Skip to main content
Top
Published in: Orphanet Journal of Rare Diseases 1/2022

Open Access 01-12-2022 | Gene Therapy in Oncology | Review

AAV-vector based gene therapy for mitochondrial disease: progress and future perspectives

Authors: Allison R. Hanaford, Yoon-Jae Cho, Hiroyuki Nakai

Published in: Orphanet Journal of Rare Diseases | Issue 1/2022

Login to get access

Abstract

Mitochondrial diseases are a group of rare, heterogeneous diseases caused by gene mutations in both nuclear and mitochondrial genomes that result in defects in mitochondrial function. They are responsible for significant morbidity and mortality as they affect multiple organ systems and particularly those with high energy-utilizing tissues, such as the nervous system, skeletal muscle, and cardiac muscle. Virtually no effective treatments exist for these patients, despite the urgent need. As the majority of these conditions are monogenic and caused by mutations in nuclear genes, gene replacement is a highly attractive therapeutic strategy. Adeno-associated virus (AAV) is a well-characterized gene replacement vector, and its safety profile and ability to transduce quiescent cells nominates it as a potential gene therapy vehicle for several mitochondrial diseases. Indeed, AAV vector-based gene replacement is currently being explored in clinical trials for one mitochondrial disease (Leber hereditary optic neuropathy) and preclinical studies have been published investigating this strategy in other mitochondrial diseases. This review summarizes the preclinical findings of AAV vector-based gene replacement therapy for mitochondrial diseases including Leigh syndrome, Barth syndrome, ethylmalonic encephalopathy, and others.
Literature
1.
go back to reference McBride HM, Neuspiel M, Wasiak S. Mitochondria: more than just a powerhouse. Curr Biol. 2006;16(14):R551–60.PubMedCrossRef McBride HM, Neuspiel M, Wasiak S. Mitochondria: more than just a powerhouse. Curr Biol. 2006;16(14):R551–60.PubMedCrossRef
2.
go back to reference Thompson K, Collier JJ, Glasgow RIC, Robertson FM, Pyle A, Blakely EL, et al. Recent advances in understanding the molecular genetic basis of mitochondrial disease. J Inherit Metab Dis. 2020;43(1):36–50.PubMedCrossRef Thompson K, Collier JJ, Glasgow RIC, Robertson FM, Pyle A, Blakely EL, et al. Recent advances in understanding the molecular genetic basis of mitochondrial disease. J Inherit Metab Dis. 2020;43(1):36–50.PubMedCrossRef
3.
go back to reference Ghezzi D, Sevrioukova I, Invernizzi F, Lamperti C, Mora M, D’Adamo P, et al. Severe X-linked mitochondrial encephalomyopathy associated with a mutation in apoptosis-inducing factor. Am J Hum Genet. 2010;86(4):639–49.PubMedPubMedCentralCrossRef Ghezzi D, Sevrioukova I, Invernizzi F, Lamperti C, Mora M, D’Adamo P, et al. Severe X-linked mitochondrial encephalomyopathy associated with a mutation in apoptosis-inducing factor. Am J Hum Genet. 2010;86(4):639–49.PubMedPubMedCentralCrossRef
4.
go back to reference Zong L, Guan J, Ealy M, Zhang Q, Wang D, Wang H, et al. Mutations in apoptosis-inducing factor cause X-linked recessive auditory neuropathy spectrum disorder. J Med Genet. 2015;52(8):523–31.PubMedCrossRef Zong L, Guan J, Ealy M, Zhang Q, Wang D, Wang H, et al. Mutations in apoptosis-inducing factor cause X-linked recessive auditory neuropathy spectrum disorder. J Med Genet. 2015;52(8):523–31.PubMedCrossRef
5.
go back to reference Lake NJ, Compton AG, Rahman S, Thorburn DR. Leigh syndrome: One disorder, more than 75 monogenic causes. Ann Neurol. 2016;79(2):190–203.PubMedCrossRef Lake NJ, Compton AG, Rahman S, Thorburn DR. Leigh syndrome: One disorder, more than 75 monogenic causes. Ann Neurol. 2016;79(2):190–203.PubMedCrossRef
6.
go back to reference Gorman GS, Schaefer AM, Ng Y, Gomez N, Blakely EL, Alston CL, et al. Prevalence of nuclear and mitochondrial DNA mutations related to adult mitochondrial disease. Ann Neurol. 2015;77(5):753–9.PubMedPubMedCentralCrossRef Gorman GS, Schaefer AM, Ng Y, Gomez N, Blakely EL, Alston CL, et al. Prevalence of nuclear and mitochondrial DNA mutations related to adult mitochondrial disease. Ann Neurol. 2015;77(5):753–9.PubMedPubMedCentralCrossRef
7.
go back to reference Skladal D, Halliday J, Thorburn DR. Minimum birth prevalence of mitochondrial respiratory chain disorders in children. Brain. 2003;126(Pt 8):1905–12.PubMedCrossRef Skladal D, Halliday J, Thorburn DR. Minimum birth prevalence of mitochondrial respiratory chain disorders in children. Brain. 2003;126(Pt 8):1905–12.PubMedCrossRef
8.
go back to reference Pompei M, Pompei F. Overcoming bioethical, legal, and hereditary barriers to mitochondrial replacement therapy in the USA. J Assist Reprod Genet. 2019;36(3):383–93.PubMedCrossRef Pompei M, Pompei F. Overcoming bioethical, legal, and hereditary barriers to mitochondrial replacement therapy in the USA. J Assist Reprod Genet. 2019;36(3):383–93.PubMedCrossRef
10.
go back to reference Li C, Samulski RJ. Engineering adeno-associated virus vectors for gene therapy. Nat Rev Genet. 2020;21(4):255–72.PubMedCrossRef Li C, Samulski RJ. Engineering adeno-associated virus vectors for gene therapy. Nat Rev Genet. 2020;21(4):255–72.PubMedCrossRef
11.
go back to reference Tornabene P, Trapani I. Can adeno-associated viral vectors deliver effectively large genes? Hum Gene Ther. 2020;31(1–2):47–56.PubMedCrossRef Tornabene P, Trapani I. Can adeno-associated viral vectors deliver effectively large genes? Hum Gene Ther. 2020;31(1–2):47–56.PubMedCrossRef
12.
go back to reference Nakai H, Yant SR, Storm TA, Fuess S, Meuse L, Kay MA. Extrachromosomal recombinant adeno-associated virus vector genomes are primarily responsible for stable liver transduction in vivo. J Virol. 2001;75(15):6969–76.PubMedPubMedCentralCrossRef Nakai H, Yant SR, Storm TA, Fuess S, Meuse L, Kay MA. Extrachromosomal recombinant adeno-associated virus vector genomes are primarily responsible for stable liver transduction in vivo. J Virol. 2001;75(15):6969–76.PubMedPubMedCentralCrossRef
13.
go back to reference Nguyen GN, Everett JK, Kafle S, Roche AM, Raymond HE, Leiby J, et al. A long-term study of AAV gene therapy in dogs with hemophilia A identifies clonal expansions of transduced liver cells. Nat Biotechnol. 2021;39(1):47–55.PubMedCrossRef Nguyen GN, Everett JK, Kafle S, Roche AM, Raymond HE, Leiby J, et al. A long-term study of AAV gene therapy in dogs with hemophilia A identifies clonal expansions of transduced liver cells. Nat Biotechnol. 2021;39(1):47–55.PubMedCrossRef
15.
go back to reference Schnepp BC, Jensen RL, Clark KR, Johnson PR. Infectious molecular clones of adeno-associated virus isolated directly from human tissues. J Virol. 2009;83(3):1456–64.PubMedCrossRef Schnepp BC, Jensen RL, Clark KR, Johnson PR. Infectious molecular clones of adeno-associated virus isolated directly from human tissues. J Virol. 2009;83(3):1456–64.PubMedCrossRef
16.
go back to reference Korneyenkov MA, Zamyatnin AA Jr. Next step in gene delivery: modern approaches and further perspectives of AAV tropism modification. Pharmaceutics. 2021;13(5):750.PubMedPubMedCentralCrossRef Korneyenkov MA, Zamyatnin AA Jr. Next step in gene delivery: modern approaches and further perspectives of AAV tropism modification. Pharmaceutics. 2021;13(5):750.PubMedPubMedCentralCrossRef
17.
go back to reference Aschauer DF, Kreuz S, Rumpel S. Analysis of transduction efficiency, tropism and axonal transport of AAV serotypes 1, 2, 5, 6, 8 and 9 in the mouse brain. PLoS ONE. 2013;8(9):e76310.PubMedPubMedCentralCrossRef Aschauer DF, Kreuz S, Rumpel S. Analysis of transduction efficiency, tropism and axonal transport of AAV serotypes 1, 2, 5, 6, 8 and 9 in the mouse brain. PLoS ONE. 2013;8(9):e76310.PubMedPubMedCentralCrossRef
19.
go back to reference Pavlou M, Schon C, Occelli LM, Rossi A, Meumann N, Boyd RF, et al. Novel AAV capsids for intravitreal gene therapy of photoreceptor disorders. EMBO Mol Med. 2021;13(4):e133392.CrossRef Pavlou M, Schon C, Occelli LM, Rossi A, Meumann N, Boyd RF, et al. Novel AAV capsids for intravitreal gene therapy of photoreceptor disorders. EMBO Mol Med. 2021;13(4):e133392.CrossRef
20.
go back to reference Deverman BE, Pravdo PL, Simpson BP, Kumar SR, Chan KY, Banerjee A, et al. Cre-dependent selection yields AAV variants for widespread gene transfer to the adult brain. Nat Biotechnol. 2016;34(2):204–9.PubMedPubMedCentralCrossRef Deverman BE, Pravdo PL, Simpson BP, Kumar SR, Chan KY, Banerjee A, et al. Cre-dependent selection yields AAV variants for widespread gene transfer to the adult brain. Nat Biotechnol. 2016;34(2):204–9.PubMedPubMedCentralCrossRef
22.
go back to reference Garlid AO, Schaffer CT, Kim J, Bhatt H, Guevara-Gonzalez V, Ping P. TAZ encodes tafazzin, a transacylase essential for cardiolipin formation and central to the etiology of Barth syndrome. Gene. 2020;726:144–8.CrossRef Garlid AO, Schaffer CT, Kim J, Bhatt H, Guevara-Gonzalez V, Ping P. TAZ encodes tafazzin, a transacylase essential for cardiolipin formation and central to the etiology of Barth syndrome. Gene. 2020;726:144–8.CrossRef
23.
go back to reference Suzuki-Hatano S, Saha M, Rizzo SA, Witko RL, Gosiker BJ, Ramanathan M, et al. AAV-mediated TAZ gene replacement restores mitochondrial and cardioskeletal function in Barth syndrome. Hum Gene Ther. 2019;30(2):139–54.PubMedPubMedCentralCrossRef Suzuki-Hatano S, Saha M, Rizzo SA, Witko RL, Gosiker BJ, Ramanathan M, et al. AAV-mediated TAZ gene replacement restores mitochondrial and cardioskeletal function in Barth syndrome. Hum Gene Ther. 2019;30(2):139–54.PubMedPubMedCentralCrossRef
24.
go back to reference Suzuki-Hatano S, Saha M, Soustek MS, Kang PB, Byrne BJ, Cade WT, et al. AAV9-TAZ gene replacement ameliorates cardiac TMT proteomic profiles in a mouse model of Barth syndrome. Mol Ther Methods Clin Dev. 2019;13:167–79.PubMedPubMedCentralCrossRef Suzuki-Hatano S, Saha M, Soustek MS, Kang PB, Byrne BJ, Cade WT, et al. AAV9-TAZ gene replacement ameliorates cardiac TMT proteomic profiles in a mouse model of Barth syndrome. Mol Ther Methods Clin Dev. 2019;13:167–79.PubMedPubMedCentralCrossRef
25.
go back to reference Wang S, Li Y, Xu Y, Ma Q, Lin Z, Schlame M, et al. AAV gene therapy prevents and reverses heart failure in a murine knockout model of Barth syndrome. Circ Res. 2020;126(8):1024–39.PubMedPubMedCentralCrossRef Wang S, Li Y, Xu Y, Ma Q, Lin Z, Schlame M, et al. AAV gene therapy prevents and reverses heart failure in a murine knockout model of Barth syndrome. Circ Res. 2020;126(8):1024–39.PubMedPubMedCentralCrossRef
27.
go back to reference Delatycki MB, Bidichandani SI. Friedreich ataxia—pathogenesis and implications for therapies. Neurobiol Dis. 2019;132:104606.PubMedCrossRef Delatycki MB, Bidichandani SI. Friedreich ataxia—pathogenesis and implications for therapies. Neurobiol Dis. 2019;132:104606.PubMedCrossRef
28.
go back to reference Ward PGD, Harding IH, Close TG, Corben LA, Delatycki MB, Storey E, et al. Longitudinal evaluation of iron concentration and atrophy in the dentate nuclei in Friedreich ataxia. Mov Disord. 2019;34(3):335–43.PubMedCrossRef Ward PGD, Harding IH, Close TG, Corben LA, Delatycki MB, Storey E, et al. Longitudinal evaluation of iron concentration and atrophy in the dentate nuclei in Friedreich ataxia. Mov Disord. 2019;34(3):335–43.PubMedCrossRef
29.
go back to reference Tsou AY, Paulsen EK, Lagedrost SJ, Perlman SL, Mathews KD, Wilmot GR, et al. Mortality in Friedreich ataxia. J Neurol Sci. 2011;307(1–2):46–9.PubMedCrossRef Tsou AY, Paulsen EK, Lagedrost SJ, Perlman SL, Mathews KD, Wilmot GR, et al. Mortality in Friedreich ataxia. J Neurol Sci. 2011;307(1–2):46–9.PubMedCrossRef
30.
go back to reference Vyas PM, Tomamichel WJ, Pride PM, Babbey CM, Wang Q, Mercier J, et al. A TAT-frataxin fusion protein increases lifespan and cardiac function in a conditional Friedreich’s ataxia mouse model. Hum Mol Genet. 2012;21(6):1230–47.PubMedCrossRef Vyas PM, Tomamichel WJ, Pride PM, Babbey CM, Wang Q, Mercier J, et al. A TAT-frataxin fusion protein increases lifespan and cardiac function in a conditional Friedreich’s ataxia mouse model. Hum Mol Genet. 2012;21(6):1230–47.PubMedCrossRef
32.
go back to reference Li L, Shen X, Liu Z, Norrbom M, Prakash TP, O’Reilly D, et al. Activation of frataxin protein expression by antisense oligonucleotides targeting the mutant expanded repeat. Nucleic Acid Ther. 2018;28(1):23–33.PubMedPubMedCentralCrossRef Li L, Shen X, Liu Z, Norrbom M, Prakash TP, O’Reilly D, et al. Activation of frataxin protein expression by antisense oligonucleotides targeting the mutant expanded repeat. Nucleic Acid Ther. 2018;28(1):23–33.PubMedPubMedCentralCrossRef
33.
go back to reference Clay A, Hearle P, Schadt K, Lynch DR. New developments in pharmacotherapy for Friedreich ataxia. Expert Opin Pharmacother. 2019;20(15):1855–67.PubMedCrossRef Clay A, Hearle P, Schadt K, Lynch DR. New developments in pharmacotherapy for Friedreich ataxia. Expert Opin Pharmacother. 2019;20(15):1855–67.PubMedCrossRef
34.
go back to reference Cossee M, Puccio H, Gansmuller A, Koutnikova H, Dierich A, LeMeur M, et al. Inactivation of the Friedreich ataxia mouse gene leads to early embryonic lethality without iron accumulation. Hum Mol Genet. 2000;9(8):1219–26.PubMedCrossRef Cossee M, Puccio H, Gansmuller A, Koutnikova H, Dierich A, LeMeur M, et al. Inactivation of the Friedreich ataxia mouse gene leads to early embryonic lethality without iron accumulation. Hum Mol Genet. 2000;9(8):1219–26.PubMedCrossRef
35.
go back to reference Puccio H, Simon D, Cossee M, Criqui-Filipe P, Tiziano F, Melki J, et al. Mouse models for Friedreich ataxia exhibit cardiomyopathy, sensory nerve defect and Fe-S enzyme deficiency followed by intramitochondrial iron deposits. Nat Genet. 2001;27(2):181–6.PubMedCrossRef Puccio H, Simon D, Cossee M, Criqui-Filipe P, Tiziano F, Melki J, et al. Mouse models for Friedreich ataxia exhibit cardiomyopathy, sensory nerve defect and Fe-S enzyme deficiency followed by intramitochondrial iron deposits. Nat Genet. 2001;27(2):181–6.PubMedCrossRef
36.
go back to reference Perdomini M, Belbellaa B, Monassier L, Reutenauer L, Messaddeq N, Cartier N, et al. Prevention and reversal of severe mitochondrial cardiomyopathy by gene therapy in a mouse model of Friedreich’s ataxia. Nat Med. 2014;20(5):542–7.PubMedCrossRef Perdomini M, Belbellaa B, Monassier L, Reutenauer L, Messaddeq N, Cartier N, et al. Prevention and reversal of severe mitochondrial cardiomyopathy by gene therapy in a mouse model of Friedreich’s ataxia. Nat Med. 2014;20(5):542–7.PubMedCrossRef
37.
go back to reference Voyager's CNS gene therapy. Nat Biotechnol. 2019;37(3):204. Voyager's CNS gene therapy. Nat Biotechnol. 2019;37(3):204.
38.
go back to reference Belbellaa B, Reutenauer L, Messaddeq N, Monassier L, Puccio H. High levels of frataxin overexpression lead to mitochondrial and cardiac toxicity in mouse models. Mol Ther Methods Clin Dev. 2020;19:120–38.PubMedPubMedCentralCrossRef Belbellaa B, Reutenauer L, Messaddeq N, Monassier L, Puccio H. High levels of frataxin overexpression lead to mitochondrial and cardiac toxicity in mouse models. Mol Ther Methods Clin Dev. 2020;19:120–38.PubMedPubMedCentralCrossRef
39.
go back to reference Piguet F, de Montigny C, Vaucamps N, Reutenauer L, Eisenmann A, Puccio H. Rapid and complete reversal of sensory ataxia by gene therapy in a novel model of Friedreich ataxia. Mol Ther. 2018;26(8):1940–52.PubMedPubMedCentralCrossRef Piguet F, de Montigny C, Vaucamps N, Reutenauer L, Eisenmann A, Puccio H. Rapid and complete reversal of sensory ataxia by gene therapy in a novel model of Friedreich ataxia. Mol Ther. 2018;26(8):1940–52.PubMedPubMedCentralCrossRef
40.
go back to reference Durr A, Cossee M, Agid Y, Campuzano V, Mignard C, Penet C, et al. Clinical and genetic abnormalities in patients with Friedreich’s ataxia. N Engl J Med. 1996;335(16):1169–75.PubMedCrossRef Durr A, Cossee M, Agid Y, Campuzano V, Mignard C, Penet C, et al. Clinical and genetic abnormalities in patients with Friedreich’s ataxia. N Engl J Med. 1996;335(16):1169–75.PubMedCrossRef
41.
go back to reference Gerard C, Xiao X, Filali M, Coulombe Z, Arsenault M, Couet J, et al. An AAV9 coding for frataxin clearly improved the symptoms and prolonged the life of Friedreich ataxia mouse models. Mol Ther Methods Clin Dev. 2014;1:14044.PubMedPubMedCentralCrossRef Gerard C, Xiao X, Filali M, Coulombe Z, Arsenault M, Couet J, et al. An AAV9 coding for frataxin clearly improved the symptoms and prolonged the life of Friedreich ataxia mouse models. Mol Ther Methods Clin Dev. 2014;1:14044.PubMedPubMedCentralCrossRef
42.
go back to reference Chandran V, Gao K, Swarup V, Versano R, Dong H, Jordan MC, et al. Inducible and reversible phenotypes in a novel mouse model of Friedreich’s Ataxia. Elife. 2017;6:e30054.PubMedPubMedCentralCrossRef Chandran V, Gao K, Swarup V, Versano R, Dong H, Jordan MC, et al. Inducible and reversible phenotypes in a novel mouse model of Friedreich’s Ataxia. Elife. 2017;6:e30054.PubMedPubMedCentralCrossRef
43.
go back to reference Lake NJ, Bird MJ, Isohanni P, Paetau A. Leigh syndrome: neuropathology and pathogenesis. J Neuropathol Exp Neurol. 2015;74(6):482–92.PubMedCrossRef Lake NJ, Bird MJ, Isohanni P, Paetau A. Leigh syndrome: neuropathology and pathogenesis. J Neuropathol Exp Neurol. 2015;74(6):482–92.PubMedCrossRef
44.
go back to reference Gerards M, Sallevelt SC, Smeets HJ. Leigh syndrome: Resolving the clinical and genetic heterogeneity paves the way for treatment options. Mol Genet Metab. 2016;117(3):300–12.PubMedCrossRef Gerards M, Sallevelt SC, Smeets HJ. Leigh syndrome: Resolving the clinical and genetic heterogeneity paves the way for treatment options. Mol Genet Metab. 2016;117(3):300–12.PubMedCrossRef
45.
go back to reference Chen L, Cui Y, Jiang D, Ma CY, Tse HF, Hwu WL, et al. Management of Leigh syndrome: current status and new insights. Clin Genet. 2018;93(6):1131–40.PubMedCrossRef Chen L, Cui Y, Jiang D, Ma CY, Tse HF, Hwu WL, et al. Management of Leigh syndrome: current status and new insights. Clin Genet. 2018;93(6):1131–40.PubMedCrossRef
46.
go back to reference Sofou K, Dahlin M, Hallbook T, Lindefeldt M, Viggedal G, Darin N. Ketogenic diet in pyruvate dehydrogenase complex deficiency: short- and long-term outcomes. J Inherit Metab Dis. 2017;40(2):237–45.PubMedPubMedCentralCrossRef Sofou K, Dahlin M, Hallbook T, Lindefeldt M, Viggedal G, Darin N. Ketogenic diet in pyruvate dehydrogenase complex deficiency: short- and long-term outcomes. J Inherit Metab Dis. 2017;40(2):237–45.PubMedPubMedCentralCrossRef
47.
go back to reference Johnson SC, Yanos ME, Kayser EB, Quintana A, Sangesland M, Castanza A, et al. mTOR inhibition alleviates mitochondrial disease in a mouse model of Leigh syndrome. Science. 2013;342(6165):1524–8.PubMedPubMedCentralCrossRef Johnson SC, Yanos ME, Kayser EB, Quintana A, Sangesland M, Castanza A, et al. mTOR inhibition alleviates mitochondrial disease in a mouse model of Leigh syndrome. Science. 2013;342(6165):1524–8.PubMedPubMedCentralCrossRef
48.
go back to reference Sage-Schwaede A, Engelstad K, Salazar R, Curcio A, Khandji A, Garvin JH Jr, et al. Exploring mTOR inhibition as treatment for mitochondrial disease. Ann Clin Transl Neurol. 2019;6(9):1877–81.PubMedPubMedCentralCrossRef Sage-Schwaede A, Engelstad K, Salazar R, Curcio A, Khandji A, Garvin JH Jr, et al. Exploring mTOR inhibition as treatment for mitochondrial disease. Ann Clin Transl Neurol. 2019;6(9):1877–81.PubMedPubMedCentralCrossRef
49.
go back to reference Di Meo I, Marchet S, Lamperti C, Zeviani M, Viscomi C. AAV9-based gene therapy partially ameliorates the clinical phenotype of a mouse model of Leigh syndrome. Gene Ther. 2017;24(10):661–7.PubMedPubMedCentralCrossRef Di Meo I, Marchet S, Lamperti C, Zeviani M, Viscomi C. AAV9-based gene therapy partially ameliorates the clinical phenotype of a mouse model of Leigh syndrome. Gene Ther. 2017;24(10):661–7.PubMedPubMedCentralCrossRef
50.
go back to reference Reynaud-Dulaurier R, Benegiamo G, Marrocco E, Al-Tannir R, Surace EM, Auwerx J, et al. Gene replacement therapy provides benefit in an adult mouse model of Leigh syndrome. Brain. 2020;143(6):1686–96.PubMedCrossRef Reynaud-Dulaurier R, Benegiamo G, Marrocco E, Al-Tannir R, Surace EM, Auwerx J, et al. Gene replacement therapy provides benefit in an adult mouse model of Leigh syndrome. Brain. 2020;143(6):1686–96.PubMedCrossRef
51.
go back to reference Silva-Pinheiro P, Cerutti R, Luna-Sanchez M, Zeviani M, Viscomi C. A single intravenous injection of AAV-PHP.B-hNDUFS4 ameliorates the phenotype of Ndufs4 (-/-) mice. Mol Ther Methods Clin Dev. 2020;17:1071–8.PubMedPubMedCentralCrossRef Silva-Pinheiro P, Cerutti R, Luna-Sanchez M, Zeviani M, Viscomi C. A single intravenous injection of AAV-PHP.B-hNDUFS4 ameliorates the phenotype of Ndufs4 (-/-) mice. Mol Ther Methods Clin Dev. 2020;17:1071–8.PubMedPubMedCentralCrossRef
52.
go back to reference Benit P, Slama A, Cartault F, Giurgea I, Chretien D, Lebon S, et al. Mutant NDUFS3 subunit of mitochondrial complex I causes Leigh syndrome. J Med Genet. 2004;41(1):14–7.PubMedPubMedCentralCrossRef Benit P, Slama A, Cartault F, Giurgea I, Chretien D, Lebon S, et al. Mutant NDUFS3 subunit of mitochondrial complex I causes Leigh syndrome. J Med Genet. 2004;41(1):14–7.PubMedPubMedCentralCrossRef
53.
go back to reference Lou X, Shi H, Wen S, Li Y, Wei X, Xie J, et al. A Novel NDUFS3 mutation in a Chinese patient with severe Leigh syndrome. J Hum Genet. 2018;63(12):1269–72.PubMedCrossRef Lou X, Shi H, Wen S, Li Y, Wei X, Xie J, et al. A Novel NDUFS3 mutation in a Chinese patient with severe Leigh syndrome. J Hum Genet. 2018;63(12):1269–72.PubMedCrossRef
54.
go back to reference Pereira CV, Peralta S, Arguello T, Bacman SR, Diaz F, Moraes CT. Myopathy reversion in mice after restauration of mitochondrial complex I. EMBO Mol Med. 2020;12(2):e10674.PubMedPubMedCentralCrossRef Pereira CV, Peralta S, Arguello T, Bacman SR, Diaz F, Moraes CT. Myopathy reversion in mice after restauration of mitochondrial complex I. EMBO Mol Med. 2020;12(2):e10674.PubMedPubMedCentralCrossRef
55.
go back to reference Mick DU, Dennerlein S, Wiese H, Reinhold R, Pacheu-Grau D, Lorenzi I, et al. MITRAC links mitochondrial protein translocation to respiratory-chain assembly and translational regulation. Cell. 2012;151(7):1528–41.PubMedCrossRef Mick DU, Dennerlein S, Wiese H, Reinhold R, Pacheu-Grau D, Lorenzi I, et al. MITRAC links mitochondrial protein translocation to respiratory-chain assembly and translational regulation. Cell. 2012;151(7):1528–41.PubMedCrossRef
56.
go back to reference Hannappel A, Bundschuh FA, Ludwig B. Role of Surf1 in heme recruitment for bacterial COX biogenesis. Biochim Biophys Acta. 2012;1817(6):928–37.PubMedCrossRef Hannappel A, Bundschuh FA, Ludwig B. Role of Surf1 in heme recruitment for bacterial COX biogenesis. Biochim Biophys Acta. 2012;1817(6):928–37.PubMedCrossRef
57.
go back to reference Dell’agnello C, Leo S, Agostino A, Szabadkai G, Tiveron C, Zulian A, et al. Increased longevity and refractoriness to Ca(2+)-dependent neurodegeneration in Surf1 knockout mice. Hum Mol Genet. 2007;16(4):431–44.PubMedCrossRef Dell’agnello C, Leo S, Agostino A, Szabadkai G, Tiveron C, Zulian A, et al. Increased longevity and refractoriness to Ca(2+)-dependent neurodegeneration in Surf1 knockout mice. Hum Mol Genet. 2007;16(4):431–44.PubMedCrossRef
58.
go back to reference Ling Q, Rioux M, Hu Y, Lee M, Gray SJ. Adeno-associated viral vector serotype 9-based gene replacement therapy for SURF1-related Leigh syndrome. Mol Ther Methods Clin Dev. 2021;23:158–68.PubMedPubMedCentralCrossRef Ling Q, Rioux M, Hu Y, Lee M, Gray SJ. Adeno-associated viral vector serotype 9-based gene replacement therapy for SURF1-related Leigh syndrome. Mol Ther Methods Clin Dev. 2021;23:158–68.PubMedPubMedCentralCrossRef
59.
go back to reference McCarty DM, Monahan PE, Samulski RJ. Self-complementary recombinant adeno-associated virus (scAAV) vectors promote efficient transduction independently of DNA synthesis. Gene Ther. 2001;8(16):1248–54.PubMedCrossRef McCarty DM, Monahan PE, Samulski RJ. Self-complementary recombinant adeno-associated virus (scAAV) vectors promote efficient transduction independently of DNA synthesis. Gene Ther. 2001;8(16):1248–54.PubMedCrossRef
60.
go back to reference Duque S, Joussemet B, Riviere C, Marais T, Dubreil L, Douar AM, et al. Intravenous administration of self-complementary AAV9 enables transgene delivery to adult motor neurons. Mol Ther. 2009;17(7):1187–96.PubMedPubMedCentralCrossRef Duque S, Joussemet B, Riviere C, Marais T, Dubreil L, Douar AM, et al. Intravenous administration of self-complementary AAV9 enables transgene delivery to adult motor neurons. Mol Ther. 2009;17(7):1187–96.PubMedPubMedCentralCrossRef
61.
go back to reference Tiranti V, D’Adamo P, Briem E, Ferrari G, Mineri R, Lamantea E, et al. Ethylmalonic encephalopathy is caused by mutations in ETHE1, a gene encoding a mitochondrial matrix protein. Am J Hum Genet. 2004;74(2):239–52.PubMedPubMedCentralCrossRef Tiranti V, D’Adamo P, Briem E, Ferrari G, Mineri R, Lamantea E, et al. Ethylmalonic encephalopathy is caused by mutations in ETHE1, a gene encoding a mitochondrial matrix protein. Am J Hum Genet. 2004;74(2):239–52.PubMedPubMedCentralCrossRef
62.
go back to reference Tiranti V, Viscomi C, Hildebrandt T, Di Meo I, Mineri R, Tiveron C, et al. Loss of ETHE1, a mitochondrial dioxygenase, causes fatal sulfide toxicity in ethylmalonic encephalopathy. Nat Med. 2009;15(2):200–5.PubMedCrossRef Tiranti V, Viscomi C, Hildebrandt T, Di Meo I, Mineri R, Tiveron C, et al. Loss of ETHE1, a mitochondrial dioxygenase, causes fatal sulfide toxicity in ethylmalonic encephalopathy. Nat Med. 2009;15(2):200–5.PubMedCrossRef
63.
go back to reference Giordano C, Viscomi C, Orlandi M, Papoff P, Spalice A, Burlina A, et al. Morphologic evidence of diffuse vascular damage in human and in the experimental model of ethylmalonic encephalopathy. J Inherit Metab Dis. 2012;35(3):451–8.PubMedCrossRef Giordano C, Viscomi C, Orlandi M, Papoff P, Spalice A, Burlina A, et al. Morphologic evidence of diffuse vascular damage in human and in the experimental model of ethylmalonic encephalopathy. J Inherit Metab Dis. 2012;35(3):451–8.PubMedCrossRef
64.
go back to reference Grosso S, Balestri P, Mostardini R, Federico A, De Stefano N. Brain mitochondrial impairment in ethylmalonic encephalopathy. J Neurol. 2004;251(6):755–6.PubMedCrossRef Grosso S, Balestri P, Mostardini R, Federico A, De Stefano N. Brain mitochondrial impairment in ethylmalonic encephalopathy. J Neurol. 2004;251(6):755–6.PubMedCrossRef
65.
go back to reference Garcia-Silva MT, Ribes A, Campos Y, Garavaglia B, Arenas J. Syndrome of encephalopathy, petechiae, and ethylmalonic aciduria. Pediatr Neurol. 1997;17(2):165–70.PubMedCrossRef Garcia-Silva MT, Ribes A, Campos Y, Garavaglia B, Arenas J. Syndrome of encephalopathy, petechiae, and ethylmalonic aciduria. Pediatr Neurol. 1997;17(2):165–70.PubMedCrossRef
66.
go back to reference Di Meo I, Fagiolari G, Prelle A, Viscomi C, Zeviani M, Tiranti V. Chronic exposure to sulfide causes accelerated degradation of cytochrome c oxidase in ethylmalonic encephalopathy. Antioxid Redox Signal. 2011;15(2):353–62.PubMedCrossRef Di Meo I, Fagiolari G, Prelle A, Viscomi C, Zeviani M, Tiranti V. Chronic exposure to sulfide causes accelerated degradation of cytochrome c oxidase in ethylmalonic encephalopathy. Antioxid Redox Signal. 2011;15(2):353–62.PubMedCrossRef
67.
go back to reference Viscomi C, Burlina AB, Dweikat I, Savoiardo M, Lamperti C, Hildebrandt T, et al. Combined treatment with oral metronidazole and N-acetylcysteine is effective in ethylmalonic encephalopathy. Nat Med. 2010;16(8):869–71.PubMedCrossRef Viscomi C, Burlina AB, Dweikat I, Savoiardo M, Lamperti C, Hildebrandt T, et al. Combined treatment with oral metronidazole and N-acetylcysteine is effective in ethylmalonic encephalopathy. Nat Med. 2010;16(8):869–71.PubMedCrossRef
68.
go back to reference Kilic M, Dedeoglu O, Gocmen R, Kesici S, Yuksel D. Successful treatment of a patient with ethylmalonic encephalopathy by intravenous N-acetylcysteine. Metab Brain Dis. 2017;32(2):293–6.PubMedCrossRef Kilic M, Dedeoglu O, Gocmen R, Kesici S, Yuksel D. Successful treatment of a patient with ethylmalonic encephalopathy by intravenous N-acetylcysteine. Metab Brain Dis. 2017;32(2):293–6.PubMedCrossRef
69.
go back to reference Boyer M, Sowa M, Di Meo I, Eftekharian S, Steenari MR, Tiranti V, et al. Response to medical and a novel dietary treatment in newborn screen identified patients with ethylmalonic encephalopathy. Mol Genet Metab. 2018;124(1):57–63.PubMedCrossRef Boyer M, Sowa M, Di Meo I, Eftekharian S, Steenari MR, Tiranti V, et al. Response to medical and a novel dietary treatment in newborn screen identified patients with ethylmalonic encephalopathy. Mol Genet Metab. 2018;124(1):57–63.PubMedCrossRef
70.
go back to reference Tam A, AlDhaheri NS, Mysore K, Tessier ME, Goss J, Fernandez LA, et al. Improved clinical outcome following liver transplant in patients with ethylmalonic encephalopathy. Am J Med Genet A. 2019;179(6):1015–9.PubMedCrossRef Tam A, AlDhaheri NS, Mysore K, Tessier ME, Goss J, Fernandez LA, et al. Improved clinical outcome following liver transplant in patients with ethylmalonic encephalopathy. Am J Med Genet A. 2019;179(6):1015–9.PubMedCrossRef
71.
go back to reference Di Meo I, Auricchio A, Lamperti C, Burlina A, Viscomi C, Zeviani M. Effective AAV-mediated gene therapy in a mouse model of ethylmalonic encephalopathy. EMBO Mol Med. 2012;4(9):1008–14.PubMedPubMedCentralCrossRef Di Meo I, Auricchio A, Lamperti C, Burlina A, Viscomi C, Zeviani M. Effective AAV-mediated gene therapy in a mouse model of ethylmalonic encephalopathy. EMBO Mol Med. 2012;4(9):1008–14.PubMedPubMedCentralCrossRef
72.
go back to reference El-Hattab AW, Scaglia F. Mitochondrial DNA depletion syndromes: review and updates of genetic basis, manifestations, and therapeutic options. Neurotherapeutics. 2013;10(2):186–98.PubMedPubMedCentralCrossRef El-Hattab AW, Scaglia F. Mitochondrial DNA depletion syndromes: review and updates of genetic basis, manifestations, and therapeutic options. Neurotherapeutics. 2013;10(2):186–98.PubMedPubMedCentralCrossRef
73.
go back to reference Pacitti D, Levene M, Garone C, Nirmalananthan N, Bax BE. Mitochondrial neurogastrointestinal encephalomyopathy: into the fourth decade, what we have learned so far. Front Genet. 2018;9:669.PubMedPubMedCentralCrossRef Pacitti D, Levene M, Garone C, Nirmalananthan N, Bax BE. Mitochondrial neurogastrointestinal encephalomyopathy: into the fourth decade, what we have learned so far. Front Genet. 2018;9:669.PubMedPubMedCentralCrossRef
74.
go back to reference Gonzalez-Vioque E, Torres-Torronteras J, Andreu AL, Marti R. Limited dCTP availability accounts for mitochondrial DNA depletion in mitochondrial neurogastrointestinal encephalomyopathy (MNGIE). PLoS Genet. 2011;7(3):e1002035.PubMedPubMedCentralCrossRef Gonzalez-Vioque E, Torres-Torronteras J, Andreu AL, Marti R. Limited dCTP availability accounts for mitochondrial DNA depletion in mitochondrial neurogastrointestinal encephalomyopathy (MNGIE). PLoS Genet. 2011;7(3):e1002035.PubMedPubMedCentralCrossRef
75.
go back to reference Yavuz H, Ozel A, Christensen M, Christensen E, Schwartz M, Elmaci M, et al. Treatment of mitochondrial neurogastrointestinal encephalomyopathy with dialysis. Arch Neurol. 2007;64(3):435–8.PubMedCrossRef Yavuz H, Ozel A, Christensen M, Christensen E, Schwartz M, Elmaci M, et al. Treatment of mitochondrial neurogastrointestinal encephalomyopathy with dialysis. Arch Neurol. 2007;64(3):435–8.PubMedCrossRef
76.
go back to reference De Giorgio R, Pironi L, Rinaldi R, Boschetti E, Caporali L, Capristo M, et al. Liver transplantation for mitochondrial neurogastrointestinal encephalomyopathy. Ann Neurol. 2016;80(3):448–55.PubMedCrossRef De Giorgio R, Pironi L, Rinaldi R, Boschetti E, Caporali L, Capristo M, et al. Liver transplantation for mitochondrial neurogastrointestinal encephalomyopathy. Ann Neurol. 2016;80(3):448–55.PubMedCrossRef
77.
go back to reference Dionisi-Vici C, Diodato D, Torre G, Picca S, Pariante R, Giuseppe Picardo S, et al. Liver transplant in ethylmalonic encephalopathy: a new treatment for an otherwise fatal disease. Brain. 2016;139(Pt 4):1045–51.PubMedCrossRef Dionisi-Vici C, Diodato D, Torre G, Picca S, Pariante R, Giuseppe Picardo S, et al. Liver transplant in ethylmalonic encephalopathy: a new treatment for an otherwise fatal disease. Brain. 2016;139(Pt 4):1045–51.PubMedCrossRef
78.
go back to reference Halter JP, Michael W, Schupbach M, Mandel H, Casali C, Orchard K, et al. Allogeneic haematopoietic stem cell transplantation for mitochondrial neurogastrointestinal encephalomyopathy. Brain. 2015;138(Pt 10):2847–58.PubMedPubMedCentralCrossRef Halter JP, Michael W, Schupbach M, Mandel H, Casali C, Orchard K, et al. Allogeneic haematopoietic stem cell transplantation for mitochondrial neurogastrointestinal encephalomyopathy. Brain. 2015;138(Pt 10):2847–58.PubMedPubMedCentralCrossRef
79.
go back to reference Bax BE, Bain MD, Scarpelli M, Filosto M, Tonin P, Moran N. Clinical and biochemical improvements in a patient with MNGIE following enzyme replacement. Neurology. 2013;81(14):1269–71.PubMedPubMedCentralCrossRef Bax BE, Bain MD, Scarpelli M, Filosto M, Tonin P, Moran N. Clinical and biochemical improvements in a patient with MNGIE following enzyme replacement. Neurology. 2013;81(14):1269–71.PubMedPubMedCentralCrossRef
80.
go back to reference Kripps K, Nakayuenyongsuk W, Shayota BJ, Berquist W, Gomez-Ospina N, Esquivel CO, et al. Successful liver transplantation in mitochondrial neurogastrointestinal encephalomyopathy (MNGIE). Mol Genet Metab. 2020;130(1):58–64.PubMedPubMedCentralCrossRef Kripps K, Nakayuenyongsuk W, Shayota BJ, Berquist W, Gomez-Ospina N, Esquivel CO, et al. Successful liver transplantation in mitochondrial neurogastrointestinal encephalomyopathy (MNGIE). Mol Genet Metab. 2020;130(1):58–64.PubMedPubMedCentralCrossRef
81.
go back to reference Lopez LC, Akman HO, Garcia-Cazorla A, Dorado B, Marti R, Nishino I, et al. Unbalanced deoxynucleotide pools cause mitochondrial DNA instability in thymidine phosphorylase-deficient mice. Hum Mol Genet. 2009;18(4):714–22.PubMedCrossRef Lopez LC, Akman HO, Garcia-Cazorla A, Dorado B, Marti R, Nishino I, et al. Unbalanced deoxynucleotide pools cause mitochondrial DNA instability in thymidine phosphorylase-deficient mice. Hum Mol Genet. 2009;18(4):714–22.PubMedCrossRef
82.
go back to reference Torres-Torronteras J, Gomez A, Eixarch H, Palenzuela L, Pizzorno G, Hirano M, et al. Hematopoietic gene therapy restores thymidine phosphorylase activity in a cell culture and a murine model of MNGIE. Gene Ther. 2011;18(8):795–806.PubMedPubMedCentralCrossRef Torres-Torronteras J, Gomez A, Eixarch H, Palenzuela L, Pizzorno G, Hirano M, et al. Hematopoietic gene therapy restores thymidine phosphorylase activity in a cell culture and a murine model of MNGIE. Gene Ther. 2011;18(8):795–806.PubMedPubMedCentralCrossRef
83.
go back to reference Torres-Torronteras J, Cabrera-Perez R, Barba I, Costa C, de Luna N, Andreu AL, et al. Long-term restoration of thymidine phosphorylase function and nucleoside homeostasis using hematopoietic gene therapy in a Murine model of mitochondrial neurogastrointestinal encephalomyopathy. Hum Gene Ther. 2016;27(9):656–67.PubMedPubMedCentralCrossRef Torres-Torronteras J, Cabrera-Perez R, Barba I, Costa C, de Luna N, Andreu AL, et al. Long-term restoration of thymidine phosphorylase function and nucleoside homeostasis using hematopoietic gene therapy in a Murine model of mitochondrial neurogastrointestinal encephalomyopathy. Hum Gene Ther. 2016;27(9):656–67.PubMedPubMedCentralCrossRef
84.
go back to reference Yadak R, Cabrera-Perez R, Torres-Torronteras J, Bugiani M, Haeck JC, Huston MW, et al. Preclinical efficacy and safety evaluation of hematopoietic stem cell gene therapy in a mouse model of MNGIE. Mol Ther Methods Clin Dev. 2018;8:152–65.PubMedPubMedCentralCrossRef Yadak R, Cabrera-Perez R, Torres-Torronteras J, Bugiani M, Haeck JC, Huston MW, et al. Preclinical efficacy and safety evaluation of hematopoietic stem cell gene therapy in a mouse model of MNGIE. Mol Ther Methods Clin Dev. 2018;8:152–65.PubMedPubMedCentralCrossRef
85.
go back to reference Torres-Torronteras J, Cabrera-Perez R, Vila-Julia F, Viscomi C, Camara Y, Hirano M, et al. Long-term sustained effect of liver-targeted adeno-associated virus gene therapy for mitochondrial neurogastrointestinal encephalomyopathy. Hum Gene Ther. 2018;29(6):708–18.PubMedPubMedCentralCrossRef Torres-Torronteras J, Cabrera-Perez R, Vila-Julia F, Viscomi C, Camara Y, Hirano M, et al. Long-term sustained effect of liver-targeted adeno-associated virus gene therapy for mitochondrial neurogastrointestinal encephalomyopathy. Hum Gene Ther. 2018;29(6):708–18.PubMedPubMedCentralCrossRef
86.
go back to reference Cabrera-Perez R, Vila-Julia F, Hirano M, Mingozzi F, Torres-Torronteras J, Marti R. Alpha-1-antitrypsin promoter improves the efficacy of an adeno-associated virus vector for the treatment of mitochondrial neurogastrointestinal encephalomyopathy. Hum Gene Ther. 2019;30(8):985–98.PubMedPubMedCentralCrossRef Cabrera-Perez R, Vila-Julia F, Hirano M, Mingozzi F, Torres-Torronteras J, Marti R. Alpha-1-antitrypsin promoter improves the efficacy of an adeno-associated virus vector for the treatment of mitochondrial neurogastrointestinal encephalomyopathy. Hum Gene Ther. 2019;30(8):985–98.PubMedPubMedCentralCrossRef
87.
go back to reference Garcia-Diaz B, Garone C, Barca E, Mojahed H, Gutierrez P, Pizzorno G, et al. Deoxynucleoside stress exacerbates the phenotype of a mouse model of mitochondrial neurogastrointestinal encephalopathy. Brain. 2014;137(Pt 5):1337–49.PubMedPubMedCentralCrossRef Garcia-Diaz B, Garone C, Barca E, Mojahed H, Gutierrez P, Pizzorno G, et al. Deoxynucleoside stress exacerbates the phenotype of a mouse model of mitochondrial neurogastrointestinal encephalopathy. Brain. 2014;137(Pt 5):1337–49.PubMedPubMedCentralCrossRef
88.
go back to reference Vila-Julia F, Cabrera-Perez R, Camara Y, Molina-Berenguer M, Lope-Piedrafita S, Hirano M, et al. Efficacy of adeno-associated virus gene therapy in a MNGIE murine model enhanced by chronic exposure to nucleosides. EBioMedicine. 2020;62:103133.PubMedPubMedCentralCrossRef Vila-Julia F, Cabrera-Perez R, Camara Y, Molina-Berenguer M, Lope-Piedrafita S, Hirano M, et al. Efficacy of adeno-associated virus gene therapy in a MNGIE murine model enhanced by chronic exposure to nucleosides. EBioMedicine. 2020;62:103133.PubMedPubMedCentralCrossRef
89.
go back to reference Marti R, Spinazzola A, Tadesse S, Nishino I, Nishigaki Y, Hirano M. Definitive diagnosis of mitochondrial neurogastrointestinal encephalomyopathy by biochemical assays. Clin Chem. 2004;50(1):120–4.PubMedCrossRef Marti R, Spinazzola A, Tadesse S, Nishino I, Nishigaki Y, Hirano M. Definitive diagnosis of mitochondrial neurogastrointestinal encephalomyopathy by biochemical assays. Clin Chem. 2004;50(1):120–4.PubMedCrossRef
90.
go back to reference Bottani E, Giordano C, Civiletto G, Di Meo I, Auricchio A, Ciusani E, et al. AAV-mediated liver-specific MPV17 expression restores mtDNA levels and prevents diet-induced liver failure. Mol Ther. 2014;22(1):10–7.PubMedCrossRef Bottani E, Giordano C, Civiletto G, Di Meo I, Auricchio A, Ciusani E, et al. AAV-mediated liver-specific MPV17 expression restores mtDNA levels and prevents diet-induced liver failure. Mol Ther. 2014;22(1):10–7.PubMedCrossRef
91.
go back to reference Spinazzola A, Viscomi C, Fernandez-Vizarra E, Carrara F, D’Adamo P, Calvo S, et al. MPV17 encodes an inner mitochondrial membrane protein and is mutated in infantile hepatic mitochondrial DNA depletion. Nat Genet. 2006;38(5):570–5.PubMedCrossRef Spinazzola A, Viscomi C, Fernandez-Vizarra E, Carrara F, D’Adamo P, Calvo S, et al. MPV17 encodes an inner mitochondrial membrane protein and is mutated in infantile hepatic mitochondrial DNA depletion. Nat Genet. 2006;38(5):570–5.PubMedCrossRef
92.
go back to reference Dalla Rosa I, Camara Y, Durigon R, Moss CF, Vidoni S, Akman G, et al. MPV17 loss causes deoxynucleotide insufficiency and slow DNA replication in mitochondria. PLoS Genet. 2016;12(1):e1005779.PubMedPubMedCentralCrossRef Dalla Rosa I, Camara Y, Durigon R, Moss CF, Vidoni S, Akman G, et al. MPV17 loss causes deoxynucleotide insufficiency and slow DNA replication in mitochondria. PLoS Genet. 2016;12(1):e1005779.PubMedPubMedCentralCrossRef
93.
go back to reference Parini R, Furlan F, Notarangelo L, Spinazzola A, Uziel G, Strisciuglio P, et al. Glucose metabolism and diet-based prevention of liver dysfunction in MPV17 mutant patients. J Hepatol. 2009;50(1):215–21.PubMedCrossRef Parini R, Furlan F, Notarangelo L, Spinazzola A, Uziel G, Strisciuglio P, et al. Glucose metabolism and diet-based prevention of liver dysfunction in MPV17 mutant patients. J Hepatol. 2009;50(1):215–21.PubMedCrossRef
94.
go back to reference El-Hattab AW, Wang J, Dai H, Almannai M, Staufner C, Alfadhel M, et al. MPV17-related mitochondrial DNA maintenance defect: new cases and review of clinical, biochemical, and molecular aspects. Hum Mutat. 2018;39(4):461–70.PubMedCrossRef El-Hattab AW, Wang J, Dai H, Almannai M, Staufner C, Alfadhel M, et al. MPV17-related mitochondrial DNA maintenance defect: new cases and review of clinical, biochemical, and molecular aspects. Hum Mutat. 2018;39(4):461–70.PubMedCrossRef
95.
go back to reference Viscomi C, Spinazzola A, Maggioni M, Fernandez-Vizarra E, Massa V, Pagano C, et al. Early-onset liver mtDNA depletion and late-onset proteinuric nephropathy in Mpv17 knockout mice. Hum Mol Genet. 2009;18(1):12–26.PubMedCrossRef Viscomi C, Spinazzola A, Maggioni M, Fernandez-Vizarra E, Massa V, Pagano C, et al. Early-onset liver mtDNA depletion and late-onset proteinuric nephropathy in Mpv17 knockout mice. Hum Mol Genet. 2009;18(1):12–26.PubMedCrossRef
96.
go back to reference Garone C, Taylor RW, Nascimento A, Poulton J, Fratter C, Dominguez-Gonzalez C, et al. Retrospective natural history of thymidine kinase 2 deficiency. J Med Genet. 2018;55(8):515–21.PubMedCrossRef Garone C, Taylor RW, Nascimento A, Poulton J, Fratter C, Dominguez-Gonzalez C, et al. Retrospective natural history of thymidine kinase 2 deficiency. J Med Genet. 2018;55(8):515–21.PubMedCrossRef
97.
go back to reference Wang L, Munch-Petersen B, Herrstrom Sjoberg A, Hellman U, Bergman T, Jornvall H, et al. Human thymidine kinase 2: molecular cloning and characterisation of the enzyme activity with antiviral and cytostatic nucleoside substrates. FEBS Lett. 1999;443(2):170–4.PubMedCrossRef Wang L, Munch-Petersen B, Herrstrom Sjoberg A, Hellman U, Bergman T, Jornvall H, et al. Human thymidine kinase 2: molecular cloning and characterisation of the enzyme activity with antiviral and cytostatic nucleoside substrates. FEBS Lett. 1999;443(2):170–4.PubMedCrossRef
98.
go back to reference Dominguez-Gonzalez C, Madruga-Garrido M, Mavillard F, Garone C, Aguirre-Rodriguez FJ, Donati MA, et al. Deoxynucleoside therapy for thymidine kinase 2-deficient myopathy. Ann Neurol. 2019;86(2):293–303.PubMedPubMedCentralCrossRef Dominguez-Gonzalez C, Madruga-Garrido M, Mavillard F, Garone C, Aguirre-Rodriguez FJ, Donati MA, et al. Deoxynucleoside therapy for thymidine kinase 2-deficient myopathy. Ann Neurol. 2019;86(2):293–303.PubMedPubMedCentralCrossRef
99.
go back to reference Akman HO, Dorado B, Lopez LC, Garcia-Cazorla A, Vila MR, Tanabe LM, et al. Thymidine kinase 2 (H126N) knockin mice show the essential role of balanced deoxynucleotide pools for mitochondrial DNA maintenance. Hum Mol Genet. 2008;17(16):2433–40.PubMedPubMedCentralCrossRef Akman HO, Dorado B, Lopez LC, Garcia-Cazorla A, Vila MR, Tanabe LM, et al. Thymidine kinase 2 (H126N) knockin mice show the essential role of balanced deoxynucleotide pools for mitochondrial DNA maintenance. Hum Mol Genet. 2008;17(16):2433–40.PubMedPubMedCentralCrossRef
100.
go back to reference Lopez-Gomez C, Levy RJ, Sanchez-Quintero MJ, Juanola-Falgarona M, Barca E, Garcia-Diaz B, et al. Deoxycytidine and deoxythymidine treatment for thymidine kinase 2 deficiency. Ann Neurol. 2017;81(5):641–52.PubMedPubMedCentralCrossRef Lopez-Gomez C, Levy RJ, Sanchez-Quintero MJ, Juanola-Falgarona M, Barca E, Garcia-Diaz B, et al. Deoxycytidine and deoxythymidine treatment for thymidine kinase 2 deficiency. Ann Neurol. 2017;81(5):641–52.PubMedPubMedCentralCrossRef
101.
go back to reference Lopez-Gomez C, Sanchez-Quintero MJ, Lee EJ, Kleiner G, Tadesse S, Xie J, et al. Synergistic deoxynucleoside and gene therapies for thymidine kinase 2 deficiency. Ann Neurol. 2021;90(4):640–52.PubMedCrossRef Lopez-Gomez C, Sanchez-Quintero MJ, Lee EJ, Kleiner G, Tadesse S, Xie J, et al. Synergistic deoxynucleoside and gene therapies for thymidine kinase 2 deficiency. Ann Neurol. 2021;90(4):640–52.PubMedCrossRef
102.
go back to reference Janer A, Prudent J, Paupe V, Fahiminiya S, Majewski J, Sgarioto N, et al. SLC25A46 is required for mitochondrial lipid homeostasis and cristae maintenance and is responsible for Leigh syndrome. EMBO Mol Med. 2016;8(9):1019–38.PubMedPubMedCentralCrossRef Janer A, Prudent J, Paupe V, Fahiminiya S, Majewski J, Sgarioto N, et al. SLC25A46 is required for mitochondrial lipid homeostasis and cristae maintenance and is responsible for Leigh syndrome. EMBO Mol Med. 2016;8(9):1019–38.PubMedPubMedCentralCrossRef
103.
go back to reference Hammer MB, Ding J, Mochel F, Eleuch-Fayache G, Charles P, Coutelier M, et al. SLC25A46 mutations associated with autosomal recessive cerebellar ataxia in North African families. Neurodegener Dis. 2017;17(4–5):208–12.PubMedCrossRef Hammer MB, Ding J, Mochel F, Eleuch-Fayache G, Charles P, Coutelier M, et al. SLC25A46 mutations associated with autosomal recessive cerebellar ataxia in North African families. Neurodegener Dis. 2017;17(4–5):208–12.PubMedCrossRef
104.
go back to reference Charlesworth G, Balint B, Mencacci NE, Carr L, Wood NW, Bhatia KP. SLC25A46 mutations underlie progressive myoclonic ataxia with optic atrophy and neuropathy. Mov Disord. 2016;31(8):1249–51.PubMedCrossRef Charlesworth G, Balint B, Mencacci NE, Carr L, Wood NW, Bhatia KP. SLC25A46 mutations underlie progressive myoclonic ataxia with optic atrophy and neuropathy. Mov Disord. 2016;31(8):1249–51.PubMedCrossRef
105.
go back to reference Abrams AJ, Hufnagel RB, Rebelo A, Zanna C, Patel N, Gonzalez MA, et al. Mutations in SLC25A46, encoding a UGO1-like protein, cause an optic atrophy spectrum disorder. Nat Genet. 2015;47(8):926–32.PubMedPubMedCentralCrossRef Abrams AJ, Hufnagel RB, Rebelo A, Zanna C, Patel N, Gonzalez MA, et al. Mutations in SLC25A46, encoding a UGO1-like protein, cause an optic atrophy spectrum disorder. Nat Genet. 2015;47(8):926–32.PubMedPubMedCentralCrossRef
106.
go back to reference Wan J, Steffen J, Yourshaw M, Mamsa H, Andersen E, Rudnik-Schoneborn S, et al. Loss of function of SLC25A46 causes lethal congenital pontocerebellar hypoplasia. Brain. 2016;139(11):2877–90.PubMedPubMedCentralCrossRef Wan J, Steffen J, Yourshaw M, Mamsa H, Andersen E, Rudnik-Schoneborn S, et al. Loss of function of SLC25A46 causes lethal congenital pontocerebellar hypoplasia. Brain. 2016;139(11):2877–90.PubMedPubMedCentralCrossRef
107.
go back to reference Terzenidou ME, Segklia A, Kano T, Papastefanaki F, Karakostas A, Charalambous M, et al. Novel insights into SLC25A46-related pathologies in a genetic mouse model. PLoS Genet. 2017;13(4):e1006656.PubMedPubMedCentralCrossRef Terzenidou ME, Segklia A, Kano T, Papastefanaki F, Karakostas A, Charalambous M, et al. Novel insights into SLC25A46-related pathologies in a genetic mouse model. PLoS Genet. 2017;13(4):e1006656.PubMedPubMedCentralCrossRef
108.
go back to reference Yang L, Slone J, Li Z, Lou X, Hu YC, Queme LF, et al. Systemic administration of AAV-Slc25a46 mitigates mitochondrial neuropathy in Slc25a46-/- mice. Hum Mol Genet. 2020;29(4):649–61.PubMedPubMedCentralCrossRef Yang L, Slone J, Li Z, Lou X, Hu YC, Queme LF, et al. Systemic administration of AAV-Slc25a46 mitigates mitochondrial neuropathy in Slc25a46-/- mice. Hum Mol Genet. 2020;29(4):649–61.PubMedPubMedCentralCrossRef
109.
110.
go back to reference Russell S, Bennett J, Wellman JA, Chung DC, Yu ZF, Tillman A, et al. Efficacy and safety of voretigene neparvovec (AAV2-hRPE65v2) in patients with RPE65-mediated inherited retinal dystrophy: a randomised, controlled, open-label, phase 3 trial. Lancet. 2017;390(10097):849–60.PubMedPubMedCentralCrossRef Russell S, Bennett J, Wellman JA, Chung DC, Yu ZF, Tillman A, et al. Efficacy and safety of voretigene neparvovec (AAV2-hRPE65v2) in patients with RPE65-mediated inherited retinal dystrophy: a randomised, controlled, open-label, phase 3 trial. Lancet. 2017;390(10097):849–60.PubMedPubMedCentralCrossRef
111.
112.
go back to reference Bahr T, Welburn K, Donnelly J, Bai Y. Emerging model systems and treatment approaches for Leber’s hereditary optic neuropathy: challenges and opportunities. Biochim Biophys Acta Mol Basis Dis. 2020;1866(6):165743.PubMedCrossRef Bahr T, Welburn K, Donnelly J, Bai Y. Emerging model systems and treatment approaches for Leber’s hereditary optic neuropathy: challenges and opportunities. Biochim Biophys Acta Mol Basis Dis. 2020;1866(6):165743.PubMedCrossRef
113.
go back to reference Lyseng-Williamson KA. Idebenone: a review in Leber’s hereditary optic neuropathy. Drugs. 2016;76(7):805–13.PubMedCrossRef Lyseng-Williamson KA. Idebenone: a review in Leber’s hereditary optic neuropathy. Drugs. 2016;76(7):805–13.PubMedCrossRef
116.
go back to reference Yu-Wai-Man P, Newman NJ, Carelli V, Moster ML, Biousse V, Sadun AA, et al. Bilateral visual improvement with unilateral gene therapy injection for Leber hereditary optic neuropathy. Sci Transl Med. 2020;12(573):eaaz7423.PubMedCrossRef Yu-Wai-Man P, Newman NJ, Carelli V, Moster ML, Biousse V, Sadun AA, et al. Bilateral visual improvement with unilateral gene therapy injection for Leber hereditary optic neuropathy. Sci Transl Med. 2020;12(573):eaaz7423.PubMedCrossRef
117.
go back to reference Newman NJ, Yu-Wai-Man P, Carelli V, Moster ML, Biousse V, Vignal-Clermont C, et al. Efficacy and safety of intravitreal gene therapy for Leber hereditary optic neuropathy treated within 6 months of disease onset. Ophthalmology. 2021;128(5):649–60.PubMedCrossRef Newman NJ, Yu-Wai-Man P, Carelli V, Moster ML, Biousse V, Vignal-Clermont C, et al. Efficacy and safety of intravitreal gene therapy for Leber hereditary optic neuropathy treated within 6 months of disease onset. Ophthalmology. 2021;128(5):649–60.PubMedCrossRef
118.
go back to reference Yu H, Ozdemir SS, Koilkonda RD, Chou TH, Porciatti V, Chiodo V, et al. Mutant NADH dehydrogenase subunit 4 gene delivery to mitochondria by targeting sequence-modified adeno-associated virus induces visual loss and optic atrophy in mice. Mol Vis. 2012;18:1668–83.PubMedPubMedCentral Yu H, Ozdemir SS, Koilkonda RD, Chou TH, Porciatti V, Chiodo V, et al. Mutant NADH dehydrogenase subunit 4 gene delivery to mitochondria by targeting sequence-modified adeno-associated virus induces visual loss and optic atrophy in mice. Mol Vis. 2012;18:1668–83.PubMedPubMedCentral
119.
go back to reference Yu H, Koilkonda RD, Chou TH, Porciatti V, Ozdemir SS, Chiodo V, et al. Gene delivery to mitochondria by targeting modified adenoassociated virus suppresses Leber’s hereditary optic neuropathy in a mouse model. Proc Natl Acad Sci U S A. 2012;109(20):E1238–47.PubMedPubMedCentralCrossRef Yu H, Koilkonda RD, Chou TH, Porciatti V, Ozdemir SS, Chiodo V, et al. Gene delivery to mitochondria by targeting modified adenoassociated virus suppresses Leber’s hereditary optic neuropathy in a mouse model. Proc Natl Acad Sci U S A. 2012;109(20):E1238–47.PubMedPubMedCentralCrossRef
120.
go back to reference Qi X, Sun L, Lewin AS, Hauswirth WW, Guy J. The mutant human ND4 subunit of complex I induces optic neuropathy in the mouse. Investig Ophthalmol Vis Sci. 2007;48(1):1–10.CrossRef Qi X, Sun L, Lewin AS, Hauswirth WW, Guy J. The mutant human ND4 subunit of complex I induces optic neuropathy in the mouse. Investig Ophthalmol Vis Sci. 2007;48(1):1–10.CrossRef
121.
go back to reference Yu H, Koilkonda RD, Chou TH, Porciatti V, Mehta A, Hentall ID, et al. Consequences of zygote injection and germline transfer of mutant human mitochondrial DNA in mice. Proc Natl Acad Sci U S A. 2015;112(42):E5689–98.PubMedPubMedCentralCrossRef Yu H, Koilkonda RD, Chou TH, Porciatti V, Mehta A, Hentall ID, et al. Consequences of zygote injection and germline transfer of mutant human mitochondrial DNA in mice. Proc Natl Acad Sci U S A. 2015;112(42):E5689–98.PubMedPubMedCentralCrossRef
122.
go back to reference Yu H, Porciatti V, Lewin A, Hauswirth W, Guy J. Longterm reversal of severe visual loss by mitochondrial gene transfer in a mouse model of Leber hereditary optic neuropathy. Sci Rep. 2018;8(1):5587.PubMedPubMedCentralCrossRef Yu H, Porciatti V, Lewin A, Hauswirth W, Guy J. Longterm reversal of severe visual loss by mitochondrial gene transfer in a mouse model of Leber hereditary optic neuropathy. Sci Rep. 2018;8(1):5587.PubMedPubMedCentralCrossRef
123.
go back to reference Grier J, Hirano M, Karaa A, Shepard E, Thompson JLP. Diagnostic odyssey of patients with mitochondrial disease: results of a survey. Neurol Genet. 2018;4(2):e230.PubMedPubMedCentralCrossRef Grier J, Hirano M, Karaa A, Shepard E, Thompson JLP. Diagnostic odyssey of patients with mitochondrial disease: results of a survey. Neurol Genet. 2018;4(2):e230.PubMedPubMedCentralCrossRef
124.
go back to reference Schon KR, Horvath R, Wei W, Calabrese C, Tucci A, Ibanez K, et al. Use of whole genome sequencing to determine genetic basis of suspected mitochondrial disorders: cohort study. BMJ. 2021;375:e066288.PubMedPubMedCentralCrossRef Schon KR, Horvath R, Wei W, Calabrese C, Tucci A, Ibanez K, et al. Use of whole genome sequencing to determine genetic basis of suspected mitochondrial disorders: cohort study. BMJ. 2021;375:e066288.PubMedPubMedCentralCrossRef
125.
go back to reference High-dose AAV gene therapy deaths. Nat Biotechnol. 2020;38(8):910. High-dose AAV gene therapy deaths. Nat Biotechnol. 2020;38(8):910.
126.
go back to reference Philippidis A. After third death, Audentes’ AT132 remains on clinical hold. Hum Gene Ther. 2020;31(17–18):908–10.PubMedCrossRef Philippidis A. After third death, Audentes’ AT132 remains on clinical hold. Hum Gene Ther. 2020;31(17–18):908–10.PubMedCrossRef
129.
go back to reference Leborgne C, Barbon E, Alexander JM, Hanby H, Delignat S, Cohen DM, et al. IgG-cleaving endopeptidase enables in vivo gene therapy in the presence of anti-AAV neutralizing antibodies. Nat Med. 2020;26(7):1096–101.PubMedCrossRef Leborgne C, Barbon E, Alexander JM, Hanby H, Delignat S, Cohen DM, et al. IgG-cleaving endopeptidase enables in vivo gene therapy in the presence of anti-AAV neutralizing antibodies. Nat Med. 2020;26(7):1096–101.PubMedCrossRef
130.
131.
go back to reference Gene therapies should be for all. Nat Med. 2021;27(8):1311. Gene therapies should be for all. Nat Med. 2021;27(8):1311.
132.
go back to reference Chan KY, Jang MJ, Yoo BB, Greenbaum A, Ravi N, Wu WL, et al. Engineered AAVs for efficient noninvasive gene delivery to the central and peripheral nervous systems. Nat Neurosci. 2017;20(8):1172–9.PubMedPubMedCentralCrossRef Chan KY, Jang MJ, Yoo BB, Greenbaum A, Ravi N, Wu WL, et al. Engineered AAVs for efficient noninvasive gene delivery to the central and peripheral nervous systems. Nat Neurosci. 2017;20(8):1172–9.PubMedPubMedCentralCrossRef
133.
go back to reference Batista AR, King OD, Reardon CP, Davis C, Shankaracharya, Philip V, et al. Ly6a differential expression in blood–brain barrier is responsible for strain specific central nervous system transduction profile of AAV-PHP.B. Hum Gene Ther. 2020;31(1–2):90–102.PubMedCrossRef Batista AR, King OD, Reardon CP, Davis C, Shankaracharya, Philip V, et al. Ly6a differential expression in blood–brain barrier is responsible for strain specific central nervous system transduction profile of AAV-PHP.B. Hum Gene Ther. 2020;31(1–2):90–102.PubMedCrossRef
134.
go back to reference Hordeaux J, Yuan Y, Clark PM, Wang Q, Martino RA, Sims JJ, et al. The GPI-linked protein LY6A drives AAV-PHP.B transport across the blood–brain barrier. Mol Ther. 2019;27(5):912–21.PubMedPubMedCentralCrossRef Hordeaux J, Yuan Y, Clark PM, Wang Q, Martino RA, Sims JJ, et al. The GPI-linked protein LY6A drives AAV-PHP.B transport across the blood–brain barrier. Mol Ther. 2019;27(5):912–21.PubMedPubMedCentralCrossRef
135.
go back to reference Huang Q, Chan KY, Tobey IG, Chan YA, Poterba T, Boutros CL, et al. Delivering genes across the blood–brain barrier: LY6A, a novel cellular receptor for AAV-PHP.B capsids. PLoS ONE. 2019;14(11):e0225206.PubMedPubMedCentralCrossRef Huang Q, Chan KY, Tobey IG, Chan YA, Poterba T, Boutros CL, et al. Delivering genes across the blood–brain barrier: LY6A, a novel cellular receptor for AAV-PHP.B capsids. PLoS ONE. 2019;14(11):e0225206.PubMedPubMedCentralCrossRef
136.
go back to reference Hordeaux J, Wang Q, Katz N, Buza EL, Bell P, Wilson JM. The neurotropic properties of AAV-PHP.B are limited to C57BL/6J mice. Mol Ther. 2018;26(3):664–648.PubMedPubMedCentralCrossRef Hordeaux J, Wang Q, Katz N, Buza EL, Bell P, Wilson JM. The neurotropic properties of AAV-PHP.B are limited to C57BL/6J mice. Mol Ther. 2018;26(3):664–648.PubMedPubMedCentralCrossRef
137.
go back to reference Matsuzaki Y, Konno A, Mochizuki R, Shinohara Y, Nitta K, Okada Y, et al. Intravenous administration of the adeno-associated virus-PHP.B capsid fails to upregulate transduction efficiency in the marmoset brain. Neurosci Lett. 2018;665:182–8.PubMedCrossRef Matsuzaki Y, Konno A, Mochizuki R, Shinohara Y, Nitta K, Okada Y, et al. Intravenous administration of the adeno-associated virus-PHP.B capsid fails to upregulate transduction efficiency in the marmoset brain. Neurosci Lett. 2018;665:182–8.PubMedCrossRef
138.
go back to reference Nonnenmacher M, Wang W, Child MA, Ren XQ, Huang C, Ren AZ, et al. Rapid evolution of blood-brain-barrier-penetrating AAV capsids by RNA-driven biopanning. Mol Ther Methods Clin Dev. 2021;20:366–78.PubMedCrossRef Nonnenmacher M, Wang W, Child MA, Ren XQ, Huang C, Ren AZ, et al. Rapid evolution of blood-brain-barrier-penetrating AAV capsids by RNA-driven biopanning. Mol Ther Methods Clin Dev. 2021;20:366–78.PubMedCrossRef
139.
go back to reference Pitceathly RDS, Keshavan N, Rahman J, Rahman S. Moving towards clinical trials for mitochondrial diseases. J Inherit Metab Dis. 2021;44(1):22–41.PubMedCrossRef Pitceathly RDS, Keshavan N, Rahman J, Rahman S. Moving towards clinical trials for mitochondrial diseases. J Inherit Metab Dis. 2021;44(1):22–41.PubMedCrossRef
140.
go back to reference Katsouri L, Lim YM, Blondrath K, Eleftheriadou I, Lombardero L, Birch AM, et al. PPARgamma-coactivator-1alpha gene transfer reduces neuronal loss and amyloid-beta generation by reducing beta-secretase in an Alzheimer’s disease model. Proc Natl Acad Sci U S A. 2016;113(43):12292–7.PubMedPubMedCentralCrossRef Katsouri L, Lim YM, Blondrath K, Eleftheriadou I, Lombardero L, Birch AM, et al. PPARgamma-coactivator-1alpha gene transfer reduces neuronal loss and amyloid-beta generation by reducing beta-secretase in an Alzheimer’s disease model. Proc Natl Acad Sci U S A. 2016;113(43):12292–7.PubMedPubMedCentralCrossRef
141.
go back to reference Madsen KL, Buch AE, Cohen BH, Falk MJ, Goldsberry A, Goldstein A, et al. Safety and efficacy of omaveloxolone in patients with mitochondrial myopathy: MOTOR trial. Neurology. 2020;94(7):e687–98.PubMedPubMedCentralCrossRef Madsen KL, Buch AE, Cohen BH, Falk MJ, Goldsberry A, Goldstein A, et al. Safety and efficacy of omaveloxolone in patients with mitochondrial myopathy: MOTOR trial. Neurology. 2020;94(7):e687–98.PubMedPubMedCentralCrossRef
142.
go back to reference Lynch DR, Chin MP, Delatycki MB, Subramony SH, Corti M, Hoyle JC, et al. Safety and efficacy of omaveloxolone in Friedreich ataxia (MOXIe Study). Ann Neurol. 2021;89(2):212–25.PubMedCrossRef Lynch DR, Chin MP, Delatycki MB, Subramony SH, Corti M, Hoyle JC, et al. Safety and efficacy of omaveloxolone in Friedreich ataxia (MOXIe Study). Ann Neurol. 2021;89(2):212–25.PubMedCrossRef
143.
go back to reference Quinn J, Musa A, Kantor A, McClements ME, Cehajic-Kapetanovic J, MacLaren RE, et al. Genome-editing strategies for treating human retinal degenerations. Hum Gene Ther. 2021;32(5–6):247–59.PubMedPubMedCentralCrossRef Quinn J, Musa A, Kantor A, McClements ME, Cehajic-Kapetanovic J, MacLaren RE, et al. Genome-editing strategies for treating human retinal degenerations. Hum Gene Ther. 2021;32(5–6):247–59.PubMedPubMedCentralCrossRef
144.
go back to reference Kumar N, Stanford W, de Solis C, Aradhana, Abraham ND, Dao TJ, et al. The development of an AAV-based CRISPR SaCas9 genome editing system that can be delivered to neurons in vivo and regulated via doxycycline and Cre-recombinase. Front Mol Neurosci. 2018;11:413.PubMedPubMedCentralCrossRef Kumar N, Stanford W, de Solis C, Aradhana, Abraham ND, Dao TJ, et al. The development of an AAV-based CRISPR SaCas9 genome editing system that can be delivered to neurons in vivo and regulated via doxycycline and Cre-recombinase. Front Mol Neurosci. 2018;11:413.PubMedPubMedCentralCrossRef
145.
go back to reference Maeder ML, Stefanidakis M, Wilson CJ, Baral R, Barrera LA, Bounoutas GS, et al. Development of a gene-editing approach to restore vision loss in Leber congenital amaurosis type 10. Nat Med. 2019;25(2):229–33.PubMedCrossRef Maeder ML, Stefanidakis M, Wilson CJ, Baral R, Barrera LA, Bounoutas GS, et al. Development of a gene-editing approach to restore vision loss in Leber congenital amaurosis type 10. Nat Med. 2019;25(2):229–33.PubMedCrossRef
146.
147.
go back to reference Mok BY, de Moraes MH, Zeng J, Bosch DE, Kotrys AV, Raguram A, et al. A bacterial cytidine deaminase toxin enables CRISPR-free mitochondrial base editing. Nature. 2020;583(7817):631–7.PubMedPubMedCentralCrossRef Mok BY, de Moraes MH, Zeng J, Bosch DE, Kotrys AV, Raguram A, et al. A bacterial cytidine deaminase toxin enables CRISPR-free mitochondrial base editing. Nature. 2020;583(7817):631–7.PubMedPubMedCentralCrossRef
148.
go back to reference Kuzmin DA, Shutova MV, Johnston NR, Smith OP, Fedorin VV, Kukushkin YS, et al. The clinical landscape for AAV gene therapies. Nat Rev Drug Discov. 2021;20(3):173–4.PubMedCrossRef Kuzmin DA, Shutova MV, Johnston NR, Smith OP, Fedorin VV, Kukushkin YS, et al. The clinical landscape for AAV gene therapies. Nat Rev Drug Discov. 2021;20(3):173–4.PubMedCrossRef
Metadata
Title
AAV-vector based gene therapy for mitochondrial disease: progress and future perspectives
Authors
Allison R. Hanaford
Yoon-Jae Cho
Hiroyuki Nakai
Publication date
01-12-2022
Publisher
BioMed Central
Published in
Orphanet Journal of Rare Diseases / Issue 1/2022
Electronic ISSN: 1750-1172
DOI
https://doi.org/10.1186/s13023-022-02324-7

Other articles of this Issue 1/2022

Orphanet Journal of Rare Diseases 1/2022 Go to the issue