Skip to main content
Top
Published in: European Journal of Medical Research 1/2023

Open Access 01-12-2023 | Gastric Cancer | Review

LncRNA MAFG-AS1 is involved in human cancer progression

Authors: Penghui Li, Xiao Ma, Xinyu Gu

Published in: European Journal of Medical Research | Issue 1/2023

Login to get access

Abstract

Long noncoding RNAs (lncRNAs) refer to a type of non-protein-coding transcript of more than 200 nucleotides. LncRNAs play fundamental roles in disease development and progression, and lncRNAs are dysregulated in many pathophysiological processes. Thus, lncRNAs may have potential value in clinical applications. The lncRNA, MAF BZIP Transcription Factor G (MAFG)-AS1, is dysregulated in several cancer, including breast cancer, lung cancer, liver cancer, bladder cancer, colorectal cancer, gastric cancer, esophagus cancer, prostate cancer, pancreatic cancer, ovarian cancer, and glioma. Altered MAFG-AS1 levels are also associated with diverse clinical characteristics and patient outcomes. Mechanistically, MAFG-AS1 mediates a variety of cellular processes via the regulation of target gene expression. Therefore, the diagnostic, prognostic, and therapeutic aspects of MAFG-AS1 have been widely explored. In this review, we discuss the expression, major roles, and molecular mechanisms of MAFG-AS1, the relationship between MAFG-AS1 and clinical features of diseases, and the clinical applications of MAFG-AS1.
Literature
1.
2.
go back to reference Jogalekar MP, et al. CAR T-Cell-Based gene therapy for cancers: new perspectives, challenges, and clinical developments. Front Immunol. 2022;13: 925985.PubMedPubMedCentralCrossRef Jogalekar MP, et al. CAR T-Cell-Based gene therapy for cancers: new perspectives, challenges, and clinical developments. Front Immunol. 2022;13: 925985.PubMedPubMedCentralCrossRef
3.
4.
5.
go back to reference Pang W, et al. Noninvasive and real-time monitoring of Au nanoparticle promoted cancer metastasis using in vivo flow cytometry. Biomed Opt Express. 2021;12(4):1846–57.PubMedPubMedCentralCrossRef Pang W, et al. Noninvasive and real-time monitoring of Au nanoparticle promoted cancer metastasis using in vivo flow cytometry. Biomed Opt Express. 2021;12(4):1846–57.PubMedPubMedCentralCrossRef
6.
go back to reference Bernacchioni C, et al. NMR metabolomics highlights sphingosine kinase-1 as a new molecular switch in the orchestration of aberrant metabolic phenotype in cancer cells. Mol Oncol. 2017;11(5):517–33.PubMedPubMedCentralCrossRef Bernacchioni C, et al. NMR metabolomics highlights sphingosine kinase-1 as a new molecular switch in the orchestration of aberrant metabolic phenotype in cancer cells. Mol Oncol. 2017;11(5):517–33.PubMedPubMedCentralCrossRef
7.
go back to reference Paananen J, Fortino V. An omics perspective on drug target discovery platforms. Brief Bioinform. 2020;21(6):1937–53.PubMedCrossRef Paananen J, Fortino V. An omics perspective on drug target discovery platforms. Brief Bioinform. 2020;21(6):1937–53.PubMedCrossRef
8.
go back to reference Abramczyk H, et al. Aberrant protein phosphorylation in cancer by using raman biomarkers. Cancers (Basel). 2019;11(12):2017.PubMedCrossRef Abramczyk H, et al. Aberrant protein phosphorylation in cancer by using raman biomarkers. Cancers (Basel). 2019;11(12):2017.PubMedCrossRef
10.
go back to reference Soini EJO, Martikainen JA, Nousiainen T. Treatment of follicular non-Hodgkin’s lymphoma with or without rituximab: cost-effectiveness and value of information based on a 5-year follow-up. Ann Oncol. 2011;22(5):1189–97.PubMedCrossRef Soini EJO, Martikainen JA, Nousiainen T. Treatment of follicular non-Hodgkin’s lymphoma with or without rituximab: cost-effectiveness and value of information based on a 5-year follow-up. Ann Oncol. 2011;22(5):1189–97.PubMedCrossRef
11.
go back to reference Wu M, et al. Improvement of the anticancer efficacy of PD-1/PD-L1 blockade via combination therapy and PD-L1 regulation. J Hematol Oncol. 2022;15(1):24.PubMedPubMedCentralCrossRef Wu M, et al. Improvement of the anticancer efficacy of PD-1/PD-L1 blockade via combination therapy and PD-L1 regulation. J Hematol Oncol. 2022;15(1):24.PubMedPubMedCentralCrossRef
12.
go back to reference Papi A, et al. Nuclear receptors agonists exert opposing effects on the inflammation dependent survival of breast cancer stem cells. Cell Death Differ. 2012;19(7):1208–19.PubMedPubMedCentralCrossRef Papi A, et al. Nuclear receptors agonists exert opposing effects on the inflammation dependent survival of breast cancer stem cells. Cell Death Differ. 2012;19(7):1208–19.PubMedPubMedCentralCrossRef
13.
14.
go back to reference Mahajna S, et al. In vitro evaluation of chemically analyzed hypericum triquetrifolium extract efficacy in apoptosis induction and cell cycle arrest of the HCT-116 colon cancer cell line. Molecules. 2019;24(22):4139.PubMedPubMedCentralCrossRef Mahajna S, et al. In vitro evaluation of chemically analyzed hypericum triquetrifolium extract efficacy in apoptosis induction and cell cycle arrest of the HCT-116 colon cancer cell line. Molecules. 2019;24(22):4139.PubMedPubMedCentralCrossRef
15.
go back to reference Wassef M, Michaud A, Margueron R. Association between EZH2 expression, silencing of tumor suppressors and disease outcome in solid tumors. Cell Cycle. 2016;15(17):2256–62.PubMedPubMedCentralCrossRef Wassef M, Michaud A, Margueron R. Association between EZH2 expression, silencing of tumor suppressors and disease outcome in solid tumors. Cell Cycle. 2016;15(17):2256–62.PubMedPubMedCentralCrossRef
17.
go back to reference Dawood M, Ooko E, Efferth T. Collateral sensitivity of parthenolide via NF-κB and HIF-α inhibition and epigenetic changes in drug-resistant cancer cell lines. Front Pharmacol. 2019;10:542.PubMedPubMedCentralCrossRef Dawood M, Ooko E, Efferth T. Collateral sensitivity of parthenolide via NF-κB and HIF-α inhibition and epigenetic changes in drug-resistant cancer cell lines. Front Pharmacol. 2019;10:542.PubMedPubMedCentralCrossRef
18.
go back to reference Deng R, et al. BAP1 suppresses prostate cancer progression by deubiquitinating and stabilizing PTEN. Mol Oncol. 2021;15(1):279–98.PubMedCrossRef Deng R, et al. BAP1 suppresses prostate cancer progression by deubiquitinating and stabilizing PTEN. Mol Oncol. 2021;15(1):279–98.PubMedCrossRef
20.
go back to reference Xue C, et al. The mechanism underlying the ncRNA dysregulation pattern in hepatocellular carcinoma and its tumor microenvironment. Front Immunol. 2022;13: 847728.PubMedPubMedCentralCrossRef Xue C, et al. The mechanism underlying the ncRNA dysregulation pattern in hepatocellular carcinoma and its tumor microenvironment. Front Immunol. 2022;13: 847728.PubMedPubMedCentralCrossRef
21.
22.
go back to reference Xue C, et al. Progress and assessment of lncRNA DGCR5 in malignant phenotype and immune infiltration of human cancers. Am J Cancer Res. 2021;11(1):1–13.PubMedPubMedCentral Xue C, et al. Progress and assessment of lncRNA DGCR5 in malignant phenotype and immune infiltration of human cancers. Am J Cancer Res. 2021;11(1):1–13.PubMedPubMedCentral
23.
go back to reference Okazaki Y, et al. Analysis of the mouse transcriptome based on functional annotation of 60,770 full-length cDNAs. Nature. 2002;420(6915):563–73.PubMedCrossRef Okazaki Y, et al. Analysis of the mouse transcriptome based on functional annotation of 60,770 full-length cDNAs. Nature. 2002;420(6915):563–73.PubMedCrossRef
24.
go back to reference Mercer TR, Dinger ME, Mattick JS. Long non-coding RNAs: insights into functions. Nat Rev Genet. 2009;10(3):155–9.PubMedCrossRef Mercer TR, Dinger ME, Mattick JS. Long non-coding RNAs: insights into functions. Nat Rev Genet. 2009;10(3):155–9.PubMedCrossRef
26.
go back to reference Aravin AA, et al. The small RNA profile during Drosophila melanogaster development. Dev Cell. 2003;5(2):337–50.PubMedCrossRef Aravin AA, et al. The small RNA profile during Drosophila melanogaster development. Dev Cell. 2003;5(2):337–50.PubMedCrossRef
27.
go back to reference Ponting CP, Oliver PL, Reik W. Evolution and functions of long noncoding RNAs. Cell. 2009;136(4):629–41.PubMedCrossRef Ponting CP, Oliver PL, Reik W. Evolution and functions of long noncoding RNAs. Cell. 2009;136(4):629–41.PubMedCrossRef
30.
go back to reference Liu C, et al. NONCODE: an integrated knowledge database of non-coding RNAs. Nucleic Acids Res. 2005;33(1):D112–5.PubMed Liu C, et al. NONCODE: an integrated knowledge database of non-coding RNAs. Nucleic Acids Res. 2005;33(1):D112–5.PubMed
31.
32.
go back to reference Li D, et al. LncRNA, important player in bone development and disease. Endocr Metab Immune Disord Drug Targets. 2020;20(1):50–66.PubMedCrossRef Li D, et al. LncRNA, important player in bone development and disease. Endocr Metab Immune Disord Drug Targets. 2020;20(1):50–66.PubMedCrossRef
34.
go back to reference Yang Z, et al. LncRNA: shedding light on mechanisms and opportunities in fibrosis and aging. Ageing Res Rev. 2019;52:17–31.PubMedCrossRef Yang Z, et al. LncRNA: shedding light on mechanisms and opportunities in fibrosis and aging. Ageing Res Rev. 2019;52:17–31.PubMedCrossRef
35.
go back to reference Zhu J, et al. Function of lncRNAs and approaches to lncRNA-protein interactions. Sci China Life Sci. 2013;56(10):876–85.PubMedCrossRef Zhu J, et al. Function of lncRNAs and approaches to lncRNA-protein interactions. Sci China Life Sci. 2013;56(10):876–85.PubMedCrossRef
38.
go back to reference Fatica A, Bozzoni I. Long non-coding RNAs: new players in cell differentiation and development. Nat Rev Genet. 2014;15(1):7–21.PubMedCrossRef Fatica A, Bozzoni I. Long non-coding RNAs: new players in cell differentiation and development. Nat Rev Genet. 2014;15(1):7–21.PubMedCrossRef
39.
go back to reference Li Y, et al. Long non-coding RNA SNHG5 promotes human hepatocellular carcinoma progression by regulating miR-26a-5p/GSK3β signal pathway. Cell Death Dis. 2018;9(9):888.PubMedPubMedCentralCrossRef Li Y, et al. Long non-coding RNA SNHG5 promotes human hepatocellular carcinoma progression by regulating miR-26a-5p/GSK3β signal pathway. Cell Death Dis. 2018;9(9):888.PubMedPubMedCentralCrossRef
40.
go back to reference Wu B, et al. Novel three-lncRNA signature predicts survival in patients with pancreatic cancer. Oncol Rep. 2018;40(6):3427–37.PubMedPubMedCentral Wu B, et al. Novel three-lncRNA signature predicts survival in patients with pancreatic cancer. Oncol Rep. 2018;40(6):3427–37.PubMedPubMedCentral
42.
go back to reference Sun CC, et al. FOXC1-mediated LINC00301 facilitates tumor progression and triggers an immune-suppressing microenvironment in non-small cell lung cancer by regulating the HIF1α pathway. Genome Med. 2020;12(1):77.PubMedPubMedCentralCrossRef Sun CC, et al. FOXC1-mediated LINC00301 facilitates tumor progression and triggers an immune-suppressing microenvironment in non-small cell lung cancer by regulating the HIF1α pathway. Genome Med. 2020;12(1):77.PubMedPubMedCentralCrossRef
43.
go back to reference Gao Z, et al. LncRNA MAFG-AS1 deregulated in breast cancer affects autophagy and progression of breast cancer by interacting with miR-3612 and FKBP4 invitro. Biochem Biophys Res Commun. 2022;616:95–103.PubMedCrossRef Gao Z, et al. LncRNA MAFG-AS1 deregulated in breast cancer affects autophagy and progression of breast cancer by interacting with miR-3612 and FKBP4 invitro. Biochem Biophys Res Commun. 2022;616:95–103.PubMedCrossRef
44.
go back to reference Di S, et al. Long non-coding RNA MAFG-AS1 promotes proliferation and metastasis of breast cancer by modulating STC2 pathway. Cell Death Discov. 2022;8(1):249.PubMedPubMedCentralCrossRef Di S, et al. Long non-coding RNA MAFG-AS1 promotes proliferation and metastasis of breast cancer by modulating STC2 pathway. Cell Death Discov. 2022;8(1):249.PubMedPubMedCentralCrossRef
45.
go back to reference Dai J, et al. LncRNA MAFG-AS1 affects the tumorigenesis of breast cancer cells via the miR-574-5p/SOD2 axis. Biochem Biophys Res Commun. 2021;560:119–25.PubMedCrossRef Dai J, et al. LncRNA MAFG-AS1 affects the tumorigenesis of breast cancer cells via the miR-574-5p/SOD2 axis. Biochem Biophys Res Commun. 2021;560:119–25.PubMedCrossRef
46.
go back to reference Jia H, et al. Regulatory effect of the MAFG-AS1/miR-150-5p/MYB axis on the proliferation and migration of breast cancer cells. Int J Oncol. 2021;58(1):33–44.PubMedCrossRef Jia H, et al. Regulatory effect of the MAFG-AS1/miR-150-5p/MYB axis on the proliferation and migration of breast cancer cells. Int J Oncol. 2021;58(1):33–44.PubMedCrossRef
47.
go back to reference Ding M, et al. Long non-coding RNA MAFG-AS1 knockdown blocks malignant progression in breast cancer cells by inactivating JAK2/STAT3 signaling pathway via MAFG-AS1/miR-3196/TFAP2A axis. Int J Clin Exp Pathol. 2020;13(10):2455–73.PubMedPubMedCentral Ding M, et al. Long non-coding RNA MAFG-AS1 knockdown blocks malignant progression in breast cancer cells by inactivating JAK2/STAT3 signaling pathway via MAFG-AS1/miR-3196/TFAP2A axis. Int J Clin Exp Pathol. 2020;13(10):2455–73.PubMedPubMedCentral
48.
go back to reference Feng J, et al. Cross-talk between the ER pathway and the lncRNA MAFG-AS1/miR-339-5p/ CDK2 axis promotes progression of ER+ breast cancer and confers tamoxifen resistance. Aging (Albany NY). 2020;12(20):20658–83.PubMedCrossRef Feng J, et al. Cross-talk between the ER pathway and the lncRNA MAFG-AS1/miR-339-5p/ CDK2 axis promotes progression of ER+ breast cancer and confers tamoxifen resistance. Aging (Albany NY). 2020;12(20):20658–83.PubMedCrossRef
49.
go back to reference Li H, et al. LncRNA MAFG-AS1 promotes the aggressiveness of breast carcinoma through regulating miR-339-5p/MMP15. Eur Rev Med Pharmacol Sci. 2019;23(7):2838–46.PubMed Li H, et al. LncRNA MAFG-AS1 promotes the aggressiveness of breast carcinoma through regulating miR-339-5p/MMP15. Eur Rev Med Pharmacol Sci. 2019;23(7):2838–46.PubMed
50.
go back to reference Wu Q, Jiang J. LncRNA MAFG-AS1 promotes lung adenocarcinoma cell migration and invasion by targeting miR-3196 and regulating SOX12 expression. Mol Biotechnol. 2022;64(9):970–83.PubMedCrossRef Wu Q, Jiang J. LncRNA MAFG-AS1 promotes lung adenocarcinoma cell migration and invasion by targeting miR-3196 and regulating SOX12 expression. Mol Biotechnol. 2022;64(9):970–83.PubMedCrossRef
51.
go back to reference Sui Y, et al. LncRNA MAFG-AS1 boosts the proliferation of lung adenocarcinoma cells via regulating miR-744-5p/MAFG axis. Eur J Pharmacol. 2019;859: 172465.PubMedCrossRef Sui Y, et al. LncRNA MAFG-AS1 boosts the proliferation of lung adenocarcinoma cells via regulating miR-744-5p/MAFG axis. Eur J Pharmacol. 2019;859: 172465.PubMedCrossRef
52.
go back to reference Jia YC, et al. LncRNA MAFG-AS1 facilitates the migration and invasion of NSCLC cell via sponging miR-339-5p from MMP15. Cell Biol Int. 2019;43(4):384–93.PubMedCrossRef Jia YC, et al. LncRNA MAFG-AS1 facilitates the migration and invasion of NSCLC cell via sponging miR-339-5p from MMP15. Cell Biol Int. 2019;43(4):384–93.PubMedCrossRef
53.
go back to reference Huang K, et al. Construction of a ceRNA network and a genomic-clinicopathologic nomogram to predict survival for HBV-related HCC. Hum Cell. 2021;34(6):1830–42.PubMedCrossRef Huang K, et al. Construction of a ceRNA network and a genomic-clinicopathologic nomogram to predict survival for HBV-related HCC. Hum Cell. 2021;34(6):1830–42.PubMedCrossRef
54.
go back to reference Chen T, Huang B, Pan Y. Long NON-coding RNA MAFG-AS1 promotes cell proliferation, migration, and EMT by miR-3196/STRN4 in drug-resistant cells of liver cancer. Front Cell Dev Biol. 2021;9: 688603.PubMedPubMedCentralCrossRef Chen T, Huang B, Pan Y. Long NON-coding RNA MAFG-AS1 promotes cell proliferation, migration, and EMT by miR-3196/STRN4 in drug-resistant cells of liver cancer. Front Cell Dev Biol. 2021;9: 688603.PubMedPubMedCentralCrossRef
55.
go back to reference Zhang F, et al. HBx-upregulated MAFG-AS1 promotes cell proliferation and migration of hepatoma cells by enhancing MAFG expression and stabilizing nonmuscle myosin IIA. Faseb j. 2021;35(5): e21529.PubMedCrossRef Zhang F, et al. HBx-upregulated MAFG-AS1 promotes cell proliferation and migration of hepatoma cells by enhancing MAFG expression and stabilizing nonmuscle myosin IIA. Faseb j. 2021;35(5): e21529.PubMedCrossRef
56.
go back to reference Hu ZQ, et al. Long noncoding RNA MAFG-AS1 facilitates the progression of hepatocellular carcinoma via targeting miR-3196/OTX1 axis. Eur Rev Med Pharmacol Sci. 2020;24(23):12131–43.PubMed Hu ZQ, et al. Long noncoding RNA MAFG-AS1 facilitates the progression of hepatocellular carcinoma via targeting miR-3196/OTX1 axis. Eur Rev Med Pharmacol Sci. 2020;24(23):12131–43.PubMed
57.
go back to reference Du W, et al. Identification of prognostic biomarkers of hepatocellular carcinoma via long noncoding RNA expression and copy number alterations. Epigenomics. 2020;12(15):1303–15.PubMedCrossRef Du W, et al. Identification of prognostic biomarkers of hepatocellular carcinoma via long noncoding RNA expression and copy number alterations. Epigenomics. 2020;12(15):1303–15.PubMedCrossRef
58.
go back to reference Ouyang H, et al. Long noncoding RNA MAFG-AS1 promotes proliferation, migration and invasion of hepatocellular carcinoma cells through downregulation of miR-6852. Exp Ther Med. 2019;18(4):2547–53.PubMedPubMedCentral Ouyang H, et al. Long noncoding RNA MAFG-AS1 promotes proliferation, migration and invasion of hepatocellular carcinoma cells through downregulation of miR-6852. Exp Ther Med. 2019;18(4):2547–53.PubMedPubMedCentral
59.
go back to reference Tang C, et al. LncRNA MAFG-AS1 regulates miR-125b-5p/SphK1 axis to promote the proliferation, migration, and invasion of bladder cancer cells. Hum Cell. 2021;34(2):588–97.PubMedPubMedCentralCrossRef Tang C, et al. LncRNA MAFG-AS1 regulates miR-125b-5p/SphK1 axis to promote the proliferation, migration, and invasion of bladder cancer cells. Hum Cell. 2021;34(2):588–97.PubMedPubMedCentralCrossRef
60.
go back to reference Xiao M, et al. MAFG-AS1 promotes tumor progression via regulation of the HuR/PTBP1 axis in bladder urothelial carcinoma. Clin Transl Med. 2020;10(8): e241.PubMedPubMedCentralCrossRef Xiao M, et al. MAFG-AS1 promotes tumor progression via regulation of the HuR/PTBP1 axis in bladder urothelial carcinoma. Clin Transl Med. 2020;10(8): e241.PubMedPubMedCentralCrossRef
61.
go back to reference Qing L, et al. Extracellular matrix-related Six-lncRNA signature as a novel prognostic biomarker for bladder cancer. Onco Targets Ther. 2020;13:12521–38.PubMedPubMedCentralCrossRef Qing L, et al. Extracellular matrix-related Six-lncRNA signature as a novel prognostic biomarker for bladder cancer. Onco Targets Ther. 2020;13:12521–38.PubMedPubMedCentralCrossRef
62.
go back to reference Li D, et al. LncRNA MAFG-AS1 promotes the progression of bladder cancer by targeting the miR-143-3p/COX-2 axis. Pathobiology. 2020;87(6):345–55.PubMedCrossRef Li D, et al. LncRNA MAFG-AS1 promotes the progression of bladder cancer by targeting the miR-143-3p/COX-2 axis. Pathobiology. 2020;87(6):345–55.PubMedCrossRef
63.
go back to reference Sun X, et al. Long noncoding RNA MAFG-AS1 facilitates bladder cancer tumorigenesis via regulation of miR-143-3p/SERPINE1 axis. Transl Cancer Res. 2020;9(11):7214–26.PubMedPubMedCentralCrossRef Sun X, et al. Long noncoding RNA MAFG-AS1 facilitates bladder cancer tumorigenesis via regulation of miR-143-3p/SERPINE1 axis. Transl Cancer Res. 2020;9(11):7214–26.PubMedPubMedCentralCrossRef
64.
go back to reference Ruan Z, et al. Downregulation of long non-coding RNA MAFG-AS1 represses tumorigenesis of colorectal cancer cells through the microRNA-149-3p-dependent inhibition of HOXB8. Cancer Cell Int. 2020;20:511.PubMedPubMedCentralCrossRef Ruan Z, et al. Downregulation of long non-coding RNA MAFG-AS1 represses tumorigenesis of colorectal cancer cells through the microRNA-149-3p-dependent inhibition of HOXB8. Cancer Cell Int. 2020;20:511.PubMedPubMedCentralCrossRef
65.
go back to reference Cui W, et al. High-expression of LncRNA MAFG-AS1 is associated with the prognostic of patients with colorectal cancer. Rev Assoc Med Bras (1992). 2020;66(11):1530–5.PubMedCrossRef Cui W, et al. High-expression of LncRNA MAFG-AS1 is associated with the prognostic of patients with colorectal cancer. Rev Assoc Med Bras (1992). 2020;66(11):1530–5.PubMedCrossRef
66.
go back to reference Cui S, et al. LncRNA MAFG-AS1 promotes the progression of colorectal cancer by sponging miR-147b and activation of NDUFA4. Biochem Biophys Res Commun. 2018;506(1):251–8.PubMedCrossRef Cui S, et al. LncRNA MAFG-AS1 promotes the progression of colorectal cancer by sponging miR-147b and activation of NDUFA4. Biochem Biophys Res Commun. 2018;506(1):251–8.PubMedCrossRef
67.
go back to reference Fu Y, et al. LncRNA MAFG-AS1 upregulates polo-like kinase-1 by sponging miR-505 to promote gastric adenocarcinoma cell proliferation. Crit Rev Eukaryot Gene Expr. 2021;31(5):27–32.PubMedCrossRef Fu Y, et al. LncRNA MAFG-AS1 upregulates polo-like kinase-1 by sponging miR-505 to promote gastric adenocarcinoma cell proliferation. Crit Rev Eukaryot Gene Expr. 2021;31(5):27–32.PubMedCrossRef
68.
go back to reference Li C, Wu R, Xing Y. MAFG-AS1 is a novel clinical biomarker for clinical progression and unfavorable prognosis in gastric cancer. Cell Cycle. 2020;19(5):601–9.PubMedPubMedCentralCrossRef Li C, Wu R, Xing Y. MAFG-AS1 is a novel clinical biomarker for clinical progression and unfavorable prognosis in gastric cancer. Cell Cycle. 2020;19(5):601–9.PubMedPubMedCentralCrossRef
69.
go back to reference Qian CJ, et al. LncRNA MAFG-AS1 accelerates cell migration, invasion and aerobic glycolysis of esophageal squamous cell carcinoma cells via miR-765/PDX1 axis. Cancer Manag Res. 2020;12:6895–908.PubMedPubMedCentralCrossRef Qian CJ, et al. LncRNA MAFG-AS1 accelerates cell migration, invasion and aerobic glycolysis of esophageal squamous cell carcinoma cells via miR-765/PDX1 axis. Cancer Manag Res. 2020;12:6895–908.PubMedPubMedCentralCrossRef
70.
go back to reference Wang K, et al. 5-methylcytosine RNA methyltransferases-related long non-coding RNA to develop and validate biochemical recurrence signature in prostate cancer. Front Mol Biosci. 2021;8: 775304.PubMedPubMedCentralCrossRef Wang K, et al. 5-methylcytosine RNA methyltransferases-related long non-coding RNA to develop and validate biochemical recurrence signature in prostate cancer. Front Mol Biosci. 2021;8: 775304.PubMedPubMedCentralCrossRef
72.
go back to reference Bai Y, et al. LncRNA MAFG-AS1 promotes the malignant phenotype of ovarian cancer by upregulating NFKB1-dependent IGF1. Cancer Gene Ther. 2022;29(3–4):277–91.PubMedCrossRef Bai Y, et al. LncRNA MAFG-AS1 promotes the malignant phenotype of ovarian cancer by upregulating NFKB1-dependent IGF1. Cancer Gene Ther. 2022;29(3–4):277–91.PubMedCrossRef
73.
75.
go back to reference Wu L, et al. LncRNA TONSL-AS1 participates in coronary artery disease by interacting with miR-197. Microvasc Res. 2021;136: 104152.PubMedCrossRef Wu L, et al. LncRNA TONSL-AS1 participates in coronary artery disease by interacting with miR-197. Microvasc Res. 2021;136: 104152.PubMedCrossRef
76.
go back to reference Przytycki PF, Singh M. Differential allele-specific expression uncovers breast cancer genes dysregulated by Cis noncoding mutations. Cell Syst. 2020;10(2):193-203.e4.PubMedPubMedCentralCrossRef Przytycki PF, Singh M. Differential allele-specific expression uncovers breast cancer genes dysregulated by Cis noncoding mutations. Cell Syst. 2020;10(2):193-203.e4.PubMedPubMedCentralCrossRef
77.
go back to reference Totsuka Y, Watanabe M, Lin Y. New horizons of DNA adductome for exploring environmental causes of cancer. Cancer Sci. 2021;112(1):7–15.PubMedCrossRef Totsuka Y, Watanabe M, Lin Y. New horizons of DNA adductome for exploring environmental causes of cancer. Cancer Sci. 2021;112(1):7–15.PubMedCrossRef
78.
go back to reference Lu J, et al. Clinical features and treatment outcome in newly diagnosed Chinese patients with multiple myeloma: results of a multicenter analysis. Blood Cancer J. 2014;4(8): e239.PubMedPubMedCentralCrossRef Lu J, et al. Clinical features and treatment outcome in newly diagnosed Chinese patients with multiple myeloma: results of a multicenter analysis. Blood Cancer J. 2014;4(8): e239.PubMedPubMedCentralCrossRef
79.
go back to reference Fashoyin-Aje L, et al. Integrating genetic and genomic information into effective cancer care in diverse populations. Ann Oncol. 2013;24(Suppl 7):vii48-54.PubMedPubMedCentralCrossRef Fashoyin-Aje L, et al. Integrating genetic and genomic information into effective cancer care in diverse populations. Ann Oncol. 2013;24(Suppl 7):vii48-54.PubMedPubMedCentralCrossRef
80.
go back to reference Inhoffen J, et al. Deficiency of iPLA2β primes immune cells for proinflammation: potential involvement in age-related mesenteric lymph node lymphoma. Cancers (Basel). 2015;7(4):2427–42.PubMedCrossRef Inhoffen J, et al. Deficiency of iPLA2β primes immune cells for proinflammation: potential involvement in age-related mesenteric lymph node lymphoma. Cancers (Basel). 2015;7(4):2427–42.PubMedCrossRef
82.
go back to reference Friedl P, Alexander S. Cancer invasion and the microenvironment: plasticity and reciprocity. Cell. 2011;147(5):992–1009.PubMedCrossRef Friedl P, Alexander S. Cancer invasion and the microenvironment: plasticity and reciprocity. Cell. 2011;147(5):992–1009.PubMedCrossRef
83.
go back to reference Iuliano JN, et al. Metastatic bladder cancer cells distinctively sense and respond to physical cues of collagen fibril-mimetic nanotopography. Exp Biol Med (Maywood). 2015;240(5):601–10.PubMedCrossRef Iuliano JN, et al. Metastatic bladder cancer cells distinctively sense and respond to physical cues of collagen fibril-mimetic nanotopography. Exp Biol Med (Maywood). 2015;240(5):601–10.PubMedCrossRef
86.
go back to reference Zu XL, Guppy M. Cancer metabolism: facts, fantasy, and fiction. Biochem Biophys Res Commun. 2004;313(3):459–65.PubMedCrossRef Zu XL, Guppy M. Cancer metabolism: facts, fantasy, and fiction. Biochem Biophys Res Commun. 2004;313(3):459–65.PubMedCrossRef
88.
go back to reference Kashima Y, et al. Combinatory use of distinct single-cell RNA-seq analytical platforms reveals the heterogeneous transcriptome response. Sci Rep. 2018;8(1):3482.PubMedPubMedCentralCrossRef Kashima Y, et al. Combinatory use of distinct single-cell RNA-seq analytical platforms reveals the heterogeneous transcriptome response. Sci Rep. 2018;8(1):3482.PubMedPubMedCentralCrossRef
89.
90.
go back to reference Pal J, et al. Systematic analysis of migration factors by MigExpress identifies essential cell migration control genes in non-small cell lung cancer. Mol Oncol. 2021;15(7):1797–817.PubMedPubMedCentralCrossRef Pal J, et al. Systematic analysis of migration factors by MigExpress identifies essential cell migration control genes in non-small cell lung cancer. Mol Oncol. 2021;15(7):1797–817.PubMedPubMedCentralCrossRef
91.
92.
93.
go back to reference Trachootham D, Alexandre J, Huang P. Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach? Nat Rev Drug Discov. 2009;8(7):579–91.PubMedCrossRef Trachootham D, Alexandre J, Huang P. Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach? Nat Rev Drug Discov. 2009;8(7):579–91.PubMedCrossRef
94.
go back to reference Talagala IA, Nawarathne M, Arambepola C. Novel risk factors for primary prevention of oesophageal carcinoma: a case-control study from Sri Lanka. BMC Cancer. 2018;18(1):1135.PubMedPubMedCentralCrossRef Talagala IA, Nawarathne M, Arambepola C. Novel risk factors for primary prevention of oesophageal carcinoma: a case-control study from Sri Lanka. BMC Cancer. 2018;18(1):1135.PubMedPubMedCentralCrossRef
95.
go back to reference Liu J, et al. Ginsenoside Rh2 pretreatment and withdrawal reactivated the pentose phosphate pathway to ameliorate intracellular redox disturbance and promoted intratumoral penetration of adriamycin. Redox Biol. 2020;32: 101452.PubMedPubMedCentralCrossRef Liu J, et al. Ginsenoside Rh2 pretreatment and withdrawal reactivated the pentose phosphate pathway to ameliorate intracellular redox disturbance and promoted intratumoral penetration of adriamycin. Redox Biol. 2020;32: 101452.PubMedPubMedCentralCrossRef
96.
go back to reference Ascione CM, et al. Role of FGFR3 in bladder cancer: treatment landscape and future challenges. Cancer Treat Rev. 2023;115: 102530.PubMedCrossRef Ascione CM, et al. Role of FGFR3 in bladder cancer: treatment landscape and future challenges. Cancer Treat Rev. 2023;115: 102530.PubMedCrossRef
Metadata
Title
LncRNA MAFG-AS1 is involved in human cancer progression
Authors
Penghui Li
Xiao Ma
Xinyu Gu
Publication date
01-12-2023

Other articles of this Issue 1/2023

European Journal of Medical Research 1/2023 Go to the issue