Skip to main content
Top
Published in: Cancer Cell International 1/2020

Open Access 01-12-2020 | Gastric Cancer | Primary research

Establishment and characterization of a new gastric cancer cell line, XGC-1

Authors: Jigui Peng, Hao Xu, Jianchun Cai

Published in: Cancer Cell International | Issue 1/2020

Login to get access

Abstract

Background

To establish a primary human gastric cancer cell line.

Methods

Fresh gastric cancer tissue samples were separated into a cell suspension, and DMEM/F12 medium containing 10% foetal bovine serum was used for primary culture and subculture. The morphology of the cells was observed under a light microscope, and the cell growth curve was plotted. A soft agar colony formation assay was used to detect the colony formation ability of the cell line. Immunohistochemical methods were used to detect cytokeratin, vimentin and Ki-67, the chromosome G banding method was used to analyse the karyotype of the cells, and the tumourigenic ability of the cells was detected by subcutaneous inoculation of BALB/C nude mice.

Results

We established a gastric cancer cell line from a 68-year-old male patient. This gastric cancer cell line was named XGC-1 and had a doubling time of approximately 48 h. The cell line displayed strong colony formation ability and tumourigenicity in BALB/C nude mice and had complicated chromosomal abnormalities. When nutrients were insufficient, the cells shed and floated in the medium, but adherent growth was observed in nutrient-rich conditions.

Conclusions

The XGC-1 cell line will be useful for future studies of gastric cancer development, progression, metastasis and therapy.
Literature
1.
go back to reference Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. CA Cancer J Clin. 2015;65:87–108.CrossRef Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. CA Cancer J Clin. 2015;65:87–108.CrossRef
2.
go back to reference Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2015;136:E359–86.CrossRef Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2015;136:E359–86.CrossRef
3.
go back to reference Chen W, Zheng R, Baade PD, Zhang S, Zeng H, Bray F, et al. Cancer statistics in China, 2015. CA Cancer J Clin. 2016;66:115–32.CrossRef Chen W, Zheng R, Baade PD, Zhang S, Zeng H, Bray F, et al. Cancer statistics in China, 2015. CA Cancer J Clin. 2016;66:115–32.CrossRef
4.
go back to reference Katai H, Ishikawa T, Akazawa K, Isobe Y, Miyashiro I, Oda I, et al. Five-year survival analysis of surgically resected gastric cancer cases in Japan: a retrospective analysis of more than 100,000 patients from the nationwide registry of the Japanese gastric cancer association (2001-2007). Gastric Cancer. 2018;21:144–54.CrossRef Katai H, Ishikawa T, Akazawa K, Isobe Y, Miyashiro I, Oda I, et al. Five-year survival analysis of surgically resected gastric cancer cases in Japan: a retrospective analysis of more than 100,000 patients from the nationwide registry of the Japanese gastric cancer association (2001-2007). Gastric Cancer. 2018;21:144–54.CrossRef
5.
go back to reference Gey GO, Coffman WD, Kubicek MT. Tissue culture studies of the proliferative capacity of cervical carcinoma and normal epithelium. Cancer Res. 1952;12:264–5. Gey GO, Coffman WD, Kubicek MT. Tissue culture studies of the proliferative capacity of cervical carcinoma and normal epithelium. Cancer Res. 1952;12:264–5.
6.
go back to reference Barranco SC, Townsend CM, Casartelli C, Macik BG, Burger NL, Boerwinkle WR, et al. Establishment and characterization of an in vitro model system for human adenocarcinoma of the stomach. Cancer Res. 1983;43:1703–9.PubMed Barranco SC, Townsend CM, Casartelli C, Macik BG, Burger NL, Boerwinkle WR, et al. Establishment and characterization of an in vitro model system for human adenocarcinoma of the stomach. Cancer Res. 1983;43:1703–9.PubMed
7.
go back to reference Motoyama T, Hojo H, Watanabe H. Comparison of seven cell lines derived from human gastric carcinomas. Acta Pathol Jpn. 1986;36:65–83.PubMed Motoyama T, Hojo H, Watanabe H. Comparison of seven cell lines derived from human gastric carcinomas. Acta Pathol Jpn. 1986;36:65–83.PubMed
8.
go back to reference Park JG, Frucht H, LaRocca RV, Bliss DP Jr, Kurita Y, Chen TR, et al. Characteristics of cell lines established from human gastric carcinoma. Cancer Res. 1990;50:2773–80.PubMed Park JG, Frucht H, LaRocca RV, Bliss DP Jr, Kurita Y, Chen TR, et al. Characteristics of cell lines established from human gastric carcinoma. Cancer Res. 1990;50:2773–80.PubMed
9.
go back to reference Park JG, Yang HK, Kim WH, Chung JK, Kang MS, Lee JH, et al. Establishment and characterization of human gastric carcinoma cell lines. Int J Cancer. 1997;70:443–9.CrossRef Park JG, Yang HK, Kim WH, Chung JK, Kang MS, Lee JH, et al. Establishment and characterization of human gastric carcinoma cell lines. Int J Cancer. 1997;70:443–9.CrossRef
10.
go back to reference Ku JL, Kim KH, Choi JS, Kim SH, Shin YK, Chang HJ, et al. Establishment and characterization of six human gastric carcinoma cell lines, including one naturally infected with epstein-barr virus. Cell Oncol (Dordr). 2012;35:127–36.CrossRef Ku JL, Kim KH, Choi JS, Kim SH, Shin YK, Chang HJ, et al. Establishment and characterization of six human gastric carcinoma cell lines, including one naturally infected with epstein-barr virus. Cell Oncol (Dordr). 2012;35:127–36.CrossRef
11.
go back to reference Akiyama S, Amo H, Watanabe T, Matsuyama M, Sakamoto J, Imaizumi M, et al. Characteristics of three human gastric cancer cell lines, NU-GC-2, NU-GC-3 and NU-GC-4. Jpn J Surg. 1988;18:438–46.CrossRef Akiyama S, Amo H, Watanabe T, Matsuyama M, Sakamoto J, Imaizumi M, et al. Characteristics of three human gastric cancer cell lines, NU-GC-2, NU-GC-3 and NU-GC-4. Jpn J Surg. 1988;18:438–46.CrossRef
12.
go back to reference Xu H, Peng JG, Zhuang YF, Chen JJ, Luo QC, Huang WF, et al. Establishment and characterization of an expanding-type gastric cancer cell line by Ming’s classification. Oncol Rep. 2016;36:3030–6.CrossRef Xu H, Peng JG, Zhuang YF, Chen JJ, Luo QC, Huang WF, et al. Establishment and characterization of an expanding-type gastric cancer cell line by Ming’s classification. Oncol Rep. 2016;36:3030–6.CrossRef
13.
go back to reference Holliday DL, Speirs V. Choosing the right cell line for breast cancer research. Breast Cancer Res. 2011;13:215.CrossRef Holliday DL, Speirs V. Choosing the right cell line for breast cancer research. Breast Cancer Res. 2011;13:215.CrossRef
14.
go back to reference Burdall SE, Hanby AM, Lansdown MR, Speirs V. Breast cancer cell lines: friend or foe? Breast Cancer Res. 2003;5:89–95.CrossRef Burdall SE, Hanby AM, Lansdown MR, Speirs V. Breast cancer cell lines: friend or foe? Breast Cancer Res. 2003;5:89–95.CrossRef
15.
go back to reference Osborne CK, Hobbs K, Trent JM. Biological differences among MCF-7 human breast cancer cell lines from different laboratories. Breast Cancer Res Treat. 1987;9:111–21.CrossRef Osborne CK, Hobbs K, Trent JM. Biological differences among MCF-7 human breast cancer cell lines from different laboratories. Breast Cancer Res Treat. 1987;9:111–21.CrossRef
16.
go back to reference Lin SJ, Gagnon-Bartsch JA, Tan IB, Earle S, Ruff L, Pettinger K, et al. Signatures of tumour immunity distinguish Asian and non-Asian gastric adenocarcinomas. Gut. 2015;64:1721–31.CrossRef Lin SJ, Gagnon-Bartsch JA, Tan IB, Earle S, Ruff L, Pettinger K, et al. Signatures of tumour immunity distinguish Asian and non-Asian gastric adenocarcinomas. Gut. 2015;64:1721–31.CrossRef
17.
go back to reference Capes-Davis A, Theodosopoulos G, Atkin I, Drexler HG, Kohara A, MacLeod RA, et al. Check your cultures! A list of cross-contaminated or misidentified cell lines. Int J Cancer. 2010;127:1–8.CrossRef Capes-Davis A, Theodosopoulos G, Atkin I, Drexler HG, Kohara A, MacLeod RA, et al. Check your cultures! A list of cross-contaminated or misidentified cell lines. Int J Cancer. 2010;127:1–8.CrossRef
18.
go back to reference Christgen M, Lehmann U. MDA-MB-435: the questionable use of a melanoma cell line as a model for human breast cancer is ongoing. Cancer Biol Ther. 2007;6:1355–7.CrossRef Christgen M, Lehmann U. MDA-MB-435: the questionable use of a melanoma cell line as a model for human breast cancer is ongoing. Cancer Biol Ther. 2007;6:1355–7.CrossRef
19.
go back to reference Cheung PF, Yip CW, Ng LW, Lo KW, Wong N, Choy KW, et al. Establishment and characterization of a novel primary hepatocellular carcinoma cell line with metastatic ability in vivo. Cancer Cell Int. 2014;14:103.CrossRef Cheung PF, Yip CW, Ng LW, Lo KW, Wong N, Choy KW, et al. Establishment and characterization of a novel primary hepatocellular carcinoma cell line with metastatic ability in vivo. Cancer Cell Int. 2014;14:103.CrossRef
20.
go back to reference Zhu Y, Yang R, Gao J, Zhang Y, Zhang G, Gu L. Establishment and characterization of a novel childhood acute lymphoblastic leukemia cell line, HXEX-ALL1, with chromosome 9p and 17p deletions. Cancer Cell Int. 2019;19:113.CrossRef Zhu Y, Yang R, Gao J, Zhang Y, Zhang G, Gu L. Establishment and characterization of a novel childhood acute lymphoblastic leukemia cell line, HXEX-ALL1, with chromosome 9p and 17p deletions. Cancer Cell Int. 2019;19:113.CrossRef
21.
go back to reference Albagli O, Pelczar H. Ki67: a surfactant of mitotic chromosomes. Med Sci (Paris). 2019;35:732–5.CrossRef Albagli O, Pelczar H. Ki67: a surfactant of mitotic chromosomes. Med Sci (Paris). 2019;35:732–5.CrossRef
22.
go back to reference Van Dijkum EJMN. ASO author reflections: pancreatic neuroendocrine tumor recurrence and survival predicted by Ki67. Ann Surg Oncol. 2019;26:531–2.CrossRef Van Dijkum EJMN. ASO author reflections: pancreatic neuroendocrine tumor recurrence and survival predicted by Ki67. Ann Surg Oncol. 2019;26:531–2.CrossRef
23.
go back to reference Kloppel G, La Rosa S. Correction to: Ki67 labeling index: assessment and prognostic role in gastroenteropancreatic neuroendocrine neoplasms. Virchows Arch. 2018;472:515.CrossRef Kloppel G, La Rosa S. Correction to: Ki67 labeling index: assessment and prognostic role in gastroenteropancreatic neuroendocrine neoplasms. Virchows Arch. 2018;472:515.CrossRef
24.
go back to reference McClelland SE. Role of chromosomal instability in cancer progression. Endocr Relat Cancer. 2017;24:T23–31.CrossRef McClelland SE. Role of chromosomal instability in cancer progression. Endocr Relat Cancer. 2017;24:T23–31.CrossRef
25.
go back to reference Johnson SC, McClelland SE. Watching cancer cells evolve through chromosomal instability. Nature. 2019;570:166–7.CrossRef Johnson SC, McClelland SE. Watching cancer cells evolve through chromosomal instability. Nature. 2019;570:166–7.CrossRef
26.
go back to reference Chromosomal instability drives metastasis independent of aneuploidy. Cancer Discov. 2018;8:OF7. Chromosomal instability drives metastasis independent of aneuploidy. Cancer Discov. 2018;8:OF7.
27.
go back to reference Li J, Dallmayer M, Kirchner T, Musa J, Grunewald TGP. PRC1: linking cytokinesis, chromosomal instability, and cancer evolution. Trends Cancer. 2018;4:59–73.CrossRef Li J, Dallmayer M, Kirchner T, Musa J, Grunewald TGP. PRC1: linking cytokinesis, chromosomal instability, and cancer evolution. Trends Cancer. 2018;4:59–73.CrossRef
28.
go back to reference Chen Z, Raghoonundun C, Chen W, Zhang Y, Tang W, Fan X, et al. SETD2 indicates favourable prognosis in gastric cancer and suppresses cancer cell proliferation, migration, and invasion. Biochem Biophys Res Commun. 2018;498:579–85.CrossRef Chen Z, Raghoonundun C, Chen W, Zhang Y, Tang W, Fan X, et al. SETD2 indicates favourable prognosis in gastric cancer and suppresses cancer cell proliferation, migration, and invasion. Biochem Biophys Res Commun. 2018;498:579–85.CrossRef
29.
go back to reference Fields AP, Justilien V, Murray NR. The chromosome 3q26 OncCassette: a multigenic driver of human cancer. Adv Biol Regul. 2016;60:47–63.CrossRef Fields AP, Justilien V, Murray NR. The chromosome 3q26 OncCassette: a multigenic driver of human cancer. Adv Biol Regul. 2016;60:47–63.CrossRef
30.
go back to reference Zavalhia LS, Medeiros AW, Silva AO, Roehe AV. Do FHIT gene alterations play a role in human solid tumors? Asia Pac J Clin Oncol. 2018;14:e214–23.CrossRef Zavalhia LS, Medeiros AW, Silva AO, Roehe AV. Do FHIT gene alterations play a role in human solid tumors? Asia Pac J Clin Oncol. 2018;14:e214–23.CrossRef
Metadata
Title
Establishment and characterization of a new gastric cancer cell line, XGC-1
Authors
Jigui Peng
Hao Xu
Jianchun Cai
Publication date
01-12-2020
Publisher
BioMed Central
Published in
Cancer Cell International / Issue 1/2020
Electronic ISSN: 1475-2867
DOI
https://doi.org/10.1186/s12935-020-01536-w

Other articles of this Issue 1/2020

Cancer Cell International 1/2020 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine