Skip to main content
Top
Published in: Discover Oncology 1/2023

Open Access 01-12-2023 | Gastric Cancer | Review

Emerging roles of noncoding RNAs in human cancers

Authors: Shijie Wu, Yiwen Wu, Sijun Deng, Xiaoyong Lei, Xiaoyan Yang

Published in: Discover Oncology | Issue 1/2023

Login to get access

Abstract

Studies have found that RNA encoding proteins only account for a small part of the total number, most RNA is non-coding RNA, and non-coding RNA may affect the occurrence and development of human cancers by affecting gene expression, therefore play an important role in human pathology. At present, ncRNAs studied include miRNA, circRNA, lncRNA, piRNA, and snoRNA, etc. After decades of research, the basic role of these ncRNAs in many cancers has been clear. As far as we know, the role of miRNAs in cancer is one of the hottest research directions, however, it is also found that the imbalance of ncRNAs will affect the occurrence of gastric cancer, breast cancer, lung cancer, meanwhile, it may also affect the prognosis of these cancers. Therefore, the study of ncRNAs in cancers may help to find new cancer diagnostic and treatment methods. Here, we reviewed the biosynthesis and characteristics of miRNA, cricRNA, and lncRNA etc., their roles in human cancers, as well as the mechanism through which these ncRNAs affect human cancers.
Literature
4.
go back to reference Ling H, Fabbri M, Calin GA. MicroRNAs and other non-coding RNAs as targets for anticancer drug development. Nat Rev Drug Discovery. 2013;12(11):847–65.CrossRefPubMed Ling H, Fabbri M, Calin GA. MicroRNAs and other non-coding RNAs as targets for anticancer drug development. Nat Rev Drug Discovery. 2013;12(11):847–65.CrossRefPubMed
6.
8.
go back to reference Lee Y, et al. The nuclear RNase III Drosha initiates microRNA processing. Nature. 2003;425(6956):415–9.CrossRefPubMed Lee Y, et al. The nuclear RNase III Drosha initiates microRNA processing. Nature. 2003;425(6956):415–9.CrossRefPubMed
9.
go back to reference Krol J, Loedige I, Filipowicz W. The widespread regulation of microRNA biogenesis, function and decay. Nat Rev Genet. 2010;11(9):597–610.CrossRefPubMed Krol J, Loedige I, Filipowicz W. The widespread regulation of microRNA biogenesis, function and decay. Nat Rev Genet. 2010;11(9):597–610.CrossRefPubMed
10.
11.
go back to reference Yu B, et al. The FHA domain proteins DAWDLE in Arabidopsis and SNIP1 in humans act in small RNA biogenesis. Proc Natl Acad Sci U S A. 2008;105(29):10073–8.PubMedCentralCrossRefPubMed Yu B, et al. The FHA domain proteins DAWDLE in Arabidopsis and SNIP1 in humans act in small RNA biogenesis. Proc Natl Acad Sci U S A. 2008;105(29):10073–8.PubMedCentralCrossRefPubMed
12.
go back to reference Pu M, et al. Regulatory network of miRNA on its target: coordination between transcriptional and post-transcriptional regulation of gene expression. Cell Mol Life Sci. 2019;76(3):441–51.CrossRefPubMed Pu M, et al. Regulatory network of miRNA on its target: coordination between transcriptional and post-transcriptional regulation of gene expression. Cell Mol Life Sci. 2019;76(3):441–51.CrossRefPubMed
13.
go back to reference Bhaskaran M, Mohan M. MicroRNAs: history, biogenesis, and their evolving role in animal development and disease. Vet Pathol. 2014;51(4):759–74.CrossRefPubMed Bhaskaran M, Mohan M. MicroRNAs: history, biogenesis, and their evolving role in animal development and disease. Vet Pathol. 2014;51(4):759–74.CrossRefPubMed
15.
go back to reference Rybak-Wolf A, et al. Circular RNAs in the mammalian brain are highly abundant, conserved, and dynamically expressed. Mol Cell. 2015;58(5):870–85.CrossRefPubMed Rybak-Wolf A, et al. Circular RNAs in the mammalian brain are highly abundant, conserved, and dynamically expressed. Mol Cell. 2015;58(5):870–85.CrossRefPubMed
17.
go back to reference Bachmayr-Heyda A, et al. Correlation of circular RNA abundance with proliferation–exemplified with colorectal and ovarian cancer, idiopathic lung fibrosis, and normal human tissues. Sci Rep. 2015;5:8057.PubMedCentralCrossRefPubMed Bachmayr-Heyda A, et al. Correlation of circular RNA abundance with proliferation–exemplified with colorectal and ovarian cancer, idiopathic lung fibrosis, and normal human tissues. Sci Rep. 2015;5:8057.PubMedCentralCrossRefPubMed
18.
go back to reference Moldovan LI, et al. High-throughput RNA sequencing from paired lesional- and non-lesional skin reveals major alterations in the psoriasis circRNAome. BMC Med Genomics. 2019;12(1):174.PubMedCentralCrossRefPubMed Moldovan LI, et al. High-throughput RNA sequencing from paired lesional- and non-lesional skin reveals major alterations in the psoriasis circRNAome. BMC Med Genomics. 2019;12(1):174.PubMedCentralCrossRefPubMed
19.
go back to reference Memczak S, et al. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature. 2013;495(7441):333–8.CrossRefPubMed Memczak S, et al. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature. 2013;495(7441):333–8.CrossRefPubMed
20.
23.
go back to reference van Zonneveld AJ, et al. Circular RNAs in kidney disease and cancer. Nat Rev Nephrol. 2021;17(12):814–26.CrossRefPubMed van Zonneveld AJ, et al. Circular RNAs in kidney disease and cancer. Nat Rev Nephrol. 2021;17(12):814–26.CrossRefPubMed
24.
go back to reference Kristensen LS, et al. The biogenesis, biology and characterization of circular RNAs. Nat Rev Genet. 2019;20(11):675–91.CrossRefPubMed Kristensen LS, et al. The biogenesis, biology and characterization of circular RNAs. Nat Rev Genet. 2019;20(11):675–91.CrossRefPubMed
25.
27.
go back to reference Hansen TB, et al. Natural RNA circles function as efficient microRNA sponges. Nature. 2013;495(7441):384–8.CrossRefPubMed Hansen TB, et al. Natural RNA circles function as efficient microRNA sponges. Nature. 2013;495(7441):384–8.CrossRefPubMed
28.
34.
go back to reference Mercer TR, Dinger ME, Mattick JS. Long non-coding RNAs: insights into functions. Nat Rev Genet. 2009;10(3):155–9.CrossRefPubMed Mercer TR, Dinger ME, Mattick JS. Long non-coding RNAs: insights into functions. Nat Rev Genet. 2009;10(3):155–9.CrossRefPubMed
35.
go back to reference Roberts TC, Morris KV, Wood MJA. The role of long non-coding RNAs in neurodevelopment, brain function and neurological disease. Philosophical Trans Royal Soc B: Biol Sci. 2014;369(1652):20130507.CrossRef Roberts TC, Morris KV, Wood MJA. The role of long non-coding RNAs in neurodevelopment, brain function and neurological disease. Philosophical Trans Royal Soc B: Biol Sci. 2014;369(1652):20130507.CrossRef
36.
go back to reference Mukherjee N, et al. Integrative classification of human coding and noncoding genes through RNA metabolism profiles. Nat Struct Mol Biol. 2017;24(1):86–96.CrossRefPubMed Mukherjee N, et al. Integrative classification of human coding and noncoding genes through RNA metabolism profiles. Nat Struct Mol Biol. 2017;24(1):86–96.CrossRefPubMed
37.
38.
go back to reference Beaulieu YB, et al. Polyadenylation-dependent control of long noncoding RNA expression by the poly(A)-binding protein nuclear 1. PLoS Genet. 2012;8(11):e1003078.PubMedCentralCrossRefPubMed Beaulieu YB, et al. Polyadenylation-dependent control of long noncoding RNA expression by the poly(A)-binding protein nuclear 1. PLoS Genet. 2012;8(11):e1003078.PubMedCentralCrossRefPubMed
39.
go back to reference Brown JA, et al. Formation of triple-helical structures by the 3’-end sequences of MALAT1 and MENβ noncoding RNAs. Proc Natl Acad Sci U S A. 2012;109(47):19202–7.PubMedCentralCrossRefPubMed Brown JA, et al. Formation of triple-helical structures by the 3’-end sequences of MALAT1 and MENβ noncoding RNAs. Proc Natl Acad Sci U S A. 2012;109(47):19202–7.PubMedCentralCrossRefPubMed
40.
go back to reference Schmidt K, et al. Targeting the oncogenic long non-coding RNA SLNCR1 by blocking its sequence-specific binding to the androgen receptor. Cell Rep. 2020;30(2):541–554e5.PubMedCentralCrossRefPubMed Schmidt K, et al. Targeting the oncogenic long non-coding RNA SLNCR1 by blocking its sequence-specific binding to the androgen receptor. Cell Rep. 2020;30(2):541–554e5.PubMedCentralCrossRefPubMed
44.
go back to reference Czech B, et al. piRNA-Guided Genome Defense: from Biogenesis to silencing. Annu Rev Genet. 2018;52:131–57.CrossRefPubMed Czech B, et al. piRNA-Guided Genome Defense: from Biogenesis to silencing. Annu Rev Genet. 2018;52:131–57.CrossRefPubMed
45.
go back to reference Ozata DM, et al. PIWI-interacting RNAs: small RNAs with big functions. Nat Rev Genet. 2019;20(2):89–108.CrossRefPubMed Ozata DM, et al. PIWI-interacting RNAs: small RNAs with big functions. Nat Rev Genet. 2019;20(2):89–108.CrossRefPubMed
49.
go back to reference Xiao L, et al. Disorders and roles of tsRNA, snoRNA, snRNA and piRNA in cancer. J Med Genet. 2022;59(7):623–31.CrossRefPubMed Xiao L, et al. Disorders and roles of tsRNA, snoRNA, snRNA and piRNA in cancer. J Med Genet. 2022;59(7):623–31.CrossRefPubMed
50.
go back to reference Egloff S, O’Reilly D, Murphy S. Expression of human snRNA genes from beginning to end. Biochem Soc Trans. 2008;36(Pt 4):590–4.CrossRefPubMed Egloff S, O’Reilly D, Murphy S. Expression of human snRNA genes from beginning to end. Biochem Soc Trans. 2008;36(Pt 4):590–4.CrossRefPubMed
51.
go back to reference van der Werf J, Chin CV, Fleming NI. SnoRNA in Cancer progression metastasis and immunotherapy response. Biology (Basel). 2021;10(8):809.PubMed van der Werf J, Chin CV, Fleming NI. SnoRNA in Cancer progression metastasis and immunotherapy response. Biology (Basel). 2021;10(8):809.PubMed
55.
go back to reference Vogelstein B, et al. Cancer genome landscapes Science. 2013;339(6127):1546–58.PubMed Vogelstein B, et al. Cancer genome landscapes Science. 2013;339(6127):1546–58.PubMed
56.
go back to reference Kontomanolis EN, et al. Role of oncogenes and tumor-suppressor genes in carcinogenesis: a review. Anticancer Res. 2020;40(11):6009–15.CrossRefPubMed Kontomanolis EN, et al. Role of oncogenes and tumor-suppressor genes in carcinogenesis: a review. Anticancer Res. 2020;40(11):6009–15.CrossRefPubMed
57.
go back to reference Kopnin BP. Targets of oncogenes and tumor suppressors: key for understanding basic mechanisms of carcinogenesis. Biochem (Mosc). 2000;65(1):2–27. Kopnin BP. Targets of oncogenes and tumor suppressors: key for understanding basic mechanisms of carcinogenesis. Biochem (Mosc). 2000;65(1):2–27.
59.
60.
go back to reference Wang LH, et al. Loss of tumor suppressor gene function in Human Cancer: an overview. Cell Physiol Biochem. 2018;51(6):2647–93.CrossRefPubMed Wang LH, et al. Loss of tumor suppressor gene function in Human Cancer: an overview. Cell Physiol Biochem. 2018;51(6):2647–93.CrossRefPubMed
61.
go back to reference Lin Y, Xu J, Lan H. Tumor-associated macrophages in tumor metastasis: biological roles and clinical therapeutic applications. J Hematol Oncol. 2019;12(1):76.PubMedCentralCrossRefPubMed Lin Y, Xu J, Lan H. Tumor-associated macrophages in tumor metastasis: biological roles and clinical therapeutic applications. J Hematol Oncol. 2019;12(1):76.PubMedCentralCrossRefPubMed
62.
go back to reference Mun EJ, et al. Tumor-treating Fields: a fourth modality in Cancer Treatment. Clin Cancer Res. 2018;24(2):266–75.CrossRefPubMed Mun EJ, et al. Tumor-treating Fields: a fourth modality in Cancer Treatment. Clin Cancer Res. 2018;24(2):266–75.CrossRefPubMed
64.
go back to reference Li Z, Feiyue Z, Gaofeng L. Traditional chinese medicine and lung cancer–from theory to practice. Biomed Pharmacother. 2021;137:111381.CrossRefPubMed Li Z, Feiyue Z, Gaofeng L. Traditional chinese medicine and lung cancer–from theory to practice. Biomed Pharmacother. 2021;137:111381.CrossRefPubMed
66.
go back to reference Carleton M, Cleary MA, Linsley PS. MicroRNAs and cell cycle regulation. Cell Cycle. 2007;6(17):2127–32.CrossRefPubMed Carleton M, Cleary MA, Linsley PS. MicroRNAs and cell cycle regulation. Cell Cycle. 2007;6(17):2127–32.CrossRefPubMed
67.
go back to reference Lau NC, et al. An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science. 2001;294(5543):858–62.CrossRefPubMed Lau NC, et al. An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science. 2001;294(5543):858–62.CrossRefPubMed
68.
69.
go back to reference Nakamura T, Canaani E, Croce CM. Oncogenic All1 fusion proteins target Drosha-mediated microRNA processing. Proc Natl Acad Sci U S A. 2007;104(26):10980–5.PubMedCentralCrossRefPubMed Nakamura T, Canaani E, Croce CM. Oncogenic All1 fusion proteins target Drosha-mediated microRNA processing. Proc Natl Acad Sci U S A. 2007;104(26):10980–5.PubMedCentralCrossRefPubMed
70.
go back to reference Yanaihara N, et al. Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. Cancer Cell. 2006;9(3):189–98.CrossRefPubMed Yanaihara N, et al. Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. Cancer Cell. 2006;9(3):189–98.CrossRefPubMed
71.
go back to reference Iorio MV, et al. MicroRNA gene expression deregulation in human breast cancer. Cancer Res. 2005;65(16):7065–70.CrossRefPubMed Iorio MV, et al. MicroRNA gene expression deregulation in human breast cancer. Cancer Res. 2005;65(16):7065–70.CrossRefPubMed
72.
73.
74.
go back to reference Ling H, et al. Non-coding RNAs: the cancer genome dark matter that matters! Clin Chem Lab Med. 2017;55(5):705–14.CrossRefPubMed Ling H, et al. Non-coding RNAs: the cancer genome dark matter that matters! Clin Chem Lab Med. 2017;55(5):705–14.CrossRefPubMed
75.
go back to reference Qattan A, et al. Robust expression of tumor suppressor miRNA’s let-7 and miR-195 detected in plasma of saudi female breast cancer patients. BMC Cancer. 2017;17(1):799.PubMedCentralCrossRefPubMed Qattan A, et al. Robust expression of tumor suppressor miRNA’s let-7 and miR-195 detected in plasma of saudi female breast cancer patients. BMC Cancer. 2017;17(1):799.PubMedCentralCrossRefPubMed
76.
go back to reference Cha YH, et al. MiRNA-34 intrinsically links p53 tumor suppressor and wnt signaling. Cell Cycle. 2012;11(7):1273–81.CrossRefPubMed Cha YH, et al. MiRNA-34 intrinsically links p53 tumor suppressor and wnt signaling. Cell Cycle. 2012;11(7):1273–81.CrossRefPubMed
78.
go back to reference Malayaperumal S, et al. A review of AEG-1 Oncogene regulating MicroRNA expression in Colon cancer progression. Endocr Metab Immune Disord Drug Targets. 2021;21(1):27–34.CrossRefPubMed Malayaperumal S, et al. A review of AEG-1 Oncogene regulating MicroRNA expression in Colon cancer progression. Endocr Metab Immune Disord Drug Targets. 2021;21(1):27–34.CrossRefPubMed
79.
go back to reference Costinean S, et al. Pre-B cell proliferation and lymphoblastic leukemia/high-grade lymphoma in Eµ-miR155 transgenic mice. Proc Natl Acad Sci. 2006;103(18):7024–9.PubMedCentralCrossRefPubMed Costinean S, et al. Pre-B cell proliferation and lymphoblastic leukemia/high-grade lymphoma in Eµ-miR155 transgenic mice. Proc Natl Acad Sci. 2006;103(18):7024–9.PubMedCentralCrossRefPubMed
80.
go back to reference Medina PP, Nolde M, Slack FJ. OncomiR addiction in an in vivo model of microRNA-21-induced pre-B-cell lymphoma. Nature. 2010;467(7311):86–90.CrossRefPubMed Medina PP, Nolde M, Slack FJ. OncomiR addiction in an in vivo model of microRNA-21-induced pre-B-cell lymphoma. Nature. 2010;467(7311):86–90.CrossRefPubMed
84.
go back to reference Voorhoeve PM, et al. A genetic screen implicates miRNA-372 and miRNA-373 as oncogenes in testicular germ cell tumors. Adv Exp Med Biol. 2007;604:17–46.CrossRefPubMed Voorhoeve PM, et al. A genetic screen implicates miRNA-372 and miRNA-373 as oncogenes in testicular germ cell tumors. Adv Exp Med Biol. 2007;604:17–46.CrossRefPubMed
86.
go back to reference Chen S, et al. The function of RAS Mutation in Cancer and advances in its Drug Research. Curr Pharm Des. 2019;25(10):1105–14.CrossRefPubMed Chen S, et al. The function of RAS Mutation in Cancer and advances in its Drug Research. Curr Pharm Des. 2019;25(10):1105–14.CrossRefPubMed
87.
go back to reference Ma L, Teruya-Feldstein J, Weinberg RA. Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. Nature. 2007;449(7163):682–8.CrossRefPubMed Ma L, Teruya-Feldstein J, Weinberg RA. Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. Nature. 2007;449(7163):682–8.CrossRefPubMed
88.
go back to reference Tian XP, et al. Acidic microenvironment up-regulates exosomal miR-21 and miR-10b in early-stage hepatocellular carcinoma to promote cancer cell proliferation and metastasis. Theranostics. 2019;9(7):1965–79.PubMedCentralCrossRefPubMed Tian XP, et al. Acidic microenvironment up-regulates exosomal miR-21 and miR-10b in early-stage hepatocellular carcinoma to promote cancer cell proliferation and metastasis. Theranostics. 2019;9(7):1965–79.PubMedCentralCrossRefPubMed
89.
go back to reference Nicoloso MS, et al. MicroRNAs–the micro steering wheel of tumour metastases. Nat Rev Cancer. 2009;9(4):293–302.CrossRefPubMed Nicoloso MS, et al. MicroRNAs–the micro steering wheel of tumour metastases. Nat Rev Cancer. 2009;9(4):293–302.CrossRefPubMed
91.
go back to reference Mokhtari M, Rouhanizadeh N, Hajialiasgar S. Investigation of microRNA-10b values for the discrimination of metastasis due to melanoma. J Res Med Sci. 2021;26:108.PubMedCentralCrossRefPubMed Mokhtari M, Rouhanizadeh N, Hajialiasgar S. Investigation of microRNA-10b values for the discrimination of metastasis due to melanoma. J Res Med Sci. 2021;26:108.PubMedCentralCrossRefPubMed
92.
94.
go back to reference Murphy ST, et al. Discovery of novel, potent, and selective inhibitors of 3-phosphoinositide-dependent kinase (PDK1). J Med Chem. 2011;54(24):8490–500.CrossRefPubMed Murphy ST, et al. Discovery of novel, potent, and selective inhibitors of 3-phosphoinositide-dependent kinase (PDK1). J Med Chem. 2011;54(24):8490–500.CrossRefPubMed
95.
go back to reference Zeng Y, et al. A circular RNA binds to and activates AKT phosphorylation and nuclear localization reducing apoptosis and enhancing Cardiac Repair. Theranostics. 2017;7(16):3842–55.PubMedCentralCrossRefPubMed Zeng Y, et al. A circular RNA binds to and activates AKT phosphorylation and nuclear localization reducing apoptosis and enhancing Cardiac Repair. Theranostics. 2017;7(16):3842–55.PubMedCentralCrossRefPubMed
96.
go back to reference de Gómez M, Ramírez de A, Molina. Microtargeting cancer metabolism: opening new therapeutic windows based on lipid metabolism. J Lipid Res. 2016;57(2):193–206.CrossRef de Gómez M, Ramírez de A, Molina. Microtargeting cancer metabolism: opening new therapeutic windows based on lipid metabolism. J Lipid Res. 2016;57(2):193–206.CrossRef
99.
go back to reference Zhang M, et al. A novel protein encoded by the circular form of the SHPRH gene suppresses glioma tumorigenesis. Oncogene. 2018;37(13):1805–14.CrossRefPubMed Zhang M, et al. A novel protein encoded by the circular form of the SHPRH gene suppresses glioma tumorigenesis. Oncogene. 2018;37(13):1805–14.CrossRefPubMed
100.
go back to reference Chen RX, et al. Circular RNA circRNA_0000285 promotes cervical cancer development by regulating FUS. Eur Rev Med Pharmacol Sci. 2019;23(20):8771–8.PubMed Chen RX, et al. Circular RNA circRNA_0000285 promotes cervical cancer development by regulating FUS. Eur Rev Med Pharmacol Sci. 2019;23(20):8771–8.PubMed
101.
102.
go back to reference Zong ZH, et al. CircWHSC1 promotes ovarian cancer progression by regulating MUC1 and hTERT through sponging miR-145 and miR-1182. J Exp Clin Cancer Res. 2019;38(1):437.PubMedCentralCrossRefPubMed Zong ZH, et al. CircWHSC1 promotes ovarian cancer progression by regulating MUC1 and hTERT through sponging miR-145 and miR-1182. J Exp Clin Cancer Res. 2019;38(1):437.PubMedCentralCrossRefPubMed
106.
go back to reference Huang X, et al. Circular RNA AKT3 upregulates PIK3R1 to enhance cisplatin resistance in gastric cancer via miR-198 suppression. Mol Cancer. 2019;18(1):71.PubMedCentralCrossRefPubMed Huang X, et al. Circular RNA AKT3 upregulates PIK3R1 to enhance cisplatin resistance in gastric cancer via miR-198 suppression. Mol Cancer. 2019;18(1):71.PubMedCentralCrossRefPubMed
109.
112.
go back to reference Rui X, et al. LncRNA GAS6-AS2 promotes bladder cancer proliferation and metastasis via GAS6-AS2/miR-298/CDK9 axis. J Cell Mol Med. 2019;23(2):865–76.CrossRefPubMed Rui X, et al. LncRNA GAS6-AS2 promotes bladder cancer proliferation and metastasis via GAS6-AS2/miR-298/CDK9 axis. J Cell Mol Med. 2019;23(2):865–76.CrossRefPubMed
113.
go back to reference Hu Q, Tai S, Wang J. Oncogenicity of lncRNA FOXD2-AS1 and its molecular mechanisms in human cancers. Pathol Res Pract. 2019;215(5):843–8.CrossRefPubMed Hu Q, Tai S, Wang J. Oncogenicity of lncRNA FOXD2-AS1 and its molecular mechanisms in human cancers. Pathol Res Pract. 2019;215(5):843–8.CrossRefPubMed
116.
117.
go back to reference Arora R, Brun CM, Azzalin CM. TERRA: long noncoding RNA at eukaryotic telomeres. Prog Mol Subcell Biol. 2011;51:65–94.CrossRefPubMed Arora R, Brun CM, Azzalin CM. TERRA: long noncoding RNA at eukaryotic telomeres. Prog Mol Subcell Biol. 2011;51:65–94.CrossRefPubMed
118.
go back to reference Zhang X, et al. Maternally expressed gene 3, an imprinted noncoding RNA gene, is associated with meningioma pathogenesis and progression. Cancer Res. 2010;70(6):2350–8.PubMedCentralCrossRefPubMed Zhang X, et al. Maternally expressed gene 3, an imprinted noncoding RNA gene, is associated with meningioma pathogenesis and progression. Cancer Res. 2010;70(6):2350–8.PubMedCentralCrossRefPubMed
119.
go back to reference Chak WP, et al. Downregulation of long non-coding RNA MEG3 in nasopharyngeal carcinoma. Mol Carcinog. 2017;56(3):1041–54.CrossRefPubMed Chak WP, et al. Downregulation of long non-coding RNA MEG3 in nasopharyngeal carcinoma. Mol Carcinog. 2017;56(3):1041–54.CrossRefPubMed
120.
go back to reference Li J, et al. Epigenetic repression of long non-coding RNA MEG3 mediated by DNMT1 represses the p53 pathway in gliomas. Int J Oncol. 2016;48(2):723–33.CrossRefPubMed Li J, et al. Epigenetic repression of long non-coding RNA MEG3 mediated by DNMT1 represses the p53 pathway in gliomas. Int J Oncol. 2016;48(2):723–33.CrossRefPubMed
121.
go back to reference Ying L, et al. Downregulated MEG3 activates autophagy and increases cell proliferation in bladder cancer. Mol Biosyst. 2013;9(3):407–11.CrossRefPubMed Ying L, et al. Downregulated MEG3 activates autophagy and increases cell proliferation in bladder cancer. Mol Biosyst. 2013;9(3):407–11.CrossRefPubMed
122.
go back to reference Sedaghati M, Kebebew E. Long noncoding RNAs in thyroid cancer. Curr Opin Endocrinol Diabetes Obes. 2019;26(5):275–81.CrossRefPubMed Sedaghati M, Kebebew E. Long noncoding RNAs in thyroid cancer. Curr Opin Endocrinol Diabetes Obes. 2019;26(5):275–81.CrossRefPubMed
123.
go back to reference Li H, et al. PCAT-1 contributes to cisplatin resistance in gastric cancer through epigenetically silencing PTEN via recruiting EZH2. J Cell Biochem. 2020;121(2):1353–61.CrossRefPubMed Li H, et al. PCAT-1 contributes to cisplatin resistance in gastric cancer through epigenetically silencing PTEN via recruiting EZH2. J Cell Biochem. 2020;121(2):1353–61.CrossRefPubMed
124.
go back to reference Wang H, et al. HOTAIR enhanced paclitaxel and doxorubicin resistance in gastric cancer cells partly through inhibiting miR-217 expression. J Cell Biochem. 2018;119(9):7226–34.CrossRefPubMed Wang H, et al. HOTAIR enhanced paclitaxel and doxorubicin resistance in gastric cancer cells partly through inhibiting miR-217 expression. J Cell Biochem. 2018;119(9):7226–34.CrossRefPubMed
125.
go back to reference Xu W, et al. Silencing of lncRNA ZFAS1 inhibits malignancies by blocking Wnt/β-catenin signaling in gastric cancer cells. Biosci Biotechnol Biochem. 2018;82(3):456–65.CrossRefPubMed Xu W, et al. Silencing of lncRNA ZFAS1 inhibits malignancies by blocking Wnt/β-catenin signaling in gastric cancer cells. Biosci Biotechnol Biochem. 2018;82(3):456–65.CrossRefPubMed
127.
go back to reference Xian HP, et al. Circulating long non-coding RNAs HULC and ZNFX1-AS1 are potential biomarkers in patients with gastric cancer. Oncol Lett. 2018;16(4):4689–98.PubMedCentralPubMed Xian HP, et al. Circulating long non-coding RNAs HULC and ZNFX1-AS1 are potential biomarkers in patients with gastric cancer. Oncol Lett. 2018;16(4):4689–98.PubMedCentralPubMed
128.
go back to reference Cui Y, et al. LncRNA FAM230B promotes gastric Cancer Growth and Metastasis by regulating the miR-27a-5p/TOP2A Axis. Dig Dis Sci. 2021;66(8):2637–50.CrossRefPubMed Cui Y, et al. LncRNA FAM230B promotes gastric Cancer Growth and Metastasis by regulating the miR-27a-5p/TOP2A Axis. Dig Dis Sci. 2021;66(8):2637–50.CrossRefPubMed
129.
go back to reference Hashim A, et al. RNA sequencing identifies specific PIWI-interacting small non-coding RNA expression patterns in breast cancer. Oncotarget. 2014;5(20):9901–10.PubMedCentralCrossRefPubMed Hashim A, et al. RNA sequencing identifies specific PIWI-interacting small non-coding RNA expression patterns in breast cancer. Oncotarget. 2014;5(20):9901–10.PubMedCentralCrossRefPubMed
131.
133.
go back to reference Williams GT, Farzaneh F. Are snoRNAs and snoRNA host genes new players in cancer? Nat Rev Cancer. 2012;12(2):84–8.CrossRefPubMed Williams GT, Farzaneh F. Are snoRNAs and snoRNA host genes new players in cancer? Nat Rev Cancer. 2012;12(2):84–8.CrossRefPubMed
134.
go back to reference Aksoy-Aksel A, Zampa F, Schratt G. MicroRNAs and synaptic plasticity—a mutual relationship. Philosophical Trans Royal Soc B: Biol Sci. 2014;369(1652):20130515.CrossRef Aksoy-Aksel A, Zampa F, Schratt G. MicroRNAs and synaptic plasticity—a mutual relationship. Philosophical Trans Royal Soc B: Biol Sci. 2014;369(1652):20130515.CrossRef
135.
go back to reference Roberts TC, Morris KV, Wood MJ. The role of long non-coding RNAs in neurodevelopment, brain function and neurological disease. Philos Trans R Soc Lond B Biol Sci. 2014;369:1652.CrossRef Roberts TC, Morris KV, Wood MJ. The role of long non-coding RNAs in neurodevelopment, brain function and neurological disease. Philos Trans R Soc Lond B Biol Sci. 2014;369:1652.CrossRef
136.
go back to reference Sone M, et al. The mRNA-like noncoding RNA Gomafu constitutes a novel nuclear domain in a subset of neurons. J Cell Sci. 2007;120(Pt 15):2498–506.CrossRefPubMed Sone M, et al. The mRNA-like noncoding RNA Gomafu constitutes a novel nuclear domain in a subset of neurons. J Cell Sci. 2007;120(Pt 15):2498–506.CrossRefPubMed
138.
go back to reference Zhang Y, et al. MiRNA-27a decreases ultraviolet B irradiation-induced cell damage. J Cell Biochem. 2020;121(2):1032–8.CrossRefPubMed Zhang Y, et al. MiRNA-27a decreases ultraviolet B irradiation-induced cell damage. J Cell Biochem. 2020;121(2):1032–8.CrossRefPubMed
139.
go back to reference Li Y, et al. Isoliquiritin ameliorates depression by suppressing NLRP3-mediated pyroptosis via miRNA-27a/SYK/NF-κB axis. J Neuroinflammation. 2021;18(1):1.PubMedCentralCrossRefPubMed Li Y, et al. Isoliquiritin ameliorates depression by suppressing NLRP3-mediated pyroptosis via miRNA-27a/SYK/NF-κB axis. J Neuroinflammation. 2021;18(1):1.PubMedCentralCrossRefPubMed
141.
go back to reference Yu X, et al. miR-96-5p: a potential diagnostic marker for gestational diabetes mellitus. Med (Baltim). 2021;100(21):e25808.CrossRef Yu X, et al. miR-96-5p: a potential diagnostic marker for gestational diabetes mellitus. Med (Baltim). 2021;100(21):e25808.CrossRef
142.
go back to reference Deleavey GF, Damha MJ. Designing chemically modified oligonucleotides for targeted gene silencing. Chem Biol. 2012;19(8):937–54.CrossRefPubMed Deleavey GF, Damha MJ. Designing chemically modified oligonucleotides for targeted gene silencing. Chem Biol. 2012;19(8):937–54.CrossRefPubMed
143.
go back to reference Watts JK, Corey DR. Silencing disease genes in the laboratory and the clinic. J Pathol. 2012;226(2):365–79.CrossRefPubMed Watts JK, Corey DR. Silencing disease genes in the laboratory and the clinic. J Pathol. 2012;226(2):365–79.CrossRefPubMed
144.
go back to reference Lu D, Thum T. RNA-based diagnostic and therapeutic strategies for cardiovascular disease. Nat Rev Cardiol. 2019;16(11):661–74.CrossRefPubMed Lu D, Thum T. RNA-based diagnostic and therapeutic strategies for cardiovascular disease. Nat Rev Cardiol. 2019;16(11):661–74.CrossRefPubMed
145.
go back to reference Sun Y, et al. Enhancing the therapeutic delivery of oligonucleotides by chemical modification and nanoparticle encapsulation. Molecules. 2017;22(10):1724.PubMedCentralCrossRefPubMed Sun Y, et al. Enhancing the therapeutic delivery of oligonucleotides by chemical modification and nanoparticle encapsulation. Molecules. 2017;22(10):1724.PubMedCentralCrossRefPubMed
146.
go back to reference Di Martino MT, et al. Synthetic miR-34a mimics as a novel therapeutic agent for multiple myeloma: in vitro and in vivo evidence. Clin Cancer Res. 2012;18(22):6260–70.PubMedCentralCrossRefPubMed Di Martino MT, et al. Synthetic miR-34a mimics as a novel therapeutic agent for multiple myeloma: in vitro and in vivo evidence. Clin Cancer Res. 2012;18(22):6260–70.PubMedCentralCrossRefPubMed
147.
go back to reference Poller W, et al. Non-coding RNAs in cardiovascular diseases: diagnostic and therapeutic perspectives. Eur Heart J. 2018;39(29):2704–16.CrossRefPubMed Poller W, et al. Non-coding RNAs in cardiovascular diseases: diagnostic and therapeutic perspectives. Eur Heart J. 2018;39(29):2704–16.CrossRefPubMed
148.
go back to reference Parashar D, et al. Lipid-based nanocarriers for delivery of small interfering RNA for therapeutic use. Eur J Pharm Sci. 2020;142:105159.CrossRefPubMed Parashar D, et al. Lipid-based nanocarriers for delivery of small interfering RNA for therapeutic use. Eur J Pharm Sci. 2020;142:105159.CrossRefPubMed
149.
Metadata
Title
Emerging roles of noncoding RNAs in human cancers
Authors
Shijie Wu
Yiwen Wu
Sijun Deng
Xiaoyong Lei
Xiaoyan Yang
Publication date
01-12-2023
Publisher
Springer US
Published in
Discover Oncology / Issue 1/2023
Print ISSN: 1868-8497
Electronic ISSN: 2730-6011
DOI
https://doi.org/10.1007/s12672-023-00728-w

Other articles of this Issue 1/2023

Discover Oncology 1/2023 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine