Skip to main content
Top
Published in: Digestive Diseases and Sciences 1/2024

09-11-2023 | Gastric Cancer | Original Article

Porphyromonas gingivalis Lipopolysaccharide Damages Mucosal Barrier to Promote Gastritis-Associated Carcinogenesis

Authors: Masayoshi Oriuchi, Sujae Lee, Kaname Uno, Koichiro Sudo, Keisuke Kusano, Naoki Asano, Shin Hamada, Waku Hatta, Tomoyuki Koike, Akira Imatani, Atsushi Masamune

Published in: Digestive Diseases and Sciences | Issue 1/2024

Login to get access

Abstract

Background

Recent epidemiological studies suggested correlation between gastric cancer (GC) and periodontal disease.

Aims

We aim to clarify involvement of lipopolysaccharide of Porphyromonas gingivalis (Pg.), one of the red complex periodontal pathogens, in the GC development.

Methods

To evaluate barrier function of background mucosa against the stimulations, we applied biopsy samples from 76 patients with GC using a Ussing chamber system (UCs). K19-Wnt1/C2mE transgenic (Gan) mice and human GC cell-lines ± THP1-derived macrophage was applied to investigate the role of Pg. lipopolysaccharide in inflammation-associated carcinogenesis.

Results

In the UCs, Pg. lipopolysaccharide reduced the impedance of metaplastic and inflamed mucosa with increases in mRNA expression of toll-like receptor (TLR) 2, tumor necrosis factor (TNF) α, and apoptotic markers. In vitro, Pg. lipopolysaccharide promoted reactive oxidative stress (ROS)-related apoptosis as well as activated TLR2-β-catenin-signaling on MKN7, and it increased the TNFα production on macrophages, respectively. TNFα alone activated TLR2-β-catenin-signaling in MKN7, while it further increased ROS and TNFα in macrophages. Under coculture with macrophages isolated after stimulation with Pg. lipopolysaccharide, β-catenin-signaling in MKN7 was activated with an increase in supernatant TNFα concentration, both of which were decreased by adding a TNFα neutralization antibody into the supernatant. In Gan mice with 15-week oral administration of Pg. lipopolysaccharide, tumor enlargement with β-catenin-signaling activation were observed with an increase in TNFα with macrophage infiltration.

Conclusions

Local exposure of Pg. lipopolysaccharide may increase ROS on premalignant gastric mucosa to induce apoptosis-associated barrier dysfunction and to secrete TNFα from activated macrophages, and both stimulation of Pg. lipopolysaccharide and TNFα might activate TLR2-β-catenin-signaling in GC.

Graphical Abstract

Appendix
Available only for authorised users
Literature
1.
go back to reference Graham DY. Helicobacter pylori infection is the primary cause of gastric cancer. J Gastroenterol. 2000;12:90–97. Graham DY. Helicobacter pylori infection is the primary cause of gastric cancer. J Gastroenterol. 2000;12:90–97.
2.
go back to reference Uemura N, Okamoto S, Yamamoto S et al. Helicobacter pylori infection and the development of gastric cancer. N Engl J Med. 2001;345:784–789.PubMedCrossRef Uemura N, Okamoto S, Yamamoto S et al. Helicobacter pylori infection and the development of gastric cancer. N Engl J Med. 2001;345:784–789.PubMedCrossRef
3.
go back to reference Sepulveda AR, Graham DY. Role of Helicobacter pylori in gastric carcinogenesis. Gastroenterol Clin N Am. 2002;31:517–535.CrossRef Sepulveda AR, Graham DY. Role of Helicobacter pylori in gastric carcinogenesis. Gastroenterol Clin N Am. 2002;31:517–535.CrossRef
4.
go back to reference Brenner H, Arndt V, Stegmaier C et al. Is Helicobacter pylori infection a necessary condition for noncardia gastric cancer? Am J Epidemiol. 2004;159:252–258.PubMedCrossRef Brenner H, Arndt V, Stegmaier C et al. Is Helicobacter pylori infection a necessary condition for noncardia gastric cancer? Am J Epidemiol. 2004;159:252–258.PubMedCrossRef
5.
go back to reference Amieva M, Peek RM. Pathobiology of Helicobacter pylori-induced gastric cancer. Gastroenterology. 2016;150:64–78.PubMedCrossRef Amieva M, Peek RM. Pathobiology of Helicobacter pylori-induced gastric cancer. Gastroenterology. 2016;150:64–78.PubMedCrossRef
6.
go back to reference Take S, Mizuno M, Ishiki K et al. Risk of gastric cancer in the second decade of follow-up after Helicobacter pylori eradication. J Gastroenterol. 2020;55:281–288.PubMedCrossRef Take S, Mizuno M, Ishiki K et al. Risk of gastric cancer in the second decade of follow-up after Helicobacter pylori eradication. J Gastroenterol. 2020;55:281–288.PubMedCrossRef
7.
go back to reference Yan L, Chen Y, Chen F et al. Effect of Helicobacter pylori eradication on gastric cancer prevention: updated report from a randomized controlled trial with 26.5 years of follow-up. Gastroenterology. 2022;163:154–162.PubMedCrossRef Yan L, Chen Y, Chen F et al. Effect of Helicobacter pylori eradication on gastric cancer prevention: updated report from a randomized controlled trial with 26.5 years of follow-up. Gastroenterology. 2022;163:154–162.PubMedCrossRef
8.
go back to reference Iijima K, Koike T, Abe Y et al. Alteration of correlation between serum pepsinogen concentrations and gastric acid secretion after H. pylori eradication. J Gastroenterol. 2009;44:819–825.PubMedCrossRef Iijima K, Koike T, Abe Y et al. Alteration of correlation between serum pepsinogen concentrations and gastric acid secretion after H. pylori eradication. J Gastroenterol. 2009;44:819–825.PubMedCrossRef
9.
go back to reference Kodama M, Murakami K, Okimoto T et al. Ten-year prospective follow-up of histological changes at five points on the gastric mucosa as recommended by the updated Sydney system after Helicobacter pylori eradication. J Gastroenterol. 2012;47:394–403.PubMedCrossRef Kodama M, Murakami K, Okimoto T et al. Ten-year prospective follow-up of histological changes at five points on the gastric mucosa as recommended by the updated Sydney system after Helicobacter pylori eradication. J Gastroenterol. 2012;47:394–403.PubMedCrossRef
10.
go back to reference Tari A, Kitadai Y, Sumii M et al. Basis of decreased risk of gastric cancer in severe atrophic gastritis with eradication of Helicobacter pylori. Dig Dis Sci. 2007;52:232–239.PubMedCrossRef Tari A, Kitadai Y, Sumii M et al. Basis of decreased risk of gastric cancer in severe atrophic gastritis with eradication of Helicobacter pylori. Dig Dis Sci. 2007;52:232–239.PubMedCrossRef
11.
go back to reference Sekine H, Iijima K, Koike T et al. Regional differences in the recovery of gastric acid secretion after Helicobacter pylori eradication: evaluations with Congo red chromoendoscopy. Gastrointest Endosc. 2006;64:678–685.PubMedCrossRef Sekine H, Iijima K, Koike T et al. Regional differences in the recovery of gastric acid secretion after Helicobacter pylori eradication: evaluations with Congo red chromoendoscopy. Gastrointest Endosc. 2006;64:678–685.PubMedCrossRef
12.
go back to reference Li TH, Qin Y, Sham PC, Lau KS, Chu KM, Leung WK. Alterations in gastric microbiota after H. pylori eradication and in different histological stages of gastric carcinogenesis. Sci Rep. 2017;7:44935.PubMedPubMedCentralCrossRef Li TH, Qin Y, Sham PC, Lau KS, Chu KM, Leung WK. Alterations in gastric microbiota after H. pylori eradication and in different histological stages of gastric carcinogenesis. Sci Rep. 2017;7:44935.PubMedPubMedCentralCrossRef
13.
go back to reference Sung JJY, Coker OO, Chu E et al. Gastric microbes associated with gastric inflammation, atrophy and intestinal metaplasia 1 year after Helicobacter pylori eradication. Gut. 2020;69:1572–1580.PubMedCrossRef Sung JJY, Coker OO, Chu E et al. Gastric microbes associated with gastric inflammation, atrophy and intestinal metaplasia 1 year after Helicobacter pylori eradication. Gut. 2020;69:1572–1580.PubMedCrossRef
14.
go back to reference Lo C-H, Kwon S, Wang L et al. Periodontal disease, tooth loss, and risk of oesophageal and gastric adenocarcinoma: a prospective study. Gut. 2021;70:620–621.PubMedCrossRef Lo C-H, Kwon S, Wang L et al. Periodontal disease, tooth loss, and risk of oesophageal and gastric adenocarcinoma: a prospective study. Gut. 2021;70:620–621.PubMedCrossRef
15.
go back to reference Darveau RP. Periodontitis: a polymicrobial disruption of host homeostasis. Nat Rev Microbiol. 2010;8:481–490.PubMedCrossRef Darveau RP. Periodontitis: a polymicrobial disruption of host homeostasis. Nat Rev Microbiol. 2010;8:481–490.PubMedCrossRef
16.
17.
go back to reference Uno K, Kato K, Atsumi T et al. Toll-like receptor (TLR) 2 induced through TLR4 signaling initiated by Helicobacter pylori cooperatively amplifies iNOS induction in gastric epithelial cells. Am J Physiol Gastrointest Liver Physiol. 2007;293:G1004-1012.PubMedCrossRef Uno K, Kato K, Atsumi T et al. Toll-like receptor (TLR) 2 induced through TLR4 signaling initiated by Helicobacter pylori cooperatively amplifies iNOS induction in gastric epithelial cells. Am J Physiol Gastrointest Liver Physiol. 2007;293:G1004-1012.PubMedCrossRef
18.
go back to reference Cadamuro ACT, Rossi AFT, Matos Biselli-Périco J et al. Effect of Helicobacter pylori eradication on TLR2 and TLR4 expression in patients with gastric lesions. Mediat Inflamm. 2015;2015:481972.CrossRef Cadamuro ACT, Rossi AFT, Matos Biselli-Périco J et al. Effect of Helicobacter pylori eradication on TLR2 and TLR4 expression in patients with gastric lesions. Mediat Inflamm. 2015;2015:481972.CrossRef
19.
go back to reference Ogawa T, Asai Y, Makimura Y, Tamai R. Chemical structure and immunobiological activity of Porphyromonas gingivalis lipid A. Front Biosci. 2007;12:3795–3812.PubMedCrossRef Ogawa T, Asai Y, Makimura Y, Tamai R. Chemical structure and immunobiological activity of Porphyromonas gingivalis lipid A. Front Biosci. 2007;12:3795–3812.PubMedCrossRef
20.
go back to reference Darveau RP, Pham TT, Lemley K et al. Porphyromonas gingivalis lipopolysaccharide contains multiple lipid A species that functionally interact with both Toll-like receptors 2 and 4. Infect Immun. 2004;72:5041–5051.PubMedPubMedCentralCrossRef Darveau RP, Pham TT, Lemley K et al. Porphyromonas gingivalis lipopolysaccharide contains multiple lipid A species that functionally interact with both Toll-like receptors 2 and 4. Infect Immun. 2004;72:5041–5051.PubMedPubMedCentralCrossRef
21.
go back to reference Tye H, Kennedy CL, Najdovska M et al. STAT3-driven upregulation of TLR2 promotes gastric tumorigenesis independent of tumor inflammation. Cancer Cell. 2012;22:466–478.PubMedCrossRef Tye H, Kennedy CL, Najdovska M et al. STAT3-driven upregulation of TLR2 promotes gastric tumorigenesis independent of tumor inflammation. Cancer Cell. 2012;22:466–478.PubMedCrossRef
22.
go back to reference West AC, Tang K, Tye H et al. Identification of a TLR2-regulated gene signature associated with tumor cell growth in gastric cancer. Oncogene. 2017;36:5134–5144.PubMedCrossRef West AC, Tang K, Tye H et al. Identification of a TLR2-regulated gene signature associated with tumor cell growth in gastric cancer. Oncogene. 2017;36:5134–5144.PubMedCrossRef
23.
go back to reference Oshima H, Hioki K, Popivanova BK et al. Prostaglandin E2 signaling and bacterial infection recruit tumor-promoting macrophages to mouse gastric tumors. Gastroenterology. 2011;140:596–607.PubMedCrossRef Oshima H, Hioki K, Popivanova BK et al. Prostaglandin E2 signaling and bacterial infection recruit tumor-promoting macrophages to mouse gastric tumors. Gastroenterology. 2011;140:596–607.PubMedCrossRef
24.
go back to reference Oshima H, Matsunaga A, Fujimura T et al. Carcinogenesis in mouse stomach by simultaneous activation of the Wnt signaling and prostaglandin E2 pathway. Gastroenterology. 2006;131:1086–1095.PubMedCrossRef Oshima H, Matsunaga A, Fujimura T et al. Carcinogenesis in mouse stomach by simultaneous activation of the Wnt signaling and prostaglandin E2 pathway. Gastroenterology. 2006;131:1086–1095.PubMedCrossRef
25.
go back to reference Zhou Q, Desta T, Fenton M, Graves DT, Amar S. Cytokine profiling of macrophages exposed to Porphyromonas gingivalis, its lipopolysaccharide, or its FimA protein. Infect Immun. 2005;73:935–943.PubMedPubMedCentralCrossRef Zhou Q, Desta T, Fenton M, Graves DT, Amar S. Cytokine profiling of macrophages exposed to Porphyromonas gingivalis, its lipopolysaccharide, or its FimA protein. Infect Immun. 2005;73:935–943.PubMedPubMedCentralCrossRef
26.
go back to reference Holden JA, Attard TJ, Laughton KM, Mansell A, O’Brien-Simpson NM, Reynolds EC. Porphyromonas gingivalis lipopolysaccharide weakly activates M1 and M2 polarized mouse macrophages but induces inflammatory cytokines. Infect Immun. 2014;82:4190–4203.PubMedPubMedCentralCrossRef Holden JA, Attard TJ, Laughton KM, Mansell A, O’Brien-Simpson NM, Reynolds EC. Porphyromonas gingivalis lipopolysaccharide weakly activates M1 and M2 polarized mouse macrophages but induces inflammatory cytokines. Infect Immun. 2014;82:4190–4203.PubMedPubMedCentralCrossRef
27.
go back to reference Kondo S, Miyake M. Simultaneous prediction of intestinal absorption and metabolism using the mini-Ussing chamber system. J Pharm Sci. 2019;108:763–769.PubMedCrossRef Kondo S, Miyake M. Simultaneous prediction of intestinal absorption and metabolism using the mini-Ussing chamber system. J Pharm Sci. 2019;108:763–769.PubMedCrossRef
28.
go back to reference Dixon MF, Genta RM, Yardley JH, Correa P. Classification and grading of gastritis. The updated Sydney System. International Workshop on the Histopathology of Gastritis, Houston 1994. Am J Surg Pathol. 1996;20:1161–1181.PubMedCrossRef Dixon MF, Genta RM, Yardley JH, Correa P. Classification and grading of gastritis. The updated Sydney System. International Workshop on the Histopathology of Gastritis, Houston 1994. Am J Surg Pathol. 1996;20:1161–1181.PubMedCrossRef
29.
go back to reference Bertazza L, Mocellin S. The dual role of tumor necrosis factor in cancer biology. Curr Med Chem 2010;17:3337–3352.PubMedCrossRef Bertazza L, Mocellin S. The dual role of tumor necrosis factor in cancer biology. Curr Med Chem 2010;17:3337–3352.PubMedCrossRef
30.
go back to reference Liu Z, Brooks RS, Ciappio ED et al. Diet-induced obesity elevates colonic TNF-α in mice and is accompanied by an activation of Wnt signaling: a mechanism for obesity-associated colorectal cancer. J Nutr Biochem. 2012;23:1207–1213.PubMedCrossRef Liu Z, Brooks RS, Ciappio ED et al. Diet-induced obesity elevates colonic TNF-α in mice and is accompanied by an activation of Wnt signaling: a mechanism for obesity-associated colorectal cancer. J Nutr Biochem. 2012;23:1207–1213.PubMedCrossRef
31.
go back to reference Guo C, Kim SJ, Frederick AM et al. Genetic ablation of tumor necrosis factor-alpha attenuates the promoted colonic Wnt signaling in high fat diet-induced obese mice. J Nutr Biochem. 2020;77:108302.PubMedCrossRef Guo C, Kim SJ, Frederick AM et al. Genetic ablation of tumor necrosis factor-alpha attenuates the promoted colonic Wnt signaling in high fat diet-induced obese mice. J Nutr Biochem. 2020;77:108302.PubMedCrossRef
32.
go back to reference Kim J, Park C, Kim KH et al. Single-cell analysis of gastric pre-cancerous and cancer lesions reveals cell lineage diversity and intratumoral heterogeneity. npj Precis Oncol. 2022;6:9.PubMedPubMedCentralCrossRef Kim J, Park C, Kim KH et al. Single-cell analysis of gastric pre-cancerous and cancer lesions reveals cell lineage diversity and intratumoral heterogeneity. npj Precis Oncol. 2022;6:9.PubMedPubMedCentralCrossRef
33.
go back to reference Tsuboi A, Ohsawa S, Umetsu D et al. Competition for space is controlled by apoptosis-induced change of local epithelial topology. Curr Biol. 2018;28:2115–2128.PubMedCrossRef Tsuboi A, Ohsawa S, Umetsu D et al. Competition for space is controlled by apoptosis-induced change of local epithelial topology. Curr Biol. 2018;28:2115–2128.PubMedCrossRef
34.
go back to reference Salazar CR, Francois F, Li Y et al. Association between oral health and gastric precancerous lesions. Carcinogenesis. 2012;33:399–403.PubMedCrossRef Salazar CR, Francois F, Li Y et al. Association between oral health and gastric precancerous lesions. Carcinogenesis. 2012;33:399–403.PubMedCrossRef
35.
36.
37.
go back to reference Kato T, Yamazaki K, Nakajima M et al. Oral administration of Porphyromonas gingivalis alters the gut microbiome and serum metabolome. mSphere. 2018;3:e00460-18.PubMedPubMedCentralCrossRef Kato T, Yamazaki K, Nakajima M et al. Oral administration of Porphyromonas gingivalis alters the gut microbiome and serum metabolome. mSphere. 2018;3:e00460-18.PubMedPubMedCentralCrossRef
38.
go back to reference Arimatsu K, Yamada H, Miyazawa H et al. Oral pathobiont induces systemic inflammation and metabolic changes associated with alteration of gut microbiota. Sci Rep. 2014;4:4828.PubMedPubMedCentralCrossRef Arimatsu K, Yamada H, Miyazawa H et al. Oral pathobiont induces systemic inflammation and metabolic changes associated with alteration of gut microbiota. Sci Rep. 2014;4:4828.PubMedPubMedCentralCrossRef
39.
go back to reference Kageyama S, Takeshita T, Takeuchi K et al. Characteristics of the salivary microbiota in patients with various digestive tract cancers. Front Microbiol. 2019;10:1780.PubMedPubMedCentralCrossRef Kageyama S, Takeshita T, Takeuchi K et al. Characteristics of the salivary microbiota in patients with various digestive tract cancers. Front Microbiol. 2019;10:1780.PubMedPubMedCentralCrossRef
40.
go back to reference Yuan X, Liu Y, Kong J et al. Different frequencies of Porphyromonas gingivalis infection in cancers of the upper digestive tract. Cancer Lett. 2017;404:1–7.PubMedCrossRef Yuan X, Liu Y, Kong J et al. Different frequencies of Porphyromonas gingivalis infection in cancers of the upper digestive tract. Cancer Lett. 2017;404:1–7.PubMedCrossRef
41.
go back to reference Sano M, Uchida T, Igarashi M et al. Increase in the lipopolysaccharide activity and accumulation of gram-negative bacteria in the stomach with low acidity. Clin Transl Gastroenterol. 2020;11:e00190.PubMedPubMedCentralCrossRef Sano M, Uchida T, Igarashi M et al. Increase in the lipopolysaccharide activity and accumulation of gram-negative bacteria in the stomach with low acidity. Clin Transl Gastroenterol. 2020;11:e00190.PubMedPubMedCentralCrossRef
42.
go back to reference Zhang D, Chen L, Li S, Gu Z, Yan J. Lipopolysaccharide of Porphyromonas gingivalis induces IL-1β, TNF-α and IL-6 production by THP-1 cells in a way different from that of Escherichia coli LPS. Innate Immun. 2008;14:99–107.CrossRef Zhang D, Chen L, Li S, Gu Z, Yan J. Lipopolysaccharide of Porphyromonas gingivalis induces IL-1β, TNF-α and IL-6 production by THP-1 cells in a way different from that of Escherichia coli LPS. Innate Immun. 2008;14:99–107.CrossRef
43.
go back to reference Mandell L, Moran AP, Cocchiarella A et al. Intact gram-negative Helicobacter pylori, Helicobacter felis, and Helicobacter hepaticus bacteria activate innate immunity via Toll-like receptor 2 but not Toll-like receptor 4. Infect Immun. 2004;72:6446–6454.PubMedPubMedCentralCrossRef Mandell L, Moran AP, Cocchiarella A et al. Intact gram-negative Helicobacter pylori, Helicobacter felis, and Helicobacter hepaticus bacteria activate innate immunity via Toll-like receptor 2 but not Toll-like receptor 4. Infect Immun. 2004;72:6446–6454.PubMedPubMedCentralCrossRef
44.
go back to reference Zhao DR, Jiang YS, Sun JY, Li HH, Luo XL, Zhao MM. Anti-inflammatory mechanism involved in 4-ethylguaiacol-mediated inhibition of LPS-Induced inflammation in THP-1 cells. J Agric Food Chem. 2019;67:1230–1243.PubMedCrossRef Zhao DR, Jiang YS, Sun JY, Li HH, Luo XL, Zhao MM. Anti-inflammatory mechanism involved in 4-ethylguaiacol-mediated inhibition of LPS-Induced inflammation in THP-1 cells. J Agric Food Chem. 2019;67:1230–1243.PubMedCrossRef
45.
go back to reference Kamata H, Honda S, Maeda S, Chang L, Hirata H, Karin M. Reactive oxygen species promote TNFα-induced death and sustained JNK activation by inhibiting MAP kinase phosphatases. Cell. 2005;120:649–661.PubMedCrossRef Kamata H, Honda S, Maeda S, Chang L, Hirata H, Karin M. Reactive oxygen species promote TNFα-induced death and sustained JNK activation by inhibiting MAP kinase phosphatases. Cell. 2005;120:649–661.PubMedCrossRef
46.
go back to reference Arcone R, Palma M, Pagliara V, Graziani G, Masullo M, Nardone G. Green tea polyphenols affect invasiveness of human gastric MKN-28 cells by inhibition of LPS or TNF-α induced Matrix Metalloproteinase-9/2. Biochim Open. 2016;3:56–63.PubMedPubMedCentralCrossRef Arcone R, Palma M, Pagliara V, Graziani G, Masullo M, Nardone G. Green tea polyphenols affect invasiveness of human gastric MKN-28 cells by inhibition of LPS or TNF-α induced Matrix Metalloproteinase-9/2. Biochim Open. 2016;3:56–63.PubMedPubMedCentralCrossRef
47.
go back to reference Oguma K, Oshima H, Aoki M et al. Activated macrophages promote Wnt signaling through tumor necrosis factor-alpha in gastric tumor cells. EMBO J. 2008;27:1671–1681.PubMedPubMedCentralCrossRef Oguma K, Oshima H, Aoki M et al. Activated macrophages promote Wnt signaling through tumor necrosis factor-alpha in gastric tumor cells. EMBO J. 2008;27:1671–1681.PubMedPubMedCentralCrossRef
48.
go back to reference Echizen K, Horiuchi K, Aoki Y et al. NFκB-induced NOX1 activation promotes gastric tumorigenesis through the expansion of SOX2-positive epithelial cells. Oncogene. 2019;38:4250–4263.PubMedPubMedCentralCrossRef Echizen K, Horiuchi K, Aoki Y et al. NFκB-induced NOX1 activation promotes gastric tumorigenesis through the expansion of SOX2-positive epithelial cells. Oncogene. 2019;38:4250–4263.PubMedPubMedCentralCrossRef
49.
go back to reference Brenneman KE, Willingham C, Kilbourne JA, Curtiss R 3rd, Roland KL. A low gastric pH mouse model to evaluate live attenuated bacterial vaccines. PLoS ONE. 2014;29:e87411.CrossRef Brenneman KE, Willingham C, Kilbourne JA, Curtiss R 3rd, Roland KL. A low gastric pH mouse model to evaluate live attenuated bacterial vaccines. PLoS ONE. 2014;29:e87411.CrossRef
Metadata
Title
Porphyromonas gingivalis Lipopolysaccharide Damages Mucosal Barrier to Promote Gastritis-Associated Carcinogenesis
Authors
Masayoshi Oriuchi
Sujae Lee
Kaname Uno
Koichiro Sudo
Keisuke Kusano
Naoki Asano
Shin Hamada
Waku Hatta
Tomoyuki Koike
Akira Imatani
Atsushi Masamune
Publication date
09-11-2023
Publisher
Springer US
Published in
Digestive Diseases and Sciences / Issue 1/2024
Print ISSN: 0163-2116
Electronic ISSN: 1573-2568
DOI
https://doi.org/10.1007/s10620-023-08142-6

Other articles of this Issue 1/2024

Digestive Diseases and Sciences 1/2024 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.