Skip to main content
Top
Published in: Journal of Gastrointestinal Cancer 3/2020

01-09-2020 | Gastric Cancer | Review Article

DNA Methylation Profiling of hTERT Gene Alongside with the Telomere Performance in Gastric Adenocarcinoma

Authors: Sogand Vahidi, Seyedeh Elham Norollahi, Shahram Agah, Ali Akbar Samadani

Published in: Journal of Gastrointestinal Cancer | Issue 3/2020

Login to get access

Abstract

Purpose

Epigenetic modification including of DNA methylation, histone acetylation, histone methylation, histon phosphorylation and non-coding RNA can impress the gene expression and genomic stability and cause different types of malignancies and also main human disorder. Conspicuously, the epigenetic alteration special DNA methylation controls telomere length, telomerase activity and also function of different genes particularly hTERT expression. Telomeres are important in increasing the lifespan, health, aging, and the development and progression of some diseases like cancer.

Methods

This review provides an assessment of the epigenetic alterations of telomeres, telomerase and repression of its catalytic subunit, hTERT and function of long non-coding RNAs such as telomeric-repeat containing RNA (TERRA) in carcinogenesis and tumorgenesis of gastric cancer.

Results

hTERT expression is essential and indispensable in telomerase activation through immortality and malignancies and also plays an important role in maintaining telomere length. Telomeres and telomerase have been implicated in regulating epigenetic factors influencing certain gene expression. Correspondingly, these changes in the sub telomere and telomere regions are affected by the shortening of telomere length and increased telomerase activity and hTERT gene expression have been observed in many cancers, remarkably in gastric cancer.

Conclusion

Epigenetic alteration and regulation of hTERT gene expression are critical in controlling telomerase activity and its expression.
Literature
1.
go back to reference Sitarz R, Skierucha M, Mielko J, Offerhaus GJA, Maciejewski R, Polkowski WP. Gastric cancer: epidemiology, prevention, classification, and treatment. Cancer Manag Res. 2018;10:239–48.PubMedPubMedCentral Sitarz R, Skierucha M, Mielko J, Offerhaus GJA, Maciejewski R, Polkowski WP. Gastric cancer: epidemiology, prevention, classification, and treatment. Cancer Manag Res. 2018;10:239–48.PubMedPubMedCentral
2.
go back to reference Mukaisho K-i, Nakayama T, Hagiwara T, Hattori T, Sugihara H. Two distinct etiologies of gastric cardia adenocarcinoma: interactions among pH, helicobacter pylori, and bile acids. Front Microbiol. 2015;6:412.PubMedPubMedCentral Mukaisho K-i, Nakayama T, Hagiwara T, Hattori T, Sugihara H. Two distinct etiologies of gastric cardia adenocarcinoma: interactions among pH, helicobacter pylori, and bile acids. Front Microbiol. 2015;6:412.PubMedPubMedCentral
3.
go back to reference Rodrigues MF, Guerra MR, Rodrigues de Alvarenga AV, de Oliveira Souza DZ, Cupolilo SMN. Helicobacter pylori infection and gastric cancer precursor lesions: prevalence and associated factors in a reference laboratory in southeastern Brazil. Arq Gastroenterol. 2019;56(4):419–24.PubMed Rodrigues MF, Guerra MR, Rodrigues de Alvarenga AV, de Oliveira Souza DZ, Cupolilo SMN. Helicobacter pylori infection and gastric cancer precursor lesions: prevalence and associated factors in a reference laboratory in southeastern Brazil. Arq Gastroenterol. 2019;56(4):419–24.PubMed
5.
go back to reference Fontana E, Smyth EC. Novel targets in the treatment of advanced gastric cancer: a perspective review. Ther Adv Med Oncol. 2016;8(2):113–25.PubMedPubMedCentral Fontana E, Smyth EC. Novel targets in the treatment of advanced gastric cancer: a perspective review. Ther Adv Med Oncol. 2016;8(2):113–25.PubMedPubMedCentral
6.
go back to reference Zabaleta J. Multifactorial etiology of gastric cancer. In: Cancer Epigenetics: Springer; 2012. p. 411–35. Zabaleta J. Multifactorial etiology of gastric cancer. In: Cancer Epigenetics: Springer; 2012. p. 411–35.
8.
go back to reference Smith MG, Hold GL, Tahara E, El-Omar EM. Cellular and molecular aspects of gastric cancer. World J Gastroenterol: WJG. 2006;12(19):2979–90.PubMed Smith MG, Hold GL, Tahara E, El-Omar EM. Cellular and molecular aspects of gastric cancer. World J Gastroenterol: WJG. 2006;12(19):2979–90.PubMed
9.
go back to reference Oliveira C, Pinheiro H, Figueiredo J, Seruca R, Carneiro F. Familial gastric cancer: genetic susceptibility, pathology, and implications for management. Lancet Oncol. 2015;16(2):e60–70.PubMed Oliveira C, Pinheiro H, Figueiredo J, Seruca R, Carneiro F. Familial gastric cancer: genetic susceptibility, pathology, and implications for management. Lancet Oncol. 2015;16(2):e60–70.PubMed
11.
go back to reference Sharma S, Kelly TK, Jones PA. Epigenetics in cancer. Carcinogenesis. 2010;31(1):27–36.PubMed Sharma S, Kelly TK, Jones PA. Epigenetics in cancer. Carcinogenesis. 2010;31(1):27–36.PubMed
12.
go back to reference Waddington CH. The epigenotype. Endeavour. 1942;1:18–20. Waddington CH. The epigenotype. Endeavour. 1942;1:18–20.
13.
go back to reference Holliday R, Ho T. DNA methylation and epigenetic inheritance. Methods. 2002;27(2):179–83.PubMed Holliday R, Ho T. DNA methylation and epigenetic inheritance. Methods. 2002;27(2):179–83.PubMed
14.
go back to reference Riggs AD, Porter TN. Overview of epigenetic mechanisms. Cold Spring Harbor Monograph Archive. 1996;32:29–45. Riggs AD, Porter TN. Overview of epigenetic mechanisms. Cold Spring Harbor Monograph Archive. 1996;32:29–45.
15.
go back to reference Yang W, Mok M, Li M, Kang W, Wang H, Chan A, et al. Epigenetic silencing of GDF1 disrupts SMAD signaling to reinforce gastric cancer development. Oncogene. 2016;35(16):2133–44.PubMed Yang W, Mok M, Li M, Kang W, Wang H, Chan A, et al. Epigenetic silencing of GDF1 disrupts SMAD signaling to reinforce gastric cancer development. Oncogene. 2016;35(16):2133–44.PubMed
16.
go back to reference Kulis M, Esteller M. DNA methylation and cancer. In: Advances in genetics, vol. 70: Elsevier; 2010. p. 27–56. Kulis M, Esteller M. DNA methylation and cancer. In: Advances in genetics, vol. 70: Elsevier; 2010. p. 27–56.
17.
go back to reference Julsing JR, Peters GJ. Methylation of DNA repair genes and the efficacy of DNA targeted anticancer treatment. Oncology Discovery. 2014;2(1):3. Julsing JR, Peters GJ. Methylation of DNA repair genes and the efficacy of DNA targeted anticancer treatment. Oncology Discovery. 2014;2(1):3.
18.
go back to reference Denis H, Ndlovu MN, Fuks F. Regulation of mammalian DNA methyltransferases: a route to new mechanisms. EMBO Rep. 2011;12(7):647–56.PubMedPubMedCentral Denis H, Ndlovu MN, Fuks F. Regulation of mammalian DNA methyltransferases: a route to new mechanisms. EMBO Rep. 2011;12(7):647–56.PubMedPubMedCentral
19.
go back to reference Langroudi MP, Nikbakhsh N, Samadani AA, Fattahi S, Taheri H, Shafaei S, et al. FAT4 hypermethylation and grade dependent downregulation in gastric adenocarcinoma. Journal of cell communication and signaling. 2017;11(1):69–75. Langroudi MP, Nikbakhsh N, Samadani AA, Fattahi S, Taheri H, Shafaei S, et al. FAT4 hypermethylation and grade dependent downregulation in gastric adenocarcinoma. Journal of cell communication and signaling. 2017;11(1):69–75.
20.
go back to reference Samadani AA, Nikbakhsh N, Pilehchian M, Fattahi S, Akhavan-Niaki H. Epigenetic changes of CDX2 in gastric adenocarcinoma. J Cell Commun Signal. 2016;10(4):267–72.PubMedPubMedCentral Samadani AA, Nikbakhsh N, Pilehchian M, Fattahi S, Akhavan-Niaki H. Epigenetic changes of CDX2 in gastric adenocarcinoma. J Cell Commun Signal. 2016;10(4):267–72.PubMedPubMedCentral
21.
go back to reference Hirst M, Marra MA. Epigenetics and human disease. Int J Biochem Cell Biol. 2009;41(1):136–46.PubMed Hirst M, Marra MA. Epigenetics and human disease. Int J Biochem Cell Biol. 2009;41(1):136–46.PubMed
22.
go back to reference Qu Y, Dang S, Hou P. Gene methylation in gastric cancer. Clin Chim Acta. 2013;424:53–65.PubMed Qu Y, Dang S, Hou P. Gene methylation in gastric cancer. Clin Chim Acta. 2013;424:53–65.PubMed
23.
go back to reference Loh M, Liem N, Vaithilingam A, Lim PL, Sapari NS, Elahi E, et al. DNA methylation subgroups and the CpG island methylator phenotype in gastric cancer: a comprehensive profiling approach. BMC Gastroenterol. 2014;14(1):55.PubMedPubMedCentral Loh M, Liem N, Vaithilingam A, Lim PL, Sapari NS, Elahi E, et al. DNA methylation subgroups and the CpG island methylator phenotype in gastric cancer: a comprehensive profiling approach. BMC Gastroenterol. 2014;14(1):55.PubMedPubMedCentral
24.
go back to reference Mulero-Navarro S, Esteller M. Epigenetic biomarkers for human cancer: the time is now. Crit Rev Oncol Hematol. 2008;68(1):1–11.PubMed Mulero-Navarro S, Esteller M. Epigenetic biomarkers for human cancer: the time is now. Crit Rev Oncol Hematol. 2008;68(1):1–11.PubMed
25.
go back to reference Mersfelder EL, Parthun MR. The tale beyond the tail: histone core domain modifications and the regulation of chromatin structure. Nucleic Acids Res. 2006;34(9):2653–62.PubMedPubMedCentral Mersfelder EL, Parthun MR. The tale beyond the tail: histone core domain modifications and the regulation of chromatin structure. Nucleic Acids Res. 2006;34(9):2653–62.PubMedPubMedCentral
26.
27.
go back to reference Park YS, Jin MY, Kim YJ, Yook JH, Kim BS, Jang SJ. The global histone modification pattern correlates with cancer recurrence and overall survival in gastric adenocarcinoma. Ann Surg Oncol. 2008;15(7):1968–76.PubMed Park YS, Jin MY, Kim YJ, Yook JH, Kim BS, Jang SJ. The global histone modification pattern correlates with cancer recurrence and overall survival in gastric adenocarcinoma. Ann Surg Oncol. 2008;15(7):1968–76.PubMed
28.
go back to reference Hellebrekers DM, Griffioen AW, van Engeland M. Dual targeting of epigenetic therapy in cancer. Biochimica et Biophysica Acta (BBA)-Reviews on Cancer. 2007;1775(1):76–91. Hellebrekers DM, Griffioen AW, van Engeland M. Dual targeting of epigenetic therapy in cancer. Biochimica et Biophysica Acta (BBA)-Reviews on Cancer. 2007;1775(1):76–91.
29.
go back to reference Taverna SD, Li H, Ruthenburg AJ, Allis CD, Patel DJ. How chromatin-binding modules interpret histone modifications: lessons from professional pocket pickers. Nat Struct Mol Biol. 2007;14(11):1025–40.PubMedPubMedCentral Taverna SD, Li H, Ruthenburg AJ, Allis CD, Patel DJ. How chromatin-binding modules interpret histone modifications: lessons from professional pocket pickers. Nat Struct Mol Biol. 2007;14(11):1025–40.PubMedPubMedCentral
30.
go back to reference Wanczyk M, Roszczenko K, Marcinkiewicz K, Bojarczuk K, Kowara M, Winiarska M. HDACi–going through the mechanisms. Front Biosci. 2011;16:340–59. Wanczyk M, Roszczenko K, Marcinkiewicz K, Bojarczuk K, Kowara M, Winiarska M. HDACi–going through the mechanisms. Front Biosci. 2011;16:340–59.
31.
go back to reference Nishikawaji T, Akiyama Y, Shimada S, Kojima K, Kawano T, Eishi Y, et al. Oncogenic roles of the SETDB2 histone methyltransferase in gastric cancer. Oncotarget. 2016;7(41):67251–65.PubMedPubMedCentral Nishikawaji T, Akiyama Y, Shimada S, Kojima K, Kawano T, Eishi Y, et al. Oncogenic roles of the SETDB2 histone methyltransferase in gastric cancer. Oncotarget. 2016;7(41):67251–65.PubMedPubMedCentral
32.
go back to reference Yang W-Y, Gu J-L, Zhen T-M. Recent advances of histone modification in gastric cancer. J Cancer Res Ther. 2014;10(8):240.PubMed Yang W-Y, Gu J-L, Zhen T-M. Recent advances of histone modification in gastric cancer. J Cancer Res Ther. 2014;10(8):240.PubMed
33.
go back to reference Yu Z, Zeng J, Liu H, Wang T, Yu Z, Chen J. Role of HDAC1 in the progression of gastric cancer and the correlation with lncRNAs. Oncol Lett. 2019;17(3):3296–304.PubMedPubMedCentral Yu Z, Zeng J, Liu H, Wang T, Yu Z, Chen J. Role of HDAC1 in the progression of gastric cancer and the correlation with lncRNAs. Oncol Lett. 2019;17(3):3296–304.PubMedPubMedCentral
34.
go back to reference Kim JG, Takeshima H, Niwa T, Rehnberg E, Shigematsu Y, Yoda Y, et al. Comprehensive DNA methylation and extensive mutation analyses reveal an association between the CpG island methylator phenotype and oncogenic mutations in gastric cancers. Cancer Lett. 2013;330(1):33–40.PubMed Kim JG, Takeshima H, Niwa T, Rehnberg E, Shigematsu Y, Yoda Y, et al. Comprehensive DNA methylation and extensive mutation analyses reveal an association between the CpG island methylator phenotype and oncogenic mutations in gastric cancers. Cancer Lett. 2013;330(1):33–40.PubMed
35.
go back to reference Samadani AA, Nikbakhsh N, Taheri H, Shafaee S, Fattahi S, Langroudi MP, et al. cdx1/2 and klf5 expression and epigenetic modulation of sonic hedgehog signaling in gastric adenocarcinoma. Pathol Oncol Res. 2019:1–8. Samadani AA, Nikbakhsh N, Taheri H, Shafaee S, Fattahi S, Langroudi MP, et al. cdx1/2 and klf5 expression and epigenetic modulation of sonic hedgehog signaling in gastric adenocarcinoma. Pathol Oncol Res. 2019:1–8.
36.
go back to reference Zhou Z, Lin Z, Pang X, Tariq MA, Ao X, Li P, et al. Epigenetic regulation of long non-coding RNAs in gastric cancer. Oncotarget. 2018;9(27):19443–58.PubMed Zhou Z, Lin Z, Pang X, Tariq MA, Ao X, Li P, et al. Epigenetic regulation of long non-coding RNAs in gastric cancer. Oncotarget. 2018;9(27):19443–58.PubMed
37.
go back to reference Hamai Y, Oue N, Mitani Y, Nakayama H, Ito R, Matsusaki K, et al. DNA hypermethylation and histone hypoacetylation of the HLTF gene are associated with reduced expression in gastric carcinoma. Cancer Sci. 2003;94(8):692–8.PubMed Hamai Y, Oue N, Mitani Y, Nakayama H, Ito R, Matsusaki K, et al. DNA hypermethylation and histone hypoacetylation of the HLTF gene are associated with reduced expression in gastric carcinoma. Cancer Sci. 2003;94(8):692–8.PubMed
38.
go back to reference O'sullivan RJ, Karlseder J. Telomeres: protecting chromosomes against genome instability. Nat Rev Mol Cell Biol. 2010;11(3):171–81.PubMedPubMedCentral O'sullivan RJ, Karlseder J. Telomeres: protecting chromosomes against genome instability. Nat Rev Mol Cell Biol. 2010;11(3):171–81.PubMedPubMedCentral
39.
go back to reference de Lange T. Shelterin-mediated telomere protection. Annu Rev Genet. 2018;52:223–47.PubMed de Lange T. Shelterin-mediated telomere protection. Annu Rev Genet. 2018;52:223–47.PubMed
40.
go back to reference Janoušková E, Nečasová I, Pavloušková J, Zimmermann M, Hluchý M, Marini V, et al. Human Rap1 modulates TRF2 attraction to telomeric DNA. Nucleic Acids Res. 2015;43(5):2691–700.PubMedPubMedCentral Janoušková E, Nečasová I, Pavloušková J, Zimmermann M, Hluchý M, Marini V, et al. Human Rap1 modulates TRF2 attraction to telomeric DNA. Nucleic Acids Res. 2015;43(5):2691–700.PubMedPubMedCentral
41.
42.
go back to reference Chen Y. The structural biology of the shelterin complex. Biol Chem. 2019;400(4):457–66.PubMed Chen Y. The structural biology of the shelterin complex. Biol Chem. 2019;400(4):457–66.PubMed
43.
go back to reference Miyachi K, Fujita M, Tanaka N, Sasaki K, Sunagawa M. Correlation between telomerase activity and telomeric-repeat binding factors in gastric cancer. J Exp Clin Cancer Res. 2002;21(2):269–75.PubMed Miyachi K, Fujita M, Tanaka N, Sasaki K, Sunagawa M. Correlation between telomerase activity and telomeric-repeat binding factors in gastric cancer. J Exp Clin Cancer Res. 2002;21(2):269–75.PubMed
44.
go back to reference Vaquero-Sedas MI, Vega-Palas MA. Assessing the epigenetic status of human telomeres. Cells. 2019;8(9):1050.PubMedCentral Vaquero-Sedas MI, Vega-Palas MA. Assessing the epigenetic status of human telomeres. Cells. 2019;8(9):1050.PubMedCentral
45.
go back to reference Wentzensen IM, Mirabello L, Pfeiffer RM, Savage SA. The association of telomere length and cancer: a meta-analysis. Cancer Epidemiology and Prevention Biomarkers. 2011;20(6):1238–50. Wentzensen IM, Mirabello L, Pfeiffer RM, Savage SA. The association of telomere length and cancer: a meta-analysis. Cancer Epidemiology and Prevention Biomarkers. 2011;20(6):1238–50.
46.
47.
go back to reference Cawthon RM. Telomere length measurement by a novel monochrome multiplex quantitative PCR method. Nucleic Acids Res. 2009;37(3):e21.PubMedPubMedCentral Cawthon RM. Telomere length measurement by a novel monochrome multiplex quantitative PCR method. Nucleic Acids Res. 2009;37(3):e21.PubMedPubMedCentral
48.
go back to reference O'Callaghan NJ, Fenech M. A quantitative PCR method for measuring absolute telomere length. Biol Proced Online. 2011;13(1):3.PubMedPubMedCentral O'Callaghan NJ, Fenech M. A quantitative PCR method for measuring absolute telomere length. Biol Proced Online. 2011;13(1):3.PubMedPubMedCentral
49.
go back to reference Aviv A, Hunt SC, Lin J, Cao X, Kimura M, Blackburn E. Impartial comparative analysis of measurement of leukocyte telomere length/DNA content by southern blots and qPCR. Nucleic Acids Res. 2011;39(20):e134.PubMedPubMedCentral Aviv A, Hunt SC, Lin J, Cao X, Kimura M, Blackburn E. Impartial comparative analysis of measurement of leukocyte telomere length/DNA content by southern blots and qPCR. Nucleic Acids Res. 2011;39(20):e134.PubMedPubMedCentral
50.
go back to reference Hofmann JN, Hutchinson AA, Cawthon R, Liu C-S, Lynch SM, Lan Q, et al. Telomere length varies by DNA extraction method: implications for epidemiologic research. Cancer Epidemiol Prev Biomarkers. 2014;23(6):1129–30. Hofmann JN, Hutchinson AA, Cawthon R, Liu C-S, Lynch SM, Lan Q, et al. Telomere length varies by DNA extraction method: implications for epidemiologic research. Cancer Epidemiol Prev Biomarkers. 2014;23(6):1129–30.
51.
go back to reference Watson JD. Origin of concatemeric T7DNA. Nat New Biol. 1972;239(94):197–201.PubMed Watson JD. Origin of concatemeric T7DNA. Nat New Biol. 1972;239(94):197–201.PubMed
52.
go back to reference De Vitis M, Berardinelli F, Sgura A. Telomere length maintenance in cancer: at the crossroad between telomerase and alternative lengthening of telomeres (ALT). Int J Mol Sci. 2018;19(2):606.PubMedCentral De Vitis M, Berardinelli F, Sgura A. Telomere length maintenance in cancer: at the crossroad between telomerase and alternative lengthening of telomeres (ALT). Int J Mol Sci. 2018;19(2):606.PubMedCentral
53.
go back to reference Flynn RL, Cox KE, Jeitany M, Wakimoto H, Bryll AR, Ganem NJ, et al. Alternative lengthening of telomeres renders cancer cells hypersensitive to ATR inhibitors. Science. 2015;347(6219):273–7.PubMedPubMedCentral Flynn RL, Cox KE, Jeitany M, Wakimoto H, Bryll AR, Ganem NJ, et al. Alternative lengthening of telomeres renders cancer cells hypersensitive to ATR inhibitors. Science. 2015;347(6219):273–7.PubMedPubMedCentral
54.
go back to reference Lovejoy CA, Li W, Reisenweber S, Thongthip S, Bruno J, De Lange T, et al. Loss of ATRX, genome instability, and an altered DNA damage response are hallmarks of the alternative lengthening of telomeres pathway. PLoS Genet. 2012;8(7):e1002772.PubMedPubMedCentral Lovejoy CA, Li W, Reisenweber S, Thongthip S, Bruno J, De Lange T, et al. Loss of ATRX, genome instability, and an altered DNA damage response are hallmarks of the alternative lengthening of telomeres pathway. PLoS Genet. 2012;8(7):e1002772.PubMedPubMedCentral
55.
go back to reference Wong LH, McGhie JD, Sim M, Anderson MA, Ahn S, Hannan RD, et al. ATRX interacts with H3. 3 in maintaining telomere structural integrity in pluripotent embryonic stem cells. Genome Res. 2010;20(3):351–60.PubMedPubMedCentral Wong LH, McGhie JD, Sim M, Anderson MA, Ahn S, Hannan RD, et al. ATRX interacts with H3. 3 in maintaining telomere structural integrity in pluripotent embryonic stem cells. Genome Res. 2010;20(3):351–60.PubMedPubMedCentral
57.
go back to reference Peters AH, O'Carroll D, Scherthan H, Mechtler K, Sauer S, Schöfer C, et al. Loss of the Suv39h histone methyltransferases impairs mammalian heterochromatin and genome stability. Cell. 2001;107(3):323–37.PubMed Peters AH, O'Carroll D, Scherthan H, Mechtler K, Sauer S, Schöfer C, et al. Loss of the Suv39h histone methyltransferases impairs mammalian heterochromatin and genome stability. Cell. 2001;107(3):323–37.PubMed
58.
go back to reference García-Cao M, O'Sullivan R, Peters AH, Jenuwein T, Blasco MA. Epigenetic regulation of telomere length in mammalian cells by the Suv39h1 and Suv39h2 histone methyltransferases. Nat Genet. 2004;36(1):94–9.PubMed García-Cao M, O'Sullivan R, Peters AH, Jenuwein T, Blasco MA. Epigenetic regulation of telomere length in mammalian cells by the Suv39h1 and Suv39h2 histone methyltransferases. Nat Genet. 2004;36(1):94–9.PubMed
59.
go back to reference Wang J, Cohen AL, Letian A, Tadeo X, Moresco JJ, Liu J, et al. The proper connection between shelterin components is required for telomeric heterochromatin assembly. Genes Dev. 2016;30(7):827–39.PubMedPubMedCentral Wang J, Cohen AL, Letian A, Tadeo X, Moresco JJ, Liu J, et al. The proper connection between shelterin components is required for telomeric heterochromatin assembly. Genes Dev. 2016;30(7):827–39.PubMedPubMedCentral
60.
go back to reference Benetti R, García-Cao M, Blasco MA. Telomere length regulates the epigenetic status of mammalian telomeres and subtelomeres. Nat Genet. 2007;39(2):243–50.PubMed Benetti R, García-Cao M, Blasco MA. Telomere length regulates the epigenetic status of mammalian telomeres and subtelomeres. Nat Genet. 2007;39(2):243–50.PubMed
61.
go back to reference Jones PA, Baylin SB. The fundamental role of epigenetic events in cancer. Nat Rev Genet. 2002;3(6):415–28.PubMed Jones PA, Baylin SB. The fundamental role of epigenetic events in cancer. Nat Rev Genet. 2002;3(6):415–28.PubMed
62.
go back to reference Hu H, Li B, Duan S. The alteration of subtelomeric DNA methylation in aging-related diseases. Front Genet. 2018:9. Hu H, Li B, Duan S. The alteration of subtelomeric DNA methylation in aging-related diseases. Front Genet. 2018:9.
63.
go back to reference Le Berre G, Hossard V, Riou J-F, Guieysse-Peugeot A-L. Repression of TERRA expression by Subtelomeric DNA methylation is dependent on NRF1 binding. Int J Mol Sci. 2019;20(11):2791.PubMedCentral Le Berre G, Hossard V, Riou J-F, Guieysse-Peugeot A-L. Repression of TERRA expression by Subtelomeric DNA methylation is dependent on NRF1 binding. Int J Mol Sci. 2019;20(11):2791.PubMedCentral
64.
go back to reference Daniel M, Peek GW, Tollefsbol TO. Regulation of the human catalytic subunit of telomerase (hTERT). Gene. 2012;498(2):135–46.PubMedPubMedCentral Daniel M, Peek GW, Tollefsbol TO. Regulation of the human catalytic subunit of telomerase (hTERT). Gene. 2012;498(2):135–46.PubMedPubMedCentral
65.
go back to reference Blasco MA. The epigenetic regulation of mammalian telomeres. Nat Rev Genet. 2007;8(4):299–309.PubMed Blasco MA. The epigenetic regulation of mammalian telomeres. Nat Rev Genet. 2007;8(4):299–309.PubMed
66.
go back to reference Sampl S, Pramhas S, Stern C, Preusser M, Marosi C, Holzmann K. Expression of telomeres in astrocytoma WHO grade 2 to 4: TERRA level correlates with telomere length, telomerase activity, and advanced clinical grade. Transl Oncol. 2012;5(1):56–IN4.PubMedPubMedCentral Sampl S, Pramhas S, Stern C, Preusser M, Marosi C, Holzmann K. Expression of telomeres in astrocytoma WHO grade 2 to 4: TERRA level correlates with telomere length, telomerase activity, and advanced clinical grade. Transl Oncol. 2012;5(1):56–IN4.PubMedPubMedCentral
67.
go back to reference Ng LJ, Cropley JE, Pickett HA, Reddel RR, Suter CM. Telomerase activity is associated with an increase in DNA methylation at the proximal subtelomere and a reduction in telomeric transcription. Nucleic Acids Res. 2009;37(4):1152–9.PubMedPubMedCentral Ng LJ, Cropley JE, Pickett HA, Reddel RR, Suter CM. Telomerase activity is associated with an increase in DNA methylation at the proximal subtelomere and a reduction in telomeric transcription. Nucleic Acids Res. 2009;37(4):1152–9.PubMedPubMedCentral
68.
go back to reference Barthel FP, Wei W, Tang M, Martinez-Ledesma E, Hu X, Amin SB, et al. Systematic analysis of telomere length and somatic alterations in 31 cancer types. Nat Genet. 2017;49(3):349–57.PubMedPubMedCentral Barthel FP, Wei W, Tang M, Martinez-Ledesma E, Hu X, Amin SB, et al. Systematic analysis of telomere length and somatic alterations in 31 cancer types. Nat Genet. 2017;49(3):349–57.PubMedPubMedCentral
69.
go back to reference Choi YH. Linoleic acid-induced growth inhibition of human gastric epithelial adenocarcinoma AGS cells is associated with down-regulation of prostaglandin E2 synthesis and telomerase activity. J Cancer Prev. 2014;19(1):31–8.PubMedPubMedCentral Choi YH. Linoleic acid-induced growth inhibition of human gastric epithelial adenocarcinoma AGS cells is associated with down-regulation of prostaglandin E2 synthesis and telomerase activity. J Cancer Prev. 2014;19(1):31–8.PubMedPubMedCentral
70.
go back to reference Zhu J, Zhao Y, Wang S. Chromatin and epigenetic regulation of the telomerase reverse transcriptase gene. Protein Cell. 2010;1(1):22–32.PubMedPubMedCentral Zhu J, Zhao Y, Wang S. Chromatin and epigenetic regulation of the telomerase reverse transcriptase gene. Protein Cell. 2010;1(1):22–32.PubMedPubMedCentral
71.
go back to reference Gigek CO, Leal MF, Silva PNO, Lisboa LCF, Lima EM, Calcagno DQ, et al. hTERT methylation and expression in gastric cancer. Biomarkers. 2009;14(8):630–6.PubMed Gigek CO, Leal MF, Silva PNO, Lisboa LCF, Lima EM, Calcagno DQ, et al. hTERT methylation and expression in gastric cancer. Biomarkers. 2009;14(8):630–6.PubMed
72.
go back to reference Kim W, Ludlow AT, Min J, Robin JD, Stadler G, Mender I, et al. Regulation of the human telomerase gene TERT by telomere position effect—over long distances (TPE-OLD): implications for aging and cancer. PLoS Biol. 2016;14(12):e2000016.PubMedPubMedCentral Kim W, Ludlow AT, Min J, Robin JD, Stadler G, Mender I, et al. Regulation of the human telomerase gene TERT by telomere position effect—over long distances (TPE-OLD): implications for aging and cancer. PLoS Biol. 2016;14(12):e2000016.PubMedPubMedCentral
73.
go back to reference He B, Xiao Y-F, Tang B, Wu Y-Y, Hu C-J, Xie R, et al. hTERT mediates gastric cancer metastasis partially through the indirect targeting of ITGB1 by microRNA-29a. Sci Rep. 2016;6:21955.PubMedPubMedCentral He B, Xiao Y-F, Tang B, Wu Y-Y, Hu C-J, Xie R, et al. hTERT mediates gastric cancer metastasis partially through the indirect targeting of ITGB1 by microRNA-29a. Sci Rep. 2016;6:21955.PubMedPubMedCentral
74.
go back to reference Ding D, Zhou J, Wang M, Cong YS. Implications of telomere-independent activities of telomerase reverse transcriptase in human cancer. FEBS J. 2013;280(14):3205–11.PubMed Ding D, Zhou J, Wang M, Cong YS. Implications of telomere-independent activities of telomerase reverse transcriptase in human cancer. FEBS J. 2013;280(14):3205–11.PubMed
75.
go back to reference Wu Y, Li G, He D, Yang F, He G, He L, et al. Telomerase reverse transcriptase methylation predicts lymph node metastasis and prognosis in patients with gastric cancer. Onco Targets Ther. 2016;9:279.PubMedPubMedCentral Wu Y, Li G, He D, Yang F, He G, He L, et al. Telomerase reverse transcriptase methylation predicts lymph node metastasis and prognosis in patients with gastric cancer. Onco Targets Ther. 2016;9:279.PubMedPubMedCentral
76.
go back to reference Wang Z, Xu J, Geng X, Zhang W. Analysis of DNA methylation status of the promoter of human telomerase reverse transcriptase in gastric carcinogenesis. Arch Med Res. 2010;41(1):1–6.PubMed Wang Z, Xu J, Geng X, Zhang W. Analysis of DNA methylation status of the promoter of human telomerase reverse transcriptase in gastric carcinogenesis. Arch Med Res. 2010;41(1):1–6.PubMed
77.
go back to reference Jie M-M, Chang X, Zeng S, Liu C, Liao G-B, Wu Y-R, et al. Diverse regulatory manners of human telomerase reverse transcriptase. Cell Commun Signal. 2019;17(1):63.PubMedPubMedCentral Jie M-M, Chang X, Zeng S, Liu C, Liao G-B, Wu Y-R, et al. Diverse regulatory manners of human telomerase reverse transcriptase. Cell Commun Signal. 2019;17(1):63.PubMedPubMedCentral
78.
go back to reference Cong Y-S, Bacchetti S. Histone deacetylation is involved in the transcriptional repression of hTERT in normal human cells. J Biol Chem. 2000;275(46):35665–8.PubMed Cong Y-S, Bacchetti S. Histone deacetylation is involved in the transcriptional repression of hTERT in normal human cells. J Biol Chem. 2000;275(46):35665–8.PubMed
79.
go back to reference Meeran SM, Patel SN, Tollefsbol TO. Sulforaphane causes epigenetic repression of hTERT expression in human breast cancer cell lines. PLoS One. 2010;5(7):e11457.PubMedPubMedCentral Meeran SM, Patel SN, Tollefsbol TO. Sulforaphane causes epigenetic repression of hTERT expression in human breast cancer cell lines. PLoS One. 2010;5(7):e11457.PubMedPubMedCentral
80.
go back to reference Ramachandran PV, Ignacimuthu S. RNA interference as a plausible anticancer therapeutic tool. Asian Pac J Cancer Prev. 2012;13(6):2445–52.PubMed Ramachandran PV, Ignacimuthu S. RNA interference as a plausible anticancer therapeutic tool. Asian Pac J Cancer Prev. 2012;13(6):2445–52.PubMed
81.
go back to reference Vahidi S, Sorayayi S, Mohammadzadeh M, Hosseini-Asl SS. The effect of human telomerase reverse transcriptase repression on the increasing cell viability and alterations of cell cycle in gastric Cancer cell Line. Govaresh. 2018;23(3):152–8. Vahidi S, Sorayayi S, Mohammadzadeh M, Hosseini-Asl SS. The effect of human telomerase reverse transcriptase repression on the increasing cell viability and alterations of cell cycle in gastric Cancer cell Line. Govaresh. 2018;23(3):152–8.
82.
go back to reference Gonzalo S, Jaco I, Fraga MF, Chen T, Li E, Esteller M, et al. DNA methyltransferases control telomere length and telomere recombination in mammalian cells. Nat Cell Biol. 2006;8(4):416–24.PubMed Gonzalo S, Jaco I, Fraga MF, Chen T, Li E, Esteller M, et al. DNA methyltransferases control telomere length and telomere recombination in mammalian cells. Nat Cell Biol. 2006;8(4):416–24.PubMed
83.
go back to reference Schoeftner S, Blasco MA. Developmentally regulated transcription of mammalian telomeres by DNA-dependent RNA polymerase II. Nat Cell Biol. 2008;10(2):228–36.PubMed Schoeftner S, Blasco MA. Developmentally regulated transcription of mammalian telomeres by DNA-dependent RNA polymerase II. Nat Cell Biol. 2008;10(2):228–36.PubMed
84.
go back to reference Azzalin CM, Reichenbach P, Khoriauli L, Giulotto E, Lingner J. Telomeric repeat–containing RNA and RNA surveillance factors at mammalian chromosome ends. Science. 2007;318(5851):798–801.PubMed Azzalin CM, Reichenbach P, Khoriauli L, Giulotto E, Lingner J. Telomeric repeat–containing RNA and RNA surveillance factors at mammalian chromosome ends. Science. 2007;318(5851):798–801.PubMed
85.
go back to reference Redon S, Reichenbach P, Lingner J. The non-coding RNA TERRA is a natural ligand and direct inhibitor of human telomerase. Nucleic Acids Res. 2010;38(17):5797–806.PubMedPubMedCentral Redon S, Reichenbach P, Lingner J. The non-coding RNA TERRA is a natural ligand and direct inhibitor of human telomerase. Nucleic Acids Res. 2010;38(17):5797–806.PubMedPubMedCentral
86.
go back to reference Wyatt HD, Lobb DA, Beattie TL. Characterization of physical and functional anchor site interactions in human telomerase. Mol Cell Biol. 2007;27(8):3226–40.PubMedPubMedCentral Wyatt HD, Lobb DA, Beattie TL. Characterization of physical and functional anchor site interactions in human telomerase. Mol Cell Biol. 2007;27(8):3226–40.PubMedPubMedCentral
87.
go back to reference Arnoult N, Van Beneden A, Decottignies A. Telomere length regulates TERRA levels through increased trimethylation of telomeric H3K9 and HP1α. Nat Struct Mol Biol. 2012;19(9):948–56.PubMed Arnoult N, Van Beneden A, Decottignies A. Telomere length regulates TERRA levels through increased trimethylation of telomeric H3K9 and HP1α. Nat Struct Mol Biol. 2012;19(9):948–56.PubMed
88.
go back to reference Montero JJ, López-Silanes I, Megías D, Fraga MF, Castells-García Á, Blasco MA. TERRA recruitment of polycomb to telomeres is essential for histone trymethylation marks at telomeric heterochromatin. Nat Commun. 2018;9(1):1548.PubMedPubMedCentral Montero JJ, López-Silanes I, Megías D, Fraga MF, Castells-García Á, Blasco MA. TERRA recruitment of polycomb to telomeres is essential for histone trymethylation marks at telomeric heterochromatin. Nat Commun. 2018;9(1):1548.PubMedPubMedCentral
89.
go back to reference Kreilmeier T, Mejri D, Hauck M, Kleiter M, Holzmann K. Telomere transcripts target telomerase in human cancer cells. Genes. 2016;7(8):46.PubMedCentral Kreilmeier T, Mejri D, Hauck M, Kleiter M, Holzmann K. Telomere transcripts target telomerase in human cancer cells. Genes. 2016;7(8):46.PubMedCentral
90.
go back to reference Farnung BO, Brun CM, Arora R, Lorenzi LE, Azzalin CM. Telomerase efficiently elongates highly transcribing telomeres in human cancer cells. PLoS One. 2012;7(4):e35714.PubMedPubMedCentral Farnung BO, Brun CM, Arora R, Lorenzi LE, Azzalin CM. Telomerase efficiently elongates highly transcribing telomeres in human cancer cells. PLoS One. 2012;7(4):e35714.PubMedPubMedCentral
91.
go back to reference Neri F, Rapelli S, Krepelova A, Incarnato D, Parlato C, Basile G, et al. Intragenic DNA methylation prevents spurious transcription initiation. Nature. 2017;543(7643):72–7.PubMed Neri F, Rapelli S, Krepelova A, Incarnato D, Parlato C, Basile G, et al. Intragenic DNA methylation prevents spurious transcription initiation. Nature. 2017;543(7643):72–7.PubMed
92.
go back to reference Hashimoto H, Zhang X, Vertino PM, Cheng X. The mechanisms of generation, recognition, and erasure of DNA 5-methylcytosine and thymine oxidations. J Biol Chem. 2015;290(34):20723–33.PubMedPubMedCentral Hashimoto H, Zhang X, Vertino PM, Cheng X. The mechanisms of generation, recognition, and erasure of DNA 5-methylcytosine and thymine oxidations. J Biol Chem. 2015;290(34):20723–33.PubMedPubMedCentral
93.
go back to reference Deng Z, Campbell AE, Lieberman PM. TERRA, CpG methylation, and telomere heterochromatin: lessons from ICF syndrome cells. Cell Cycle. 2010;9(1):69–74.PubMedPubMedCentral Deng Z, Campbell AE, Lieberman PM. TERRA, CpG methylation, and telomere heterochromatin: lessons from ICF syndrome cells. Cell Cycle. 2010;9(1):69–74.PubMedPubMedCentral
94.
go back to reference Cusanelli E, Chartrand P. Telomeric repeat-containing RNA TERRA: a noncoding RNA connecting telomere biology to genome integrity. Front Genet. 2015;6. Cusanelli E, Chartrand P. Telomeric repeat-containing RNA TERRA: a noncoding RNA connecting telomere biology to genome integrity. Front Genet. 2015;6.
95.
go back to reference Arora R, Lee Y, Wischnewski H, Brun CM, Schwarz T, Azzalin CM. RNaseH1 regulates TERRA-telomeric DNA hybrids and telomere maintenance in ALT tumour cells. Nat Commun. 2014;5:5220.PubMedPubMedCentral Arora R, Lee Y, Wischnewski H, Brun CM, Schwarz T, Azzalin CM. RNaseH1 regulates TERRA-telomeric DNA hybrids and telomere maintenance in ALT tumour cells. Nat Commun. 2014;5:5220.PubMedPubMedCentral
96.
go back to reference Cusanelli E, Romero CAP, Chartrand P. Telomeric noncoding RNA TERRA is induced by telomere shortening to nucleate telomerase molecules at short telomeres. Mol Cell. 2013;51(6):780–91.PubMed Cusanelli E, Romero CAP, Chartrand P. Telomeric noncoding RNA TERRA is induced by telomere shortening to nucleate telomerase molecules at short telomeres. Mol Cell. 2013;51(6):780–91.PubMed
97.
go back to reference Deng Z, Wang Z, Xiang C, Molczan A, Baubet V, Conejo-Garcia J, et al. Formation of telomeric repeat-containing RNA (TERRA) foci in highly proliferating mouse cerebellar neuronal progenitors and medulloblastoma. J Cell Sci. 2012;125(18):4383–94.PubMedPubMedCentral Deng Z, Wang Z, Xiang C, Molczan A, Baubet V, Conejo-Garcia J, et al. Formation of telomeric repeat-containing RNA (TERRA) foci in highly proliferating mouse cerebellar neuronal progenitors and medulloblastoma. J Cell Sci. 2012;125(18):4383–94.PubMedPubMedCentral
Metadata
Title
DNA Methylation Profiling of hTERT Gene Alongside with the Telomere Performance in Gastric Adenocarcinoma
Authors
Sogand Vahidi
Seyedeh Elham Norollahi
Shahram Agah
Ali Akbar Samadani
Publication date
01-09-2020
Publisher
Springer US
Published in
Journal of Gastrointestinal Cancer / Issue 3/2020
Print ISSN: 1941-6628
Electronic ISSN: 1941-6636
DOI
https://doi.org/10.1007/s12029-020-00427-7

Other articles of this Issue 3/2020

Journal of Gastrointestinal Cancer 3/2020 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.