Skip to main content
Top
Published in: Virchows Archiv 2/2010

01-02-2010 | Review and Perspective

Gene expression profiling for the investigation of soft tissue sarcoma pathogenesis and the identification of diagnostic, prognostic, and predictive biomarkers

Authors: Andrew H. Beck, Robert B. West, Matt van de Rijn

Published in: Virchows Archiv | Issue 2/2010

Login to get access

Abstract

Soft tissue sarcomas are malignant neoplasms derived from mesenchymal tissues. Their pathogenesis is poorly understood and there are few effective treatment options for advanced disease. In the past decade, gene expression profiling has been applied to sarcomas to facilitate understanding of sarcoma pathogenesis and to identify diagnostic, prognostic, and predictive markers. In this paper, we review this body of work and discuss how gene expression profiling has led to advancements in the understanding of sarcoma pathobiology, the identification of clinically useful biomarkers, and the refinement of sarcoma classification schemes. Lastly, we conclude with a discussion of strategies to further optimize the translation of gene expression data into a greater understanding of sarcoma pathogenesis and improved clinical outcomes for sarcoma patients.
Literature
1.
go back to reference Weiss SW, Goldblum JR (2008) Enzinger and Weiss’s soft tissue tumors, 5th edn. Mosby/Elsevier, Philadelphia Weiss SW, Goldblum JR (2008) Enzinger and Weiss’s soft tissue tumors, 5th edn. Mosby/Elsevier, Philadelphia
2.
go back to reference Fletcher CDM, Unni KK, Mertens F et al (2002) Pathology and genetics of tumours of soft tissue and bone. IARC Press, Lyon Fletcher CDM, Unni KK, Mertens F et al (2002) Pathology and genetics of tumours of soft tissue and bone. IARC Press, Lyon
3.
go back to reference Wendtner CM, Abdel-Rahman S, Krych M et al (2002) Response to neoadjuvant chemotherapy combined with regional hyperthermia predicts long-term survival for adult patients with retroperitoneal and visceral high-risk soft tissue sarcomas. J Clin Oncol 20:3156–3164CrossRefPubMed Wendtner CM, Abdel-Rahman S, Krych M et al (2002) Response to neoadjuvant chemotherapy combined with regional hyperthermia predicts long-term survival for adult patients with retroperitoneal and visceral high-risk soft tissue sarcomas. J Clin Oncol 20:3156–3164CrossRefPubMed
4.
go back to reference O’Sullivan B, Davis AM, Turcotte R et al (2002) Preoperative versus postoperative radiotherapy in soft-tissue sarcoma of the limbs: a randomised trial. Lancet 359:2235–2241CrossRefPubMed O’Sullivan B, Davis AM, Turcotte R et al (2002) Preoperative versus postoperative radiotherapy in soft-tissue sarcoma of the limbs: a randomised trial. Lancet 359:2235–2241CrossRefPubMed
5.
go back to reference Borden EC, Baker LH, Bell RS et al (2003) Soft tissue sarcomas of adults: state of the translational science. Clin Cancer Res 9:1941–1956PubMed Borden EC, Baker LH, Bell RS et al (2003) Soft tissue sarcomas of adults: state of the translational science. Clin Cancer Res 9:1941–1956PubMed
6.
go back to reference Judson I (2008) State-of-the-art approach in selective curable tumours: soft tissue sarcoma. Ann Oncol 19(Suppl 7):vii166–vii169CrossRefPubMed Judson I (2008) State-of-the-art approach in selective curable tumours: soft tissue sarcoma. Ann Oncol 19(Suppl 7):vii166–vii169CrossRefPubMed
7.
go back to reference Schena M, Shalon D, Davis RW et al (1995) Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270:467–470CrossRefPubMed Schena M, Shalon D, Davis RW et al (1995) Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270:467–470CrossRefPubMed
8.
go back to reference Brown PO, Botstein D (1999) Exploring the new world of the genome with DNA microarrays. Nat Genet 21:33–37CrossRefPubMed Brown PO, Botstein D (1999) Exploring the new world of the genome with DNA microarrays. Nat Genet 21:33–37CrossRefPubMed
9.
10.
go back to reference Fodor SP, Rava RP, Huang XC et al (1993) Multiplexed biochemical assays with biological chips. Nature 364:555–556CrossRefPubMed Fodor SP, Rava RP, Huang XC et al (1993) Multiplexed biochemical assays with biological chips. Nature 364:555–556CrossRefPubMed
11.
go back to reference Allison DB, Cui X, Page GP et al (2006) Microarray data analysis: from disarray to consolidation and consensus. Nat Rev Genet 7:55–65CrossRefPubMed Allison DB, Cui X, Page GP et al (2006) Microarray data analysis: from disarray to consolidation and consensus. Nat Rev Genet 7:55–65CrossRefPubMed
12.
13.
go back to reference Rhodes DR, Chinnaiyan AM (2004) Bioinformatics strategies for translating genome-wide expression analyses into clinically useful cancer markers. Ann N Y Acad Sci 1020:32–40CrossRefPubMed Rhodes DR, Chinnaiyan AM (2004) Bioinformatics strategies for translating genome-wide expression analyses into clinically useful cancer markers. Ann N Y Acad Sci 1020:32–40CrossRefPubMed
14.
go back to reference Rhodes DR, Kalyana-Sundaram S, Tomlins SA et al (2007) Molecular concepts analysis links tumors, pathways, mechanisms, and drugs. Neoplasia 9:443–454CrossRefPubMed Rhodes DR, Kalyana-Sundaram S, Tomlins SA et al (2007) Molecular concepts analysis links tumors, pathways, mechanisms, and drugs. Neoplasia 9:443–454CrossRefPubMed
15.
go back to reference Segal E, Friedman N, Kaminski N et al (2005) From signatures to models: understanding cancer using microarrays. Nat Genet 37(Suppl):S38–S45CrossRefPubMed Segal E, Friedman N, Kaminski N et al (2005) From signatures to models: understanding cancer using microarrays. Nat Genet 37(Suppl):S38–S45CrossRefPubMed
16.
go back to reference Potti A, Dressman HK, Bild A et al (2006) Genomic signatures to guide the use of chemotherapeutics. Nat Med 12:1294–1300CrossRefPubMed Potti A, Dressman HK, Bild A et al (2006) Genomic signatures to guide the use of chemotherapeutics. Nat Med 12:1294–1300CrossRefPubMed
17.
go back to reference Tschoep K, Kohlmann A, Schlemmer M et al (2007) Gene expression profiling in sarcomas. Crit Rev Oncol Hematol 63:111–124CrossRefPubMed Tschoep K, Kohlmann A, Schlemmer M et al (2007) Gene expression profiling in sarcomas. Crit Rev Oncol Hematol 63:111–124CrossRefPubMed
18.
19.
go back to reference Clark J, Rocques PJ, Crew AJ et al (1994) Identification of novel genes, SYT and SSX, involved in the t(X;18)(p11.2;q11.2) translocation found in human synovial sarcoma. Nat Genet 7:502–508CrossRefPubMed Clark J, Rocques PJ, Crew AJ et al (1994) Identification of novel genes, SYT and SSX, involved in the t(X;18)(p11.2;q11.2) translocation found in human synovial sarcoma. Nat Genet 7:502–508CrossRefPubMed
20.
go back to reference Kawai A, Woodruff J, Healey JH et al (1998) SYT-SSX gene fusion as a determinant of morphology and prognosis in synovial sarcoma. N Engl J Med 338:153–160CrossRefPubMed Kawai A, Woodruff J, Healey JH et al (1998) SYT-SSX gene fusion as a determinant of morphology and prognosis in synovial sarcoma. N Engl J Med 338:153–160CrossRefPubMed
21.
go back to reference Haldar M, Randall RL, Capecchi MR (2008) Synovial sarcoma: from genetics to genetic-based animal modeling. Clin Orthop Relat Res 466:2156–2167CrossRefPubMed Haldar M, Randall RL, Capecchi MR (2008) Synovial sarcoma: from genetics to genetic-based animal modeling. Clin Orthop Relat Res 466:2156–2167CrossRefPubMed
22.
go back to reference Nielsen TO, West RB, Linn SC et al (2002) Molecular characterisation of soft tissue tumours: a gene expression study. Lancet 359:1301–1307CrossRefPubMed Nielsen TO, West RB, Linn SC et al (2002) Molecular characterisation of soft tissue tumours: a gene expression study. Lancet 359:1301–1307CrossRefPubMed
23.
go back to reference Nakayama R, Nemoto T, Takahashi H et al (2007) Gene expression analysis of soft tissue sarcomas: characterization and reclassification of malignant fibrous histiocytoma. Mod Pathol 20:749–759CrossRefPubMed Nakayama R, Nemoto T, Takahashi H et al (2007) Gene expression analysis of soft tissue sarcomas: characterization and reclassification of malignant fibrous histiocytoma. Mod Pathol 20:749–759CrossRefPubMed
24.
go back to reference Baird K, Davis S, Antonescu CR et al (2005) Gene expression profiling of human sarcomas: insights into sarcoma biology. Cancer Res 65:9226–9235CrossRefPubMed Baird K, Davis S, Antonescu CR et al (2005) Gene expression profiling of human sarcomas: insights into sarcoma biology. Cancer Res 65:9226–9235CrossRefPubMed
25.
go back to reference Segal NH, Pavlidis P, Antonescu CR et al (2003) Classification and subtype prediction of adult soft tissue sarcoma by functional genomics. Am J Pathol 163:691–700PubMed Segal NH, Pavlidis P, Antonescu CR et al (2003) Classification and subtype prediction of adult soft tissue sarcoma by functional genomics. Am J Pathol 163:691–700PubMed
26.
go back to reference Allander SV, Illei PB, Chen Y et al (2002) Expression profiling of synovial sarcoma by cDNA microarrays: association of ERBB2, IGFBP2, and ELF3 with epithelial differentiation. Am J Pathol 161:1587–1595PubMed Allander SV, Illei PB, Chen Y et al (2002) Expression profiling of synovial sarcoma by cDNA microarrays: association of ERBB2, IGFBP2, and ELF3 with epithelial differentiation. Am J Pathol 161:1587–1595PubMed
27.
go back to reference Francis P, Namlos HM, Muller C et al (2007) Diagnostic and prognostic gene expression signatures in 177 soft tissue sarcomas: hypoxia-induced transcription profile signifies metastatic potential. BMC Genomics 8:73CrossRefPubMed Francis P, Namlos HM, Muller C et al (2007) Diagnostic and prognostic gene expression signatures in 177 soft tissue sarcomas: hypoxia-induced transcription profile signifies metastatic potential. BMC Genomics 8:73CrossRefPubMed
28.
go back to reference Nagayama S, Katagiri T, Tsunoda T et al (2002) Genome-wide analysis of gene expression in synovial sarcomas using a cDNA microarray. Cancer Res 62:5859–5866PubMed Nagayama S, Katagiri T, Tsunoda T et al (2002) Genome-wide analysis of gene expression in synovial sarcomas using a cDNA microarray. Cancer Res 62:5859–5866PubMed
29.
go back to reference Henderson SR, Guiliano D, Presneau N et al (2005) A molecular map of mesenchymal tumors. Genome Biol 6:R76CrossRefPubMed Henderson SR, Guiliano D, Presneau N et al (2005) A molecular map of mesenchymal tumors. Genome Biol 6:R76CrossRefPubMed
30.
go back to reference Nielsen TO, Hsu FD, O’Connell JX et al (2003) Tissue microarray validation of epidermal growth factor receptor and SALL2 in synovial sarcoma with comparison to tumors of similar histology. Am J Pathol 163:1449–1456PubMed Nielsen TO, Hsu FD, O’Connell JX et al (2003) Tissue microarray validation of epidermal growth factor receptor and SALL2 in synovial sarcoma with comparison to tumors of similar histology. Am J Pathol 163:1449–1456PubMed
31.
go back to reference Terry J, Saito T, Subramanian S et al (2007) TLE1 as a diagnostic immunohistochemical marker for synovial sarcoma emerging from gene expression profiling studies. Am J Surg Pathol 31:240–246CrossRefPubMed Terry J, Saito T, Subramanian S et al (2007) TLE1 as a diagnostic immunohistochemical marker for synovial sarcoma emerging from gene expression profiling studies. Am J Surg Pathol 31:240–246CrossRefPubMed
32.
go back to reference Barco R, Hunt LB, Frump AL et al (2007) The synovial sarcoma SYT-SSX2 oncogene remodels the cytoskeleton through activation of the ephrin pathway. Mol Biol Cell 18:4003–4012CrossRefPubMed Barco R, Hunt LB, Frump AL et al (2007) The synovial sarcoma SYT-SSX2 oncogene remodels the cytoskeleton through activation of the ephrin pathway. Mol Biol Cell 18:4003–4012CrossRefPubMed
33.
go back to reference Lee YF, John M, Edwards S et al (2003) Molecular classification of synovial sarcomas, leiomyosarcomas and malignant fibrous histiocytomas by gene expression profiling. Br J Cancer 88:510–515CrossRefPubMed Lee YF, John M, Edwards S et al (2003) Molecular classification of synovial sarcomas, leiomyosarcomas and malignant fibrous histiocytomas by gene expression profiling. Br J Cancer 88:510–515CrossRefPubMed
34.
go back to reference Fernebro J, Francis P, Eden P et al (2006) Gene expression profiles relate to SS18/SSX fusion type in synovial sarcoma. Int J Cancer 118:1165–1172CrossRefPubMed Fernebro J, Francis P, Eden P et al (2006) Gene expression profiles relate to SS18/SSX fusion type in synovial sarcoma. Int J Cancer 118:1165–1172CrossRefPubMed
35.
go back to reference Ladanyi M, Antonescu CR, Leung DH et al (2002) Impact of SYT-SSX fusion type on the clinical behavior of synovial sarcoma: a multi-institutional retrospective study of 243 patients. Cancer Res 62:135–140PubMed Ladanyi M, Antonescu CR, Leung DH et al (2002) Impact of SYT-SSX fusion type on the clinical behavior of synovial sarcoma: a multi-institutional retrospective study of 243 patients. Cancer Res 62:135–140PubMed
36.
go back to reference Guillou L, Benhattar J, Bonichon F et al (2004) Histologic grade, but not SYT-SSX fusion type, is an important prognostic factor in patients with synovial sarcoma: a multicenter, retrospective analysis. J Clin Oncol 22:4040–4050CrossRefPubMed Guillou L, Benhattar J, Bonichon F et al (2004) Histologic grade, but not SYT-SSX fusion type, is an important prognostic factor in patients with synovial sarcoma: a multicenter, retrospective analysis. J Clin Oncol 22:4040–4050CrossRefPubMed
37.
go back to reference Takenaka S, Ueda T, Naka N et al (2008) Prognostic implication of SYT-SSX fusion type in synovial sarcoma: a multi-institutional retrospective analysis in Japan. Oncol Rep 19:467–476PubMed Takenaka S, Ueda T, Naka N et al (2008) Prognostic implication of SYT-SSX fusion type in synovial sarcoma: a multi-institutional retrospective analysis in Japan. Oncol Rep 19:467–476PubMed
38.
go back to reference Ray-Coquard I, Le Cesne A, Whelan JS et al (2008) A phase II study of gefitinib for patients with advanced HER-1 expressing synovial sarcoma refractory to doxorubicin-containing regimens. Oncologist 13:467–473CrossRefPubMed Ray-Coquard I, Le Cesne A, Whelan JS et al (2008) A phase II study of gefitinib for patients with advanced HER-1 expressing synovial sarcoma refractory to doxorubicin-containing regimens. Oncologist 13:467–473CrossRefPubMed
39.
go back to reference Lubieniecka JM, de Bruijn DR, Su L et al (2008) Histone deacetylase inhibitors reverse SS18-SSX-mediated polycomb silencing of the tumor suppressor early growth response 1 in synovial sarcoma. Cancer Res 68:4303–4310CrossRefPubMed Lubieniecka JM, de Bruijn DR, Su L et al (2008) Histone deacetylase inhibitors reverse SS18-SSX-mediated polycomb silencing of the tumor suppressor early growth response 1 in synovial sarcoma. Cancer Res 68:4303–4310CrossRefPubMed
40.
go back to reference Lee YF, John M, Falconer A et al (2004) A gene expression signature associated with metastatic outcome in human leiomyosarcomas. Cancer Res 64:7201–7204CrossRefPubMed Lee YF, John M, Falconer A et al (2004) A gene expression signature associated with metastatic outcome in human leiomyosarcomas. Cancer Res 64:7201–7204CrossRefPubMed
41.
go back to reference Lee CH, Espinosa I, Vrijaldenhoven S et al (2008) Prognostic significance of macrophage infiltration in leiomyosarcomas. Clin Cancer Res 14:1423–1430CrossRefPubMed Lee CH, Espinosa I, Vrijaldenhoven S et al (2008) Prognostic significance of macrophage infiltration in leiomyosarcomas. Clin Cancer Res 14:1423–1430CrossRefPubMed
42.
43.
go back to reference Singer S, Socci ND, Ambrosini G et al (2007) Gene expression profiling of liposarcoma identifies distinct biological types/subtypes and potential therapeutic targets in well-differentiated and dedifferentiated liposarcoma. Cancer Res 67:6626–6636CrossRefPubMed Singer S, Socci ND, Ambrosini G et al (2007) Gene expression profiling of liposarcoma identifies distinct biological types/subtypes and potential therapeutic targets in well-differentiated and dedifferentiated liposarcoma. Cancer Res 67:6626–6636CrossRefPubMed
44.
go back to reference Sirvent N, Coindre JM, Maire G et al (2007) Detection of MDM2-CDK4 amplification by fluorescence in situ hybridization in 200 paraffin-embedded tumor samples: utility in diagnosing adipocytic lesions and comparison with immunohistochemistry and real-time PCR. Am J Surg Pathol 31:1476–1489CrossRefPubMed Sirvent N, Coindre JM, Maire G et al (2007) Detection of MDM2-CDK4 amplification by fluorescence in situ hybridization in 200 paraffin-embedded tumor samples: utility in diagnosing adipocytic lesions and comparison with immunohistochemistry and real-time PCR. Am J Surg Pathol 31:1476–1489CrossRefPubMed
45.
go back to reference Matushansky I, Hernando E, Socci ND et al (2008) A developmental model of sarcomagenesis defines a differentiation-based classification for liposarcomas. Am J Pathol 172:1069–1080CrossRefPubMed Matushansky I, Hernando E, Socci ND et al (2008) A developmental model of sarcomagenesis defines a differentiation-based classification for liposarcomas. Am J Pathol 172:1069–1080CrossRefPubMed
46.
go back to reference Tos AP (2006) Classification of pleomorphic sarcomas: where are we now? Histopathology 48:51–62CrossRef Tos AP (2006) Classification of pleomorphic sarcomas: where are we now? Histopathology 48:51–62CrossRef
47.
go back to reference Ozzello L, Stout AP, Murray MR (1963) Cultural characteristics of malignant histiocytomas and fibrous xanthomas. Cancer 16:331–344CrossRefPubMed Ozzello L, Stout AP, Murray MR (1963) Cultural characteristics of malignant histiocytomas and fibrous xanthomas. Cancer 16:331–344CrossRefPubMed
48.
go back to reference Fletcher CD (1992) Pleomorphic malignant fibrous histiocytoma: fact or fiction? A critical reappraisal based on 159 tumors diagnosed as pleomorphic sarcoma. Am J Surg Pathol 16:213–228PubMedCrossRef Fletcher CD (1992) Pleomorphic malignant fibrous histiocytoma: fact or fiction? A critical reappraisal based on 159 tumors diagnosed as pleomorphic sarcoma. Am J Surg Pathol 16:213–228PubMedCrossRef
49.
go back to reference Fletcher CD, Gustafson P, Rydholm A et al (2001) Clinicopathologic re-evaluation of 100 malignant fibrous histiocytomas: prognostic relevance of subclassification. J Clin Oncol 19:3045–3050PubMed Fletcher CD, Gustafson P, Rydholm A et al (2001) Clinicopathologic re-evaluation of 100 malignant fibrous histiocytomas: prognostic relevance of subclassification. J Clin Oncol 19:3045–3050PubMed
50.
go back to reference Fletcher CD (2006) The evolving classification of soft tissue tumours: an update based on the new WHO classification. Histopathology 48:3–12CrossRefPubMed Fletcher CD (2006) The evolving classification of soft tissue tumours: an update based on the new WHO classification. Histopathology 48:3–12CrossRefPubMed
51.
go back to reference Matushansky I, Hernando E, Socci ND et al (2007) Derivation of sarcomas from mesenchymal stem cells via inactivation of the Wnt pathway. J Clin Invest 117:3248–3257CrossRefPubMed Matushansky I, Hernando E, Socci ND et al (2007) Derivation of sarcomas from mesenchymal stem cells via inactivation of the Wnt pathway. J Clin Invest 117:3248–3257CrossRefPubMed
52.
go back to reference Miettinen M, Lasota J (2006) Gastrointestinal stromal tumors: review on morphology, molecular pathology, prognosis, and differential diagnosis. Arch Pathol Lab Med 130:1466–1478PubMed Miettinen M, Lasota J (2006) Gastrointestinal stromal tumors: review on morphology, molecular pathology, prognosis, and differential diagnosis. Arch Pathol Lab Med 130:1466–1478PubMed
53.
go back to reference Joensuu H, Roberts PJ, Sarlomo-Rikala M et al (2001) Effect of the tyrosine kinase inhibitor STI571 in a patient with a metastatic gastrointestinal stromal tumor. N Engl J Med 344:1052–1056CrossRefPubMed Joensuu H, Roberts PJ, Sarlomo-Rikala M et al (2001) Effect of the tyrosine kinase inhibitor STI571 in a patient with a metastatic gastrointestinal stromal tumor. N Engl J Med 344:1052–1056CrossRefPubMed
54.
go back to reference Heinrich MC, Corless CL, Demetri GD et al (2003) Kinase mutations and imatinib response in patients with metastatic gastrointestinal stromal tumor. J Clin Oncol 21:4342–4349CrossRefPubMed Heinrich MC, Corless CL, Demetri GD et al (2003) Kinase mutations and imatinib response in patients with metastatic gastrointestinal stromal tumor. J Clin Oncol 21:4342–4349CrossRefPubMed
55.
go back to reference Sciot R, Debiec-Rychter M, Daugaard S et al (2008) Distribution and prognostic value of histopathologic data and immunohistochemical markers in gastrointestinal stromal tumours (GISTs): an analysis of the EORTC phase III trial of treatment of metastatic GISTs with imatinib mesylate. Eur J Cancer 44:1855–1860CrossRefPubMed Sciot R, Debiec-Rychter M, Daugaard S et al (2008) Distribution and prognostic value of histopathologic data and immunohistochemical markers in gastrointestinal stromal tumours (GISTs): an analysis of the EORTC phase III trial of treatment of metastatic GISTs with imatinib mesylate. Eur J Cancer 44:1855–1860CrossRefPubMed
56.
go back to reference Subramanian S, West RB, Corless CL et al (2004) Gastrointestinal stromal tumors (GISTs) with KIT and PDGFRA mutations have distinct gene expression profiles. Oncogene 23:7780–7790CrossRefPubMed Subramanian S, West RB, Corless CL et al (2004) Gastrointestinal stromal tumors (GISTs) with KIT and PDGFRA mutations have distinct gene expression profiles. Oncogene 23:7780–7790CrossRefPubMed
57.
go back to reference West RB, Corless CL, Chen X et al (2004) The novel marker, DOG1, is expressed ubiquitously in gastrointestinal stromal tumors irrespective of KIT or PDGFRA mutation status. Am J Pathol 165:107–113PubMed West RB, Corless CL, Chen X et al (2004) The novel marker, DOG1, is expressed ubiquitously in gastrointestinal stromal tumors irrespective of KIT or PDGFRA mutation status. Am J Pathol 165:107–113PubMed
58.
go back to reference Espinosa I, Lee CH, Kim MK et al (2008) A novel monoclonal antibody against DOG1 is a sensitive and specific marker for gastrointestinal stromal tumors. Am J Surg Pathol 32:210–218CrossRefPubMed Espinosa I, Lee CH, Kim MK et al (2008) A novel monoclonal antibody against DOG1 is a sensitive and specific marker for gastrointestinal stromal tumors. Am J Surg Pathol 32:210–218CrossRefPubMed
59.
go back to reference Yang YD, Cho H, Koo JY et al (2008) TMEM16A confers receptor-activated calcium-dependent chloride conductance. Nature 455:1210–1215CrossRefPubMed Yang YD, Cho H, Koo JY et al (2008) TMEM16A confers receptor-activated calcium-dependent chloride conductance. Nature 455:1210–1215CrossRefPubMed
60.
go back to reference Price ND, Trent J, El-Naggar AK et al (2007) Highly accurate two-gene classifier for differentiating gastrointestinal stromal tumors and leiomyosarcomas. Proc Natl Acad Sci U S A 104:3414–3419CrossRefPubMed Price ND, Trent J, El-Naggar AK et al (2007) Highly accurate two-gene classifier for differentiating gastrointestinal stromal tumors and leiomyosarcomas. Proc Natl Acad Sci U S A 104:3414–3419CrossRefPubMed
61.
go back to reference Khan J, Wei JS, Ringner M et al (2001) Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks. Nat Med 7:673–679CrossRefPubMed Khan J, Wei JS, Ringner M et al (2001) Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks. Nat Med 7:673–679CrossRefPubMed
62.
go back to reference Ohali A, Avigad S, Zaizov R et al (2004) Prediction of high risk Ewing’s sarcoma by gene expression profiling. Oncogene 23:8997–9006CrossRefPubMed Ohali A, Avigad S, Zaizov R et al (2004) Prediction of high risk Ewing’s sarcoma by gene expression profiling. Oncogene 23:8997–9006CrossRefPubMed
63.
go back to reference Cheung IY, Feng Y, Danis K et al (2007) Novel markers of subclinical disease for Ewing family tumors from gene expression profiling. Clin Cancer Res 13:6978–6983CrossRefPubMed Cheung IY, Feng Y, Danis K et al (2007) Novel markers of subclinical disease for Ewing family tumors from gene expression profiling. Clin Cancer Res 13:6978–6983CrossRefPubMed
64.
go back to reference Ferreira BI, Alonso J, Carrillo J et al (2008) Array CGH and gene-expression profiling reveals distinct genomic instability patterns associated with DNA repair and cell-cycle checkpoint pathways in Ewing’s sarcoma. Oncogene 27:2084–2090CrossRefPubMed Ferreira BI, Alonso J, Carrillo J et al (2008) Array CGH and gene-expression profiling reveals distinct genomic instability patterns associated with DNA repair and cell-cycle checkpoint pathways in Ewing’s sarcoma. Oncogene 27:2084–2090CrossRefPubMed
65.
go back to reference Hancock JD, Lessnick SL (2008) A transcriptional profiling meta-analysis reveals a core EWS-FLI gene expression signature. Cell Cycle 7:250–256PubMed Hancock JD, Lessnick SL (2008) A transcriptional profiling meta-analysis reveals a core EWS-FLI gene expression signature. Cell Cycle 7:250–256PubMed
66.
go back to reference Davicioni E, Finckenstein FG, Shahbazian V et al (2006) Identification of a PAX-FKHR gene expression signature that defines molecular classes and determines the prognosis of alveolar rhabdomyosarcomas. Cancer Res 66:6936–6946CrossRefPubMed Davicioni E, Finckenstein FG, Shahbazian V et al (2006) Identification of a PAX-FKHR gene expression signature that defines molecular classes and determines the prognosis of alveolar rhabdomyosarcomas. Cancer Res 66:6936–6946CrossRefPubMed
67.
go back to reference Ebauer M, Wachtel M, Niggli FK et al (2007) Comparative expression profiling identifies an in vivo target gene signature with TFAP2B as a mediator of the survival function of PAX3/FKHR. Oncogene 26:7267–7281CrossRefPubMed Ebauer M, Wachtel M, Niggli FK et al (2007) Comparative expression profiling identifies an in vivo target gene signature with TFAP2B as a mediator of the survival function of PAX3/FKHR. Oncogene 26:7267–7281CrossRefPubMed
68.
go back to reference Lae M, Ahn EH, Mercado GE et al (2007) Global gene expression profiling of PAX-FKHR fusion-positive alveolar and PAX-FKHR fusion-negative embryonal rhabdomyosarcomas. J Pathol 212:143–151CrossRefPubMed Lae M, Ahn EH, Mercado GE et al (2007) Global gene expression profiling of PAX-FKHR fusion-positive alveolar and PAX-FKHR fusion-negative embryonal rhabdomyosarcomas. J Pathol 212:143–151CrossRefPubMed
69.
go back to reference Wachtel M, Dettling M, Koscielniak E et al (2004) Gene expression signatures identify rhabdomyosarcoma subtypes and detect a novel t(2;2)(q35;p23) translocation fusing PAX3 to NCOA1. Cancer Res 64:5539–5545CrossRefPubMed Wachtel M, Dettling M, Koscielniak E et al (2004) Gene expression signatures identify rhabdomyosarcoma subtypes and detect a novel t(2;2)(q35;p23) translocation fusing PAX3 to NCOA1. Cancer Res 64:5539–5545CrossRefPubMed
70.
go back to reference Ren YX, Finckenstein FG, Abdueva DA et al (2008) Mouse mesenchymal stem cells expressing PAX-FKHR form alveolar rhabdomyosarcomas by cooperating with secondary mutations. Cancer Res 68:6587–6597CrossRefPubMed Ren YX, Finckenstein FG, Abdueva DA et al (2008) Mouse mesenchymal stem cells expressing PAX-FKHR form alveolar rhabdomyosarcomas by cooperating with secondary mutations. Cancer Res 68:6587–6597CrossRefPubMed
71.
go back to reference Schaefer KL, Eisenacher M, Braun Y et al (2008) Microarray analysis of Ewing’s sarcoma family of tumours reveals characteristic gene expression signatures associated with metastasis and resistance to chemotherapy. Eur J Cancer 44:699–709PubMed Schaefer KL, Eisenacher M, Braun Y et al (2008) Microarray analysis of Ewing’s sarcoma family of tumours reveals characteristic gene expression signatures associated with metastasis and resistance to chemotherapy. Eur J Cancer 44:699–709PubMed
72.
go back to reference Linn SC, West RB, Pollack JR et al (2003) Gene expression patterns and gene copy number changes in dermatofibrosarcoma protuberans. Am J Pathol 163:2383–2395PubMed Linn SC, West RB, Pollack JR et al (2003) Gene expression patterns and gene copy number changes in dermatofibrosarcoma protuberans. Am J Pathol 163:2383–2395PubMed
73.
go back to reference West RB, Harvell J, Linn SC et al (2004) Apo D in soft tissue tumors: a novel marker for dermatofibrosarcoma protuberans. Am J Surg Pathol 28:1063–1069CrossRefPubMed West RB, Harvell J, Linn SC et al (2004) Apo D in soft tissue tumors: a novel marker for dermatofibrosarcoma protuberans. Am J Surg Pathol 28:1063–1069CrossRefPubMed
74.
go back to reference Lazar AJ, Tuvin D, Hajibashi S et al (2008) Specific mutations in the {beta}-catenin gene (CTNNB1) correlate with local recurrence in sporadic desmoid tumors. Am J Pathol 173:1518–1527CrossRefPubMed Lazar AJ, Tuvin D, Hajibashi S et al (2008) Specific mutations in the {beta}-catenin gene (CTNNB1) correlate with local recurrence in sporadic desmoid tumors. Am J Pathol 173:1518–1527CrossRefPubMed
75.
go back to reference Beck AH, Espinosa I, Gilks CB et al (2008) The fibromatosis signature defines a robust stromal response in breast carcinoma. Lab Invest 88:591–601CrossRefPubMed Beck AH, Espinosa I, Gilks CB et al (2008) The fibromatosis signature defines a robust stromal response in breast carcinoma. Lab Invest 88:591–601CrossRefPubMed
76.
go back to reference West RB, Nuyten DS, Subramanian S et al (2005) Determination of stromal signatures in breast carcinoma. PLoS Biol 3:e187CrossRefPubMed West RB, Nuyten DS, Subramanian S et al (2005) Determination of stromal signatures in breast carcinoma. PLoS Biol 3:e187CrossRefPubMed
77.
go back to reference Bacac M, Migliavacca E, Stehle JC et al (2006) A gene expression signature that distinguishes desmoid tumours from nodular fasciitis. J Pathol 208:543–553CrossRefPubMed Bacac M, Migliavacca E, Stehle JC et al (2006) A gene expression signature that distinguishes desmoid tumours from nodular fasciitis. J Pathol 208:543–553CrossRefPubMed
78.
go back to reference Heinrich MC, McArthur GA, Demetri GD et al (2006) Clinical and molecular studies of the effect of imatinib on advanced aggressive fibromatosis (desmoid tumor). J Clin Oncol 24:1195–1203CrossRefPubMed Heinrich MC, McArthur GA, Demetri GD et al (2006) Clinical and molecular studies of the effect of imatinib on advanced aggressive fibromatosis (desmoid tumor). J Clin Oncol 24:1195–1203CrossRefPubMed
79.
go back to reference Kotiligam D, Lazar AJ, Pollock RE et al (2008) Desmoid tumor: a disease opportune for molecular insights. Histol Histopathol 23:117–126PubMed Kotiligam D, Lazar AJ, Pollock RE et al (2008) Desmoid tumor: a disease opportune for molecular insights. Histol Histopathol 23:117–126PubMed
80.
go back to reference West RB, Rubin BP, Miller MA et al (2006) A landscape effect in tenosynovial giant-cell tumor from activation of CSF1 expression by a translocation in a minority of tumor cells. Proc Natl Acad Sci U S A 103:690–695CrossRefPubMed West RB, Rubin BP, Miller MA et al (2006) A landscape effect in tenosynovial giant-cell tumor from activation of CSF1 expression by a translocation in a minority of tumor cells. Proc Natl Acad Sci U S A 103:690–695CrossRefPubMed
81.
go back to reference Murray LJ, Abrams TJ, Long KR et al (2003) SU11248 inhibits tumor growth and CSF-1R-dependent osteolysis in an experimental breast cancer bone metastasis model. Clin Exp Metastasis 20:757–766CrossRefPubMed Murray LJ, Abrams TJ, Long KR et al (2003) SU11248 inhibits tumor growth and CSF-1R-dependent osteolysis in an experimental breast cancer bone metastasis model. Clin Exp Metastasis 20:757–766CrossRefPubMed
82.
go back to reference Beck AH, Espinosa I, Edris B et al (2009) The macrophage colony-stimulating factor 1 response signature in breast carcinoma. Clin Cancer Res 15:778–787CrossRefPubMed Beck AH, Espinosa I, Edris B et al (2009) The macrophage colony-stimulating factor 1 response signature in breast carcinoma. Clin Cancer Res 15:778–787CrossRefPubMed
83.
go back to reference Edgar R, Domrachev M, Lash AE (2002) Gene expression omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res 30:207–210CrossRefPubMed Edgar R, Domrachev M, Lash AE (2002) Gene expression omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res 30:207–210CrossRefPubMed
84.
go back to reference Parkinson H, Sarkans U, Shojatalab M et al (2005) ArrayExpress—a public repository for microarray gene expression data at the EBI. Nucleic Acids Res 33:D553–D555CrossRefPubMed Parkinson H, Sarkans U, Shojatalab M et al (2005) ArrayExpress—a public repository for microarray gene expression data at the EBI. Nucleic Acids Res 33:D553–D555CrossRefPubMed
85.
go back to reference Bild AH, Potti A, Nevins JR (2006) Linking oncogenic pathways with therapeutic opportunities. Nat Rev Cancer 6:735–741CrossRefPubMed Bild AH, Potti A, Nevins JR (2006) Linking oncogenic pathways with therapeutic opportunities. Nat Rev Cancer 6:735–741CrossRefPubMed
86.
go back to reference Hu P, Bader G, Wigle DA et al (2007) Computational prediction of cancer-gene function. Nat Rev Cancer 7:23–34CrossRefPubMed Hu P, Bader G, Wigle DA et al (2007) Computational prediction of cancer-gene function. Nat Rev Cancer 7:23–34CrossRefPubMed
87.
go back to reference Lamb J, Crawford ED, Peck D et al (2006) The connectivity map: using gene-expression signatures to connect small molecules, genes, and disease. Science 313:1929–1935CrossRefPubMed Lamb J, Crawford ED, Peck D et al (2006) The connectivity map: using gene-expression signatures to connect small molecules, genes, and disease. Science 313:1929–1935CrossRefPubMed
88.
89.
go back to reference Dennis G Jr, Sherman BT, Hosack DA et al (2003) DAVID: Database for Annotation, Visualization, and Integrated Discovery. Genome Biol 4:P3CrossRefPubMed Dennis G Jr, Sherman BT, Hosack DA et al (2003) DAVID: Database for Annotation, Visualization, and Integrated Discovery. Genome Biol 4:P3CrossRefPubMed
90.
go back to reference von Mering C, Jensen LJ, Kuhn M et al (2007) STRING 7—recent developments in the integration and prediction of protein interactions. Nucleic Acids Res 35:D358–D362CrossRef von Mering C, Jensen LJ, Kuhn M et al (2007) STRING 7—recent developments in the integration and prediction of protein interactions. Nucleic Acids Res 35:D358–D362CrossRef
91.
go back to reference Subramanian A, Tamayo P, Mootha VK et al (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A 102:15545–15550CrossRefPubMed Subramanian A, Tamayo P, Mootha VK et al (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A 102:15545–15550CrossRefPubMed
92.
go back to reference Segal E, Friedman N, Koller D et al (2004) A module map showing conditional activity of expression modules in cancer. Nat Genet 36:1090–1098CrossRefPubMed Segal E, Friedman N, Koller D et al (2004) A module map showing conditional activity of expression modules in cancer. Nat Genet 36:1090–1098CrossRefPubMed
93.
go back to reference Rhodes DR, Yu J, Shanker K et al (2004) Large-scale meta-analysis of cancer microarray data identifies common transcriptional profiles of neoplastic transformation and progression. Proc Natl Acad Sci U S A 101:9309–9314CrossRefPubMed Rhodes DR, Yu J, Shanker K et al (2004) Large-scale meta-analysis of cancer microarray data identifies common transcriptional profiles of neoplastic transformation and progression. Proc Natl Acad Sci U S A 101:9309–9314CrossRefPubMed
94.
go back to reference Bonnefoi H, Potti A, Delorenzi M et al (2007) Validation of gene signatures that predict the response of breast cancer to neoadjuvant chemotherapy: a substudy of the EORTC 10994/BIG 00-01 clinical trial. Lancet Oncol 8:1071–1078CrossRefPubMed Bonnefoi H, Potti A, Delorenzi M et al (2007) Validation of gene signatures that predict the response of breast cancer to neoadjuvant chemotherapy: a substudy of the EORTC 10994/BIG 00-01 clinical trial. Lancet Oncol 8:1071–1078CrossRefPubMed
95.
go back to reference Dressman HK, Berchuck A, Chan G et al (2007) An integrated genomic-based approach to individualized treatment of patients with advanced-stage ovarian cancer. J Clin Oncol 25:517–525CrossRefPubMed Dressman HK, Berchuck A, Chan G et al (2007) An integrated genomic-based approach to individualized treatment of patients with advanced-stage ovarian cancer. J Clin Oncol 25:517–525CrossRefPubMed
96.
go back to reference Subramanian S, Lui WO, Lee CH et al (2008) MicroRNA expression signature of human sarcomas. Oncogene 27:2015–2026CrossRefPubMed Subramanian S, Lui WO, Lee CH et al (2008) MicroRNA expression signature of human sarcomas. Oncogene 27:2015–2026CrossRefPubMed
97.
go back to reference Camp RL, Neumeister V, Rimm DL (2008) A decade of tissue microarrays: progress in the discovery and validation of cancer biomarkers. J Clin Oncol 26:5630–5637CrossRefPubMed Camp RL, Neumeister V, Rimm DL (2008) A decade of tissue microarrays: progress in the discovery and validation of cancer biomarkers. J Clin Oncol 26:5630–5637CrossRefPubMed
Metadata
Title
Gene expression profiling for the investigation of soft tissue sarcoma pathogenesis and the identification of diagnostic, prognostic, and predictive biomarkers
Authors
Andrew H. Beck
Robert B. West
Matt van de Rijn
Publication date
01-02-2010
Publisher
Springer-Verlag
Published in
Virchows Archiv / Issue 2/2010
Print ISSN: 0945-6317
Electronic ISSN: 1432-2307
DOI
https://doi.org/10.1007/s00428-009-0774-2

Other articles of this Issue 2/2010

Virchows Archiv 2/2010 Go to the issue

Review and Perspective

Gastrointestinal stromal tumors