of mitochondrial-encoded genes in mammals: achieved goal, undemonstrated mechanism or impossible task? Nucleic Acids Res. 2011;39:225–34.CrossRef Perales-Clemente E, Fernández-Silva P, Acín-Pérez R, Pérez-Martos A, Enríquez JA. Allotopic expression of mitochondrial-encoded genes in mammals: achieved goal, undemonstrated mechanism or impossible task? Nucleic Acids Res. 2011;39:225–34.CrossRef
Metadata
Title
Current advances in gene therapy of mitochondrial diseases
Authors
Vladislav O. Soldatov
Marina V. Kubekina
Marina Yu. Skorkina
Andrei E. Belykh
Tatiana V. Egorova
Mikhail V. Korokin
Mikhail V. Pokrovskiy
Alexey V. Deykin
Plamena R. Angelova
Publication date
01-12-2022
Publisher
BioMed Central
Published in
Journal of Translational Medicine / Issue 1/2022
Electronic ISSN: 1479-5876
DOI
https://doi.org/10.1186/s12967-022-03685-0

Other articles of this Issue 1/2022

Journal of Translational Medicine 1/2022 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine