Skip to main content
Top
Published in: Journal of Experimental & Clinical Cancer Research 1/2012

Open Access 01-12-2012 | Research

GCS overexpression is associated with multidrug resistance of human HCT-8 colon cancer cells

Authors: Min Song, Weidong Zang, Baohua Zhang, Jing Cao, Guanrui Yang

Published in: Journal of Experimental & Clinical Cancer Research | Issue 1/2012

Login to get access

Abstract

Purpose

Multidrug resistance is one of the main impediments to the successful treatment of colon cancer. Glucosylceramide synthase (GCS) which is related to multidrug resistance (MDR) can reduce the level of ceramide and can help cells escape from the ceramide-induced cell apoptosis. However, the underlying mechanism is still unclear.

Methods

The cell proliferation and cell toxicity were measured with Cell Counting Kit-8 (CCK-8). The mRNA levels of GCS and MDR1 were detected by semiquantitative reverse transcription-PCR amplification, the protein levels of GCS, caspase-3 and P-gp proteins were indicated by Western blotting. The apoptosis rates of cells were measured with flow cytometry.

Results

The relative mRNA levels of GCS in HCT-8, HCT-8/VCR, HCT-8/VCR- sh-mock and HCT-8/VCR-sh-GCS were 71.4 ± 1.1%, 95.1 ± 1.2%, 98.2 ± 1.5%, and 66.6 ± 2.1% respectively. The mRNA levels of MDR1 were respectively 61.3 ± 1.1%, 90.5 ± 1.4%, 97.6 ± 2.2% and 56.1 ± 1.2%. The IC50 of Cisplatin complexes were respectively 69.070 ± 0.253 μg/ml, 312.050 ± 1.46 μg/ml, 328.741 ± 5.648 μg/ml, 150.792 ± 0.967 μg/ml in HCT-8, HCT-8/VCR, HCT-8/VCR-sh-mock and HCT-8/VCR-sh-GCS. The protein levels of caspase-3 were 34.2 ± o.6%, 93.0 ± 0.7%, 109.09 ± 0.7%, 42.7 ± 1.3% respectively. The apoptosis rates of cells were 8.77 ± 0.14%, 12.75 ± 0.54%, 15.39 ± 0.41% and 8.49 ± 0.23% respectively.

Conclusion

In conclusion, our research indicated that suppression of GCS restores the sensitivity of multidrug resistance colon cancer cells to drug treatment.
Appendix
Available only for authorised users
Literature
1.
go back to reference Patwardhan G, Gupta V, Huang J, Gu X, Liu YY: Direct assessment of P-glycoprotein efflux to determine tumor response to chemotherapy. Biochem Pharmacol. 2010, 80: 72-79. 10.1016/j.bcp.2010.03.010.PubMedCentralCrossRefPubMed Patwardhan G, Gupta V, Huang J, Gu X, Liu YY: Direct assessment of P-glycoprotein efflux to determine tumor response to chemotherapy. Biochem Pharmacol. 2010, 80: 72-79. 10.1016/j.bcp.2010.03.010.PubMedCentralCrossRefPubMed
2.
go back to reference Baguley BC: Multiple drug resistance mechanisms in cancer. Mol Biotechnol. 2010, 46: 308-316. 10.1007/s12033-010-9321-2.CrossRefPubMed Baguley BC: Multiple drug resistance mechanisms in cancer. Mol Biotechnol. 2010, 46: 308-316. 10.1007/s12033-010-9321-2.CrossRefPubMed
3.
go back to reference Gouaze V, Yu JY, Bleicher RJ, Han TY, Liu YY, Wang H, et al: Overexpression of glucosylceramide synthase and P-glycoprotein in cancer cells selected for resistance to natural product chemotherapy. Mol Cancer Ther. 2004, 3: 633-639.PubMed Gouaze V, Yu JY, Bleicher RJ, Han TY, Liu YY, Wang H, et al: Overexpression of glucosylceramide synthase and P-glycoprotein in cancer cells selected for resistance to natural product chemotherapy. Mol Cancer Ther. 2004, 3: 633-639.PubMed
5.
go back to reference Zhang X, Li J, Qiu Z, Gao P, Wu X, Zhou G: Co-suppression of MDR1 (multidrug resistance 1) and GCS (glucosylceramide synthase) restores sensitivity to multidrug resistance breast cancer cells by RNA interference (RNAi). Cancer Biol Ther. 2009, 8: 1117-1121. 10.4161/cbt.8.12.8374.CrossRefPubMed Zhang X, Li J, Qiu Z, Gao P, Wu X, Zhou G: Co-suppression of MDR1 (multidrug resistance 1) and GCS (glucosylceramide synthase) restores sensitivity to multidrug resistance breast cancer cells by RNA interference (RNAi). Cancer Biol Ther. 2009, 8: 1117-1121. 10.4161/cbt.8.12.8374.CrossRefPubMed
6.
go back to reference Liu Y, Xie KM, Yang GQ, Bai XM, Shi YP, Mu HJ, et al: GCS induces multidrug resistance by regulating apoptosis-related genes in K562/AO2 cell line. Cancer Chemother Pharmacol. 2010, 66: 433-439. 10.1007/s00280-009-1177-4.CrossRefPubMed Liu Y, Xie KM, Yang GQ, Bai XM, Shi YP, Mu HJ, et al: GCS induces multidrug resistance by regulating apoptosis-related genes in K562/AO2 cell line. Cancer Chemother Pharmacol. 2010, 66: 433-439. 10.1007/s00280-009-1177-4.CrossRefPubMed
7.
go back to reference Chauhan D, Anderson KC: Mechanisms of cell death and survival in multiple myeloma (MM): Therapeutic implications. Apoptosis. 2003, 8: 337-343. 10.1023/A:1024164700094.CrossRefPubMed Chauhan D, Anderson KC: Mechanisms of cell death and survival in multiple myeloma (MM): Therapeutic implications. Apoptosis. 2003, 8: 337-343. 10.1023/A:1024164700094.CrossRefPubMed
8.
go back to reference Reed JC, Miyashita T, Takayama S, Wang HG, Sato T, Krajewski S, et al: BCL-2 family proteins: regulators of cell death involved in the pathogenesis of cancer and resistance to therapy. J Cell Biochem. 1996, 60: 23-32. 10.1002/(SICI)1097-4644(19960101)60:1<23::AID-JCB5>3.0.CO;2-5.CrossRefPubMed Reed JC, Miyashita T, Takayama S, Wang HG, Sato T, Krajewski S, et al: BCL-2 family proteins: regulators of cell death involved in the pathogenesis of cancer and resistance to therapy. J Cell Biochem. 1996, 60: 23-32. 10.1002/(SICI)1097-4644(19960101)60:1<23::AID-JCB5>3.0.CO;2-5.CrossRefPubMed
9.
go back to reference Reed JC: Bcl-2 family proteins: regulators of apoptosis and chemoresistance in hematologic malignancies. Semin Hematol. 1997, 34: 9-19.PubMed Reed JC: Bcl-2 family proteins: regulators of apoptosis and chemoresistance in hematologic malignancies. Semin Hematol. 1997, 34: 9-19.PubMed
10.
go back to reference Real PJ, Cao Y, Wang R, Nikolovska-Coleska Z, Sanz-Ortiz J, Wang S, et al: Breast cancer cells can evade apoptosis-mediated selective killing by a novel small molecule inhibitor of Bcl-2. Cancer Res. 2004, 64: 7947-7953. 10.1158/0008-5472.CAN-04-0945.CrossRefPubMed Real PJ, Cao Y, Wang R, Nikolovska-Coleska Z, Sanz-Ortiz J, Wang S, et al: Breast cancer cells can evade apoptosis-mediated selective killing by a novel small molecule inhibitor of Bcl-2. Cancer Res. 2004, 64: 7947-7953. 10.1158/0008-5472.CAN-04-0945.CrossRefPubMed
11.
go back to reference Oltersdorf T, Elmore SW, Shoemaker AR, Armstrong RC, Augeri DJ, Belli BA, et al: An inhibitor of Bcl-2 family proteins induces regression of solid tumours. Nature. 2005, 435: 677-681. 10.1038/nature03579.CrossRefPubMed Oltersdorf T, Elmore SW, Shoemaker AR, Armstrong RC, Augeri DJ, Belli BA, et al: An inhibitor of Bcl-2 family proteins induces regression of solid tumours. Nature. 2005, 435: 677-681. 10.1038/nature03579.CrossRefPubMed
12.
go back to reference Johnstone RW, Cretney E, Smyth MJ: P-glycoprotein protects leukemia cells against caspase-dependent, but not caspase-independent, cell death. Blood. 1999, 93: 1075-1085.PubMed Johnstone RW, Cretney E, Smyth MJ: P-glycoprotein protects leukemia cells against caspase-dependent, but not caspase-independent, cell death. Blood. 1999, 93: 1075-1085.PubMed
13.
go back to reference Smyth MJ, Krasovskis E, Sutton VR, Johnstone RW: The drug efflux protein, P-glycoprotein, additionally protects drug-resistant tumor cells from multiple forms of caspase-dependent apoptosis. Proc Natl Acad Sci USA. 1998, 95: 7024-7029. 10.1073/pnas.95.12.7024.PubMedCentralCrossRefPubMed Smyth MJ, Krasovskis E, Sutton VR, Johnstone RW: The drug efflux protein, P-glycoprotein, additionally protects drug-resistant tumor cells from multiple forms of caspase-dependent apoptosis. Proc Natl Acad Sci USA. 1998, 95: 7024-7029. 10.1073/pnas.95.12.7024.PubMedCentralCrossRefPubMed
14.
go back to reference Ruefli AA, Smyth MJ, Johnstone RW: HMBA induces activation of a caspase-independent cell death pathway to overcome P-glycoprotein-mediated multidrug resistance. Blood. 2000, 95: 2378-2385.PubMed Ruefli AA, Smyth MJ, Johnstone RW: HMBA induces activation of a caspase-independent cell death pathway to overcome P-glycoprotein-mediated multidrug resistance. Blood. 2000, 95: 2378-2385.PubMed
15.
go back to reference Shtil AA, Grinchuk TM, Tee L, Mechetner EB, Ignatova TN: Overexpression of P-glycoprotein is associated with a decreased mitochondrial transmembrane potential in doxorubicin-selected K562 human leukemia cells. Int J Oncol. 2000, 17: 387-392.PubMed Shtil AA, Grinchuk TM, Tee L, Mechetner EB, Ignatova TN: Overexpression of P-glycoprotein is associated with a decreased mitochondrial transmembrane potential in doxorubicin-selected K562 human leukemia cells. Int J Oncol. 2000, 17: 387-392.PubMed
16.
go back to reference Hu M, Liu Y, Deng C, Han R, Jia Y, Liu S, et al: Enhanced invasiveness in multidrug resistant leukemic cells is associated with overexpression of P-glycoprotein and cellular inhibitor of apoptosis protein. Leuk Lymphoma. 2011, 52: 1302-1311. 10.3109/10428194.2011.572323.CrossRefPubMed Hu M, Liu Y, Deng C, Han R, Jia Y, Liu S, et al: Enhanced invasiveness in multidrug resistant leukemic cells is associated with overexpression of P-glycoprotein and cellular inhibitor of apoptosis protein. Leuk Lymphoma. 2011, 52: 1302-1311. 10.3109/10428194.2011.572323.CrossRefPubMed
17.
go back to reference Lavie Y, Cao H, Bursten SL, Giuliano AE, Cabot MC: Accumulation of glucosylceramides in multidrug-resistant cancer cells. J Biol Chem. 1996, 271: 19530-19536. 10.1074/jbc.271.32.19530.CrossRefPubMed Lavie Y, Cao H, Bursten SL, Giuliano AE, Cabot MC: Accumulation of glucosylceramides in multidrug-resistant cancer cells. J Biol Chem. 1996, 271: 19530-19536. 10.1074/jbc.271.32.19530.CrossRefPubMed
18.
go back to reference Lucci A, Cho WI, Han TY, Giuliano AE, Morton DL, Cabot MC: Glucosylceramide: a marker for multiple-drug resistant cancers. Anticancer Res. 1998, 18: 475-480.PubMed Lucci A, Cho WI, Han TY, Giuliano AE, Morton DL, Cabot MC: Glucosylceramide: a marker for multiple-drug resistant cancers. Anticancer Res. 1998, 18: 475-480.PubMed
19.
go back to reference Yamashita T, Wada R, Sasaki T, Deng C, Bierfreund U, Sandhoff K, et al: A vital role for glycosphingolipid synthesis during development and differentiation. Proc Natl Acad Sci USA. 1999, 96: 9142-9147. 10.1073/pnas.96.16.9142.PubMedCentralCrossRefPubMed Yamashita T, Wada R, Sasaki T, Deng C, Bierfreund U, Sandhoff K, et al: A vital role for glycosphingolipid synthesis during development and differentiation. Proc Natl Acad Sci USA. 1999, 96: 9142-9147. 10.1073/pnas.96.16.9142.PubMedCentralCrossRefPubMed
20.
go back to reference Lavie Y, Cao H, Volner A, Lucci A, Han TY, Geffen V, et al: Agents that reverse multidrug resistance, tamoxifen, verapamil, and cyclosporin A, block glycosphingolipid metabolism by inhibiting ceramide glycosylation in human cancer cells. J Biol Chem. 1997, 272: 1682-1687. 10.1074/jbc.272.3.1682.CrossRefPubMed Lavie Y, Cao H, Volner A, Lucci A, Han TY, Geffen V, et al: Agents that reverse multidrug resistance, tamoxifen, verapamil, and cyclosporin A, block glycosphingolipid metabolism by inhibiting ceramide glycosylation in human cancer cells. J Biol Chem. 1997, 272: 1682-1687. 10.1074/jbc.272.3.1682.CrossRefPubMed
21.
go back to reference Liu YY, Gupta V, Patwardhan GA, Bhinge K, Zhao Y, Bao J, et al: Glucosylceramide synthase upregulates MDR1 expression in the regulation of cancer drug resistance through cSrc and beta-catenin signaling. Mol Cancer. 2010, 9: 145-PubMedCentralCrossRefPubMed Liu YY, Gupta V, Patwardhan GA, Bhinge K, Zhao Y, Bao J, et al: Glucosylceramide synthase upregulates MDR1 expression in the regulation of cancer drug resistance through cSrc and beta-catenin signaling. Mol Cancer. 2010, 9: 145-PubMedCentralCrossRefPubMed
Metadata
Title
GCS overexpression is associated with multidrug resistance of human HCT-8 colon cancer cells
Authors
Min Song
Weidong Zang
Baohua Zhang
Jing Cao
Guanrui Yang
Publication date
01-12-2012
Publisher
BioMed Central
Published in
Journal of Experimental & Clinical Cancer Research / Issue 1/2012
Electronic ISSN: 1756-9966
DOI
https://doi.org/10.1186/1756-9966-31-23

Other articles of this Issue 1/2012

Journal of Experimental & Clinical Cancer Research 1/2012 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine