Skip to main content
Top
Published in: Cellular Oncology 4/2020

01-08-2020 | Gastric Cancer | Original paper

LINC00858 knockdown inhibits gastric cancer cell growth and induces apoptosis through reducing WNK2 promoter methylation

Authors: Jiang Du, Yuan Liang, Ji Li, Jin-Ming Zhao, Xu-Yong Lin

Published in: Cellular Oncology | Issue 4/2020

Login to get access

Abstract

Background

Emerging evidence indicates a regulatory role of long non-coding RNAs (lncRNAs) in the development of gastric cancer (GC), but the mechanisms underlying their function have remained largely unknown. Recent microarray-based expression profiling has led to the identification of a novel differentially expressed lncRNA, LINC00858, in GC. Subsequently, LINC00858 was found to be highly expressed in GC tissues and cells. This study was designed to clarify the functional role of LINC00858 in GC, including its effect on methylation of the WNK2 gene promoter and its downstream MAPK signaling pathway.

Methods

After exogenous over-expression and knockdown of LINC00858 and the addition of a MAPK pathway inhibitor in GC cells, we explored the effects of LINC00858 and the MAPK signaling pathway on GC cell behavior using various in vitro and in vivo assays.

Results

LINC00858 was found to negatively regulate WNK2 expression by enhancing its promoter methylation and to activate the MAPK signaling pathway. Moreover, we found that knockdown of LINC00858 or inhibition of the MAPK signaling pathway resulted in decreased GC cell growth, migration and invasion, as well as decreased cell cycle progression, along with increased apoptosis and decreased tumorigenicity.

Conclusions

Together, these findings indicate that silencing of LINC00858 increases WNK2 expression and inhibits the MAPK signaling pathway, thereby inhibiting GC growth and development. Our data highlight LINC00858 as a potential target in GC therapy.
Appendix
Available only for authorised users
Literature
1.
go back to reference J. Caldeira, J. Simoes-Correia, J. Paredes, M.T. Pinto, S. Sousa, G. Corso, D. Marrelli, F. Roviello, P.S. Pereira, D. Weil, C. Oliveira, F. Casares, R. Seruca, CPEB1, a novel gene silenced in gastric cancer: A Drosophila approach. Gut 61, 1115–1123 (2012)CrossRefPubMed J. Caldeira, J. Simoes-Correia, J. Paredes, M.T. Pinto, S. Sousa, G. Corso, D. Marrelli, F. Roviello, P.S. Pereira, D. Weil, C. Oliveira, F. Casares, R. Seruca, CPEB1, a novel gene silenced in gastric cancer: A Drosophila approach. Gut 61, 1115–1123 (2012)CrossRefPubMed
2.
go back to reference W. Chen, R. Zheng, P.D. Baade, S. Zhang, H. Zeng, F. Bray, A. Jemal, X.Q. Yu, J. He, Cancer statistics in China, 2015. CA Cancer J Clin 66, 115–132 (2016)CrossRefPubMed W. Chen, R. Zheng, P.D. Baade, S. Zhang, H. Zeng, F. Bray, A. Jemal, X.Q. Yu, J. He, Cancer statistics in China, 2015. CA Cancer J Clin 66, 115–132 (2016)CrossRefPubMed
3.
go back to reference L. Zong, M. Abe, Y. Seto, J. Ji, The challenge of screening for early gastric cancer in China. Lancet 388, 2606 (2016)CrossRefPubMed L. Zong, M. Abe, Y. Seto, J. Ji, The challenge of screening for early gastric cancer in China. Lancet 388, 2606 (2016)CrossRefPubMed
4.
go back to reference R. Herrero, J. Parsonnet, E.R. Greenberg, Prevention of gastric cancer. JAMA 312, 1197–1198 (2014)CrossRefPubMed R. Herrero, J. Parsonnet, E.R. Greenberg, Prevention of gastric cancer. JAMA 312, 1197–1198 (2014)CrossRefPubMed
5.
go back to reference P. Zhang, L. Shi, T. Zhang, L. Hong, W. He, P. Cao, X. Shen, P. Zheng, Y. Xia, P. Zou, Piperlongumine potentiates the antitumor efficacy of oxaliplatin through ROS induction in gastric cancer cells. Cell Oncol 42, 847–860 (2019) P. Zhang, L. Shi, T. Zhang, L. Hong, W. He, P. Cao, X. Shen, P. Zheng, Y. Xia, P. Zou, Piperlongumine potentiates the antitumor efficacy of oxaliplatin through ROS induction in gastric cancer cells. Cell Oncol 42, 847–860 (2019)
6.
go back to reference A. Amedei, M. Benagiano, C. della Bella, E. Niccolai and M.M. D'Elios, Novel immunotherapeutic strategies of gastric cancer treatment, J Biomed Biotechnol 2011, 437348 (2011) A. Amedei, M. Benagiano, C. della Bella, E. Niccolai and M.M. D'Elios, Novel immunotherapeutic strategies of gastric cancer treatment, J Biomed Biotechnol 2011, 437348 (2011)
7.
go back to reference S. Wang, M. Zhou, A. Ji, D. Zhang, J. He, Milk/dairy products consumption and gastric cancer: An update meta-analysis of epidemiological studies. Oncotarget 9, 7126–7135 (2018)CrossRefPubMed S. Wang, M. Zhou, A. Ji, D. Zhang, J. He, Milk/dairy products consumption and gastric cancer: An update meta-analysis of epidemiological studies. Oncotarget 9, 7126–7135 (2018)CrossRefPubMed
8.
go back to reference Y. Yoda, H. Takeshima, T. Niwa, J.G. Kim, T. Ando, R. Kushima, T. Sugiyama, H. Katai, H. Noshiro, T. Ushijima, Integrated analysis of cancer-related pathways affected by genetic and epigenetic alterations in gastric cancer. Gastric Cancer 18, 65–76 (2015)CrossRefPubMed Y. Yoda, H. Takeshima, T. Niwa, J.G. Kim, T. Ando, R. Kushima, T. Sugiyama, H. Katai, H. Noshiro, T. Ushijima, Integrated analysis of cancer-related pathways affected by genetic and epigenetic alterations in gastric cancer. Gastric Cancer 18, 65–76 (2015)CrossRefPubMed
9.
go back to reference J.H. Yuan, F. Yang, F. Wang, J.Z. Ma, Y.J. Guo, Q.F. Tao, F. Liu, W. Pan, T.T. Wang, C.C. Zhou, S.B. Wang, Y.Z. Wang, Y. Yang, N. Yang, W.P. Zhou, G.S. Yang, S.H. Sun, A long noncoding RNA activated by TGF-beta promotes the invasion-metastasis cascade in hepatocellular carcinoma. Cancer Cell 25, 666–681 (2014)CrossRefPubMed J.H. Yuan, F. Yang, F. Wang, J.Z. Ma, Y.J. Guo, Q.F. Tao, F. Liu, W. Pan, T.T. Wang, C.C. Zhou, S.B. Wang, Y.Z. Wang, Y. Yang, N. Yang, W.P. Zhou, G.S. Yang, S.H. Sun, A long noncoding RNA activated by TGF-beta promotes the invasion-metastasis cascade in hepatocellular carcinoma. Cancer Cell 25, 666–681 (2014)CrossRefPubMed
10.
go back to reference X. Li, Z. Wu, X. Fu, W. Han, Long noncoding RNAs: Insights from biological features and functions to diseases. Med Res Rev 33, 517–553 (2013)CrossRefPubMed X. Li, Z. Wu, X. Fu, W. Han, Long noncoding RNAs: Insights from biological features and functions to diseases. Med Res Rev 33, 517–553 (2013)CrossRefPubMed
11.
go back to reference M.L. Pecero, J. Salvador-Bofill, S. Molina-Pinelo, Long non-coding RNAs as monitoring tools and therapeutic targets in breast cancer. Cell Oncol 42, 1–12 (2019) M.L. Pecero, J. Salvador-Bofill, S. Molina-Pinelo, Long non-coding RNAs as monitoring tools and therapeutic targets in breast cancer. Cell Oncol 42, 1–12 (2019)
12.
go back to reference R. Castro-Oropeza, J. Melendez-Zajgla, V. Maldonado, K. Vazquez-Santillan, The emerging role of lncRNAs in the regulation of cancer stem cells. Cell Oncol 41, 585–603 (2018) R. Castro-Oropeza, J. Melendez-Zajgla, V. Maldonado, K. Vazquez-Santillan, The emerging role of lncRNAs in the regulation of cancer stem cells. Cell Oncol 41, 585–603 (2018)
13.
go back to reference Q.K. Sha, L. Chen, J.Z. Xi, H. Song, Long non-coding RNA LINC00858 promotes cells proliferation, migration and invasion by acting as a ceRNA of miR-22-3p in colorectal cancer. Artif Cells Nanomed Biotechnol 47, 1057–1066 (2019)CrossRefPubMed Q.K. Sha, L. Chen, J.Z. Xi, H. Song, Long non-coding RNA LINC00858 promotes cells proliferation, migration and invasion by acting as a ceRNA of miR-22-3p in colorectal cancer. Artif Cells Nanomed Biotechnol 47, 1057–1066 (2019)CrossRefPubMed
14.
go back to reference Z. Gu, Z. Hou, L. Zheng, X. Wang, L. Wu, C. Zhang, Long noncoding RNA LINC00858 promotes osteosarcoma through regulating miR-139-CDK14 axis. Biochem Biophys Res Commun 503, 1134–1140 (2018)CrossRefPubMed Z. Gu, Z. Hou, L. Zheng, X. Wang, L. Wu, C. Zhang, Long noncoding RNA LINC00858 promotes osteosarcoma through regulating miR-139-CDK14 axis. Biochem Biophys Res Commun 503, 1134–1140 (2018)CrossRefPubMed
15.
go back to reference B. Tasharrofi, S. Ghafouri-Fard, Long non-coding RNAs as regulators of the mitogen-activated protein kinase (MAPK) pathway in cancer. Klin Onkol 31, 95–102 (2018)CrossRefPubMed B. Tasharrofi, S. Ghafouri-Fard, Long non-coding RNAs as regulators of the mitogen-activated protein kinase (MAPK) pathway in cancer. Klin Onkol 31, 95–102 (2018)CrossRefPubMed
16.
go back to reference D.D. Wu, Y.R. Gao, T. Li, D.Y. Wang, D. Lu, S.Y. Liu, Y. Hong, H.B. Ning, J.P. Liu, J. Shang, J.F. Shi, J.S. Wei, X.Y. Ji, PEST-containing nuclear protein mediates the proliferation, migration, and invasion of human neuroblastoma cells through MAPK and PI3K/AKT/mTOR signaling pathways. BMC Cancer 18, 499 (2018)CrossRefPubMedPubMedCentral D.D. Wu, Y.R. Gao, T. Li, D.Y. Wang, D. Lu, S.Y. Liu, Y. Hong, H.B. Ning, J.P. Liu, J. Shang, J.F. Shi, J.S. Wei, X.Y. Ji, PEST-containing nuclear protein mediates the proliferation, migration, and invasion of human neuroblastoma cells through MAPK and PI3K/AKT/mTOR signaling pathways. BMC Cancer 18, 499 (2018)CrossRefPubMedPubMedCentral
17.
go back to reference P. Li, W.J. Xue, Y. Feng, Q.S. Mao, Long non-coding RNA CASC2 suppresses the proliferation of gastric cancer cells by regulating the MAPK signaling pathway. Am J Transl Res 8, 3522–3529 (2016)PubMedPubMedCentral P. Li, W.J. Xue, Y. Feng, Q.S. Mao, Long non-coding RNA CASC2 suppresses the proliferation of gastric cancer cells by regulating the MAPK signaling pathway. Am J Transl Res 8, 3522–3529 (2016)PubMedPubMedCentral
18.
go back to reference D.M. Wu, Y.J. Wang, X.R. Han, X. Wen, S. Wang, M. Shen, S.H. Fan, J. Zhuang, Z.F. Zhang, Q. Shan, M.Q. Li, B. Hu, C.H. Sun, J. Lu, Y.L. Zheng, LncRNA LINC00880 promotes cell proliferation, migration, and invasion while inhibiting apoptosis by targeting CACNG5 through the MAPK signaling pathway in spinal cord ependymoma. J Cell Physiol 233, 6689–6704 (2018)CrossRefPubMed D.M. Wu, Y.J. Wang, X.R. Han, X. Wen, S. Wang, M. Shen, S.H. Fan, J. Zhuang, Z.F. Zhang, Q. Shan, M.Q. Li, B. Hu, C.H. Sun, J. Lu, Y.L. Zheng, LncRNA LINC00880 promotes cell proliferation, migration, and invasion while inhibiting apoptosis by targeting CACNG5 through the MAPK signaling pathway in spinal cord ependymoma. J Cell Physiol 233, 6689–6704 (2018)CrossRefPubMed
19.
go back to reference A.M. Costa, F. Pinto, O. Martinho, M.J. Oliveira, P. Jordan, R.M. Reis, Silencing of the tumor suppressor gene WNK2 is associated with upregulation of MMP2 and JNK in gliomas. Oncotarget 6, 1422–1434 (2015)CrossRefPubMed A.M. Costa, F. Pinto, O. Martinho, M.J. Oliveira, P. Jordan, R.M. Reis, Silencing of the tumor suppressor gene WNK2 is associated with upregulation of MMP2 and JNK in gliomas. Oncotarget 6, 1422–1434 (2015)CrossRefPubMed
20.
go back to reference C. Dutruel, F. Bergmann, I. Rooman, M. Zucknick, D. Weichenhan, L. Geiselhart, T. Kaffenberger, P.S. Rachakonda, A. Bauer, N. Giese, C. Hong, H. Xie, J.F. Costello, J. Hoheisel, R. Kumar, M. Rehli, P. Schirmacher, J. Werner, C. Plass, O. Popanda, P. Schmezer, Early epigenetic downregulation of WNK2 kinase during pancreatic ductal adenocarcinoma development. Oncogene 33, 3401–3410 (2014)CrossRefPubMed C. Dutruel, F. Bergmann, I. Rooman, M. Zucknick, D. Weichenhan, L. Geiselhart, T. Kaffenberger, P.S. Rachakonda, A. Bauer, N. Giese, C. Hong, H. Xie, J.F. Costello, J. Hoheisel, R. Kumar, M. Rehli, P. Schirmacher, J. Werner, C. Plass, O. Popanda, P. Schmezer, Early epigenetic downregulation of WNK2 kinase during pancreatic ductal adenocarcinoma development. Oncogene 33, 3401–3410 (2014)CrossRefPubMed
21.
go back to reference P. Jun, C. Hong, A. Lal, J.M. Wong, M.W. McDermott, A.W. Bollen, C. Plass, W.A. Held, D.J. Smiraglia, J.F. Costello, Epigenetic silencing of the kinase tumor suppressor WNK2 is tumor-type and tumor-grade specific. Neuro-Oncology 11, 414–422 (2009)CrossRefPubMedPubMedCentral P. Jun, C. Hong, A. Lal, J.M. Wong, M.W. McDermott, A.W. Bollen, C. Plass, W.A. Held, D.J. Smiraglia, J.F. Costello, Epigenetic silencing of the kinase tumor suppressor WNK2 is tumor-type and tumor-grade specific. Neuro-Oncology 11, 414–422 (2009)CrossRefPubMedPubMedCentral
22.
go back to reference A. Fujita, J.R. Sato, O. Rodrigues Lde, C.E. Ferreira, M.C. Sogayar, Evaluating different methods of microarray data normalization. BMC Bioinformatics 7, 469 (2006)CrossRefPubMedPubMedCentral A. Fujita, J.R. Sato, O. Rodrigues Lde, C.E. Ferreira, M.C. Sogayar, Evaluating different methods of microarray data normalization. BMC Bioinformatics 7, 469 (2006)CrossRefPubMedPubMedCentral
23.
go back to reference G.K. Smyth, Linear Models and Empirical Bayes Methods for Assessing Differential Expression in Microarray Experiments, Stat Appl Genet Mol Biol 3, Article3 (2004) G.K. Smyth, Linear Models and Empirical Bayes Methods for Assessing Differential Expression in Microarray Experiments, Stat Appl Genet Mol Biol 3, Article3 (2004)
24.
go back to reference J. Yao, C.J. Qian, B. Ye, X. Zhang, Y. Liang, ERK inhibition enhances TSA-induced gastric cancer cell apoptosis via NF-kappaB-dependent and notch-independent mechanism. Life Sci 91, 186–193 (2012)CrossRefPubMed J. Yao, C.J. Qian, B. Ye, X. Zhang, Y. Liang, ERK inhibition enhances TSA-induced gastric cancer cell apoptosis via NF-kappaB-dependent and notch-independent mechanism. Life Sci 91, 186–193 (2012)CrossRefPubMed
25.
go back to reference K.J. Livak, T.D. Schmittgen, Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods 25, 402–408 (2001)CrossRefPubMed K.J. Livak, T.D. Schmittgen, Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods 25, 402–408 (2001)CrossRefPubMed
26.
go back to reference S. Moniz, F. Verissimo, P. Matos, R. Brazao, E. Silva, L. Kotelevets, E. Chastre, C. Gespach, P. Jordan, Protein kinase WNK2 inhibits cell proliferation by negatively modulating the activation of MEK1/ERK1/2. Oncogene 26, 6071–6081 (2007)CrossRefPubMed S. Moniz, F. Verissimo, P. Matos, R. Brazao, E. Silva, L. Kotelevets, E. Chastre, C. Gespach, P. Jordan, Protein kinase WNK2 inhibits cell proliferation by negatively modulating the activation of MEK1/ERK1/2. Oncogene 26, 6071–6081 (2007)CrossRefPubMed
27.
go back to reference S. Moniz, P. Matos, P. Jordan, WNK2 modulates MEK1 activity through the rho GTPase pathway. Cell Signal 20, 1762–1768 (2008)CrossRefPubMed S. Moniz, P. Matos, P. Jordan, WNK2 modulates MEK1 activity through the rho GTPase pathway. Cell Signal 20, 1762–1768 (2008)CrossRefPubMed
28.
go back to reference Z. Zhou, Z. Lin, X. Pang, M.A. Tariq, X. Ao, P. Li, J. Wang, Epigenetic regulation of long non-coding RNAs in gastric cancer. Oncotarget 9, 19443–19458 (2018)CrossRefPubMed Z. Zhou, Z. Lin, X. Pang, M.A. Tariq, X. Ao, P. Li, J. Wang, Epigenetic regulation of long non-coding RNAs in gastric cancer. Oncotarget 9, 19443–19458 (2018)CrossRefPubMed
29.
go back to reference S.P. Zhu, J.Y. Wang, X.G. Wang, J.P. Zhao, Long intergenic non-protein coding RNA 00858 functions as a competing endogenous RNA for miR-422a to facilitate the cell growth in non-small cell lung cancer. Aging (Albany NY) 9, 475–486 (2017)CrossRef S.P. Zhu, J.Y. Wang, X.G. Wang, J.P. Zhao, Long intergenic non-protein coding RNA 00858 functions as a competing endogenous RNA for miR-422a to facilitate the cell growth in non-small cell lung cancer. Aging (Albany NY) 9, 475–486 (2017)CrossRef
31.
go back to reference N. Hu, M. Kadota, H. Liu, C.C. Abnet, H. Su, H. Wu, N.D. Freedman, H.H. Yang, C. Wang, C. Yan, L. Wang, S. Gere, A. Hutchinson, G. Song, Y. Wang, T. Ding, Y.L. Qiao, J. Koshiol, S.M. Dawsey, C. Giffen, A.M. Goldstein, P.R. Taylor, M.P. Lee, Genomic landscape of somatic alterations in esophageal squamous cell carcinoma and gastric cancer. Cancer Res 76, 1714–1723 (2016)CrossRefPubMedPubMedCentral N. Hu, M. Kadota, H. Liu, C.C. Abnet, H. Su, H. Wu, N.D. Freedman, H.H. Yang, C. Wang, C. Yan, L. Wang, S. Gere, A. Hutchinson, G. Song, Y. Wang, T. Ding, Y.L. Qiao, J. Koshiol, S.M. Dawsey, C. Giffen, A.M. Goldstein, P.R. Taylor, M.P. Lee, Genomic landscape of somatic alterations in esophageal squamous cell carcinoma and gastric cancer. Cancer Res 76, 1714–1723 (2016)CrossRefPubMedPubMedCentral
32.
go back to reference S. Moniz, O. Martinho, F. Pinto, B. Sousa, C. Loureiro, M.J. Oliveira, L.F. Moita, M. Honavar, C. Pinheiro, M. Pires, J.M. Lopes, C. Jones, J.F. Costello, J. Paredes, R.M. Reis, P. Jordan, Loss of WNK2 expression by promoter gene methylation occurs in adult gliomas and triggers Rac1-mediated tumour cell invasiveness. Hum Mol Genet 22, 84–95 (2013)CrossRefPubMed S. Moniz, O. Martinho, F. Pinto, B. Sousa, C. Loureiro, M.J. Oliveira, L.F. Moita, M. Honavar, C. Pinheiro, M. Pires, J.M. Lopes, C. Jones, J.F. Costello, J. Paredes, R.M. Reis, P. Jordan, Loss of WNK2 expression by promoter gene methylation occurs in adult gliomas and triggers Rac1-mediated tumour cell invasiveness. Hum Mol Genet 22, 84–95 (2013)CrossRefPubMed
33.
go back to reference H. Li, X. Liu, L. Zhang, X. Li, LncRNA BANCR facilitates vascular smooth muscle cell proliferation and migration through JNK pathway. Oncotarget 8, 114568–114575 (2017)CrossRefPubMedPubMedCentral H. Li, X. Liu, L. Zhang, X. Li, LncRNA BANCR facilitates vascular smooth muscle cell proliferation and migration through JNK pathway. Oncotarget 8, 114568–114575 (2017)CrossRefPubMedPubMedCentral
34.
go back to reference L. Han, L. Xiong, C. Wang, Y. Shi, Q. Song, G. Sun, MicroRNA-128 contributes to the progression of gastric carcinoma through GAREM-mediated MAPK signaling activation. Biochem Biophys Res Commun 504, 295–301 (2018)CrossRefPubMed L. Han, L. Xiong, C. Wang, Y. Shi, Q. Song, G. Sun, MicroRNA-128 contributes to the progression of gastric carcinoma through GAREM-mediated MAPK signaling activation. Biochem Biophys Res Commun 504, 295–301 (2018)CrossRefPubMed
Metadata
Title
LINC00858 knockdown inhibits gastric cancer cell growth and induces apoptosis through reducing WNK2 promoter methylation
Authors
Jiang Du
Yuan Liang
Ji Li
Jin-Ming Zhao
Xu-Yong Lin
Publication date
01-08-2020
Publisher
Springer Netherlands
Published in
Cellular Oncology / Issue 4/2020
Print ISSN: 2211-3428
Electronic ISSN: 2211-3436
DOI
https://doi.org/10.1007/s13402-020-00518-4

Other articles of this Issue 4/2020

Cellular Oncology 4/2020 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine