Skip to main content
Top
Published in: BMC Surgery 1/2022

Open Access 01-12-2022 | Gastrectomy | Research

Perioperative outcomes of robotic versus laparoscopic distal gastrectomy for gastric cancer: a meta-analysis of propensity score-matched studies and randomized controlled trials

Authors: Tao Sun, Yinghua Wang, Yan Liu, Zhanyu Wang

Published in: BMC Surgery | Issue 1/2022

Login to get access

Abstract

Background

Da Vinci robotic surgery system, a novel type of surgery, was widespread in surgical field. However, the perioperative outcomes of robotic distal gastrectomy (RDG) are still controversy, despite several observational studies and randomized controlled trials (RCT) had been reported. Therefore, we performed a meta-analysis of propensity score-matched (PSM) and RCT studies to evaluated the perioperative feasibility and safety of RDG.

Methods

Studies were systematically searched in PubMed, Web of Science, Cochrane Library, and Embase database, and screened according to the defined limitations. The quality of PSM studies and RCT studies were respectively assessed by ROBINS-I and Cochrane risk-of-bias tool. Extracted data were analyzed by Review Manager 5.4.

Results

7 PSM studies and 1 RCT with a total of 2763 patients were included in this analysis. The longer operative time (MD = 31.42, 95% CI [22.88, 39.96], p < 0.00001), less blood loss (MD = − 25.89, 95% CI [− 36.18, − 15.6], p < 0.00001), more retrieved lymph nodes (MD = 3.46, 95% CI [2.94, 3.98], p < 0.00001), shorter time to first flatus (MD = − 0.08, 95% CI [− 0.13, − 0.02], p = 0.006) and liquid intake (MD = − 0.13, 95% CI [− 0.22, − 0.05], p = 0.002) were observed in RDG group compared with LDG group. There are no statistically significant in time to start soft diet, postoperative hospital stays, overall complications, complications Grade I–II, complications Grade ≥ III, anastomotic leakage, bleeding, intra-abdominal bleeding, intraluminal bleeding, ileus, abdominal infection, delayed gastric emptying and wound complications.

Conclusions

RDG showed less blood loss and more retrieved lymph nodes, revealed less time to first flatus and liquid intake after operation. But the operative time was longer in RDG group than in LDG. The incidence rate of postoperative complications was comparable between RDG and LDG.
Literature
1.
go back to reference Wong MCS, Huang J, Chan PSF, Choi P, Lao XQ, Chan SM, et al. Global incidence and mortality of gastric cancer, 1980–2018. JAMA Netw Open. 2021;4:e2118457.CrossRef Wong MCS, Huang J, Chan PSF, Choi P, Lao XQ, Chan SM, et al. Global incidence and mortality of gastric cancer, 1980–2018. JAMA Netw Open. 2021;4:e2118457.CrossRef
2.
go back to reference Japanese Gastric Cancer A. Japanese gastric cancer treatment guidelines 2018 (5th edition). Gastr Cancer. 2021;24:1–21.CrossRef Japanese Gastric Cancer A. Japanese gastric cancer treatment guidelines 2018 (5th edition). Gastr Cancer. 2021;24:1–21.CrossRef
3.
go back to reference Ajani JA, D’Amico TA, Bentrem DJ, Chao J, Cooke D, Corvera C, et al. Gastric cancer, Version 2. 2022, NCCN clinical practice guidelines in oncology. J Natl Compr Cancer Netw. 2022;20:167–92.CrossRef Ajani JA, D’Amico TA, Bentrem DJ, Chao J, Cooke D, Corvera C, et al. Gastric cancer, Version 2. 2022, NCCN clinical practice guidelines in oncology. J Natl Compr Cancer Netw. 2022;20:167–92.CrossRef
4.
go back to reference Li J, Xi H, Guo X, Gao Y, Xie T, Qiao Z, et al. Surgical outcomes and learning curve analysis of robotic gastrectomy for gastric cancer: multidimensional analysis compared with threedimensional highdefinition laparoscopic gastrectomy. Int J Oncol. 2019;55:733–44. Li J, Xi H, Guo X, Gao Y, Xie T, Qiao Z, et al. Surgical outcomes and learning curve analysis of robotic gastrectomy for gastric cancer: multidimensional analysis compared with threedimensional highdefinition laparoscopic gastrectomy. Int J Oncol. 2019;55:733–44.
5.
go back to reference Furukawa T, Wakabayashi G, Ozawa S, Watanabe M, Ohgami M, Kitagawa Y, et al. Surgery using master–slave manipulators and telementoring. Nihon Geka Gakkai Zasshi. 2000;101:293–8. Furukawa T, Wakabayashi G, Ozawa S, Watanabe M, Ohgami M, Kitagawa Y, et al. Surgery using master–slave manipulators and telementoring. Nihon Geka Gakkai Zasshi. 2000;101:293–8.
6.
go back to reference Mehrabi A, Yetimoglu CL, Nickkholgh A, Kashfi A, Kienle P, Konstantinides L, et al. Development and evaluation of a training module for the clinical introduction of the da Vinci robotic system in visceral and vascular surgery. Surg Endosc. 2006;20:1376–82.CrossRef Mehrabi A, Yetimoglu CL, Nickkholgh A, Kashfi A, Kienle P, Konstantinides L, et al. Development and evaluation of a training module for the clinical introduction of the da Vinci robotic system in visceral and vascular surgery. Surg Endosc. 2006;20:1376–82.CrossRef
7.
go back to reference Hashizume M, Shimada M, Tomikawa M, Ikeda Y, Takahashi I, Abe R, et al. Early experiences of endoscopic procedures in general surgery assisted by a computer-enhanced surgical system. Surg Endosc. 2002;16:1187–91.CrossRef Hashizume M, Shimada M, Tomikawa M, Ikeda Y, Takahashi I, Abe R, et al. Early experiences of endoscopic procedures in general surgery assisted by a computer-enhanced surgical system. Surg Endosc. 2002;16:1187–91.CrossRef
8.
go back to reference Lu J, Zheng CH, Xu BB, Xie JW, Wang JB, Lin JX, et al. Assessment of robotic versus laparoscopic distal gastrectomy for gastric cancer: a randomized controlled trial. Ann Surg. 2021;273:858–67.CrossRef Lu J, Zheng CH, Xu BB, Xie JW, Wang JB, Lin JX, et al. Assessment of robotic versus laparoscopic distal gastrectomy for gastric cancer: a randomized controlled trial. Ann Surg. 2021;273:858–67.CrossRef
9.
go back to reference Hosoda K, Mieno H, Ema A, Ushiku H, Washio M, Song I, et al. Safety and feasibility of robotic distal gastrectomy for stage IA gastric cancer: a phase II trial. J Surg Res. 2019;238:224–31.CrossRef Hosoda K, Mieno H, Ema A, Ushiku H, Washio M, Song I, et al. Safety and feasibility of robotic distal gastrectomy for stage IA gastric cancer: a phase II trial. J Surg Res. 2019;238:224–31.CrossRef
10.
go back to reference Kim HI, Han SU, Yang HK, Kim YW, Lee HJ, Ryu KW, et al. Multicenter prospective comparative study of robotic versus laparoscopic gastrectomy for gastric adenocarcinoma. Ann Surg. 2016;263:103–9.CrossRef Kim HI, Han SU, Yang HK, Kim YW, Lee HJ, Ryu KW, et al. Multicenter prospective comparative study of robotic versus laparoscopic gastrectomy for gastric adenocarcinoma. Ann Surg. 2016;263:103–9.CrossRef
11.
go back to reference Ojima T, Nakamura M, Hayata K, Kitadani J, Katsuda M, Takeuchi A, et al. Short-term outcomes of robotic gastrectomy vs laparoscopic gastrectomy for patients with gastric cancer: a randomized clinical trial. JAMA Surg. 2021;156:954–63.CrossRef Ojima T, Nakamura M, Hayata K, Kitadani J, Katsuda M, Takeuchi A, et al. Short-term outcomes of robotic gastrectomy vs laparoscopic gastrectomy for patients with gastric cancer: a randomized clinical trial. JAMA Surg. 2021;156:954–63.CrossRef
12.
go back to reference Gong S, Li X, Tian H, Song S, Lu T, Jing W, et al. Clinical efficacy and safety of robotic distal gastrectomy for gastric cancer: a systematic review and meta-analysis. Surg Endosc. 2022;36:2734–48.CrossRef Gong S, Li X, Tian H, Song S, Lu T, Jing W, et al. Clinical efficacy and safety of robotic distal gastrectomy for gastric cancer: a systematic review and meta-analysis. Surg Endosc. 2022;36:2734–48.CrossRef
13.
go back to reference Pugliese R, Maggioni D, Sansonna F, Ferrari GC, Forgione A, Costanzi A, et al. Outcomes and survival after laparoscopic gastrectomy for adenocarcinoma. Analysis on 65 patients operated on by conventional or robot-assisted minimal access procedures. Eur J Surg Oncol. 2009;35:281–8.CrossRef Pugliese R, Maggioni D, Sansonna F, Ferrari GC, Forgione A, Costanzi A, et al. Outcomes and survival after laparoscopic gastrectomy for adenocarcinoma. Analysis on 65 patients operated on by conventional or robot-assisted minimal access procedures. Eur J Surg Oncol. 2009;35:281–8.CrossRef
14.
go back to reference Cianchi F, Indennitate G, Trallori G, Ortolani M, Paoli B, Macri G, et al. Robotic vs laparoscopic distal gastrectomy with D2 lymphadenectomy for gastric cancer: a retrospective comparative mono-institutional study. BMC Surg. 2016;16:65.CrossRef Cianchi F, Indennitate G, Trallori G, Ortolani M, Paoli B, Macri G, et al. Robotic vs laparoscopic distal gastrectomy with D2 lymphadenectomy for gastric cancer: a retrospective comparative mono-institutional study. BMC Surg. 2016;16:65.CrossRef
15.
go back to reference Noshiro H, Ikeda O, Urata M. Robotically-enhanced surgical anatomy enables surgeons to perform distal gastrectomy for gastric cancer using electric cautery devices alone. Surg Endosc. 2014;28:1180–7.CrossRef Noshiro H, Ikeda O, Urata M. Robotically-enhanced surgical anatomy enables surgeons to perform distal gastrectomy for gastric cancer using electric cautery devices alone. Surg Endosc. 2014;28:1180–7.CrossRef
16.
go back to reference Matsunaga T, Miyauchi W, Kono Y, Shishido Y, Miyatani K, Hanaki T, et al. The advantages of robotic gastrectomy over laparoscopic surgery for gastric cancer. Yonago Acta Med. 2020;63:99–106.CrossRef Matsunaga T, Miyauchi W, Kono Y, Shishido Y, Miyatani K, Hanaki T, et al. The advantages of robotic gastrectomy over laparoscopic surgery for gastric cancer. Yonago Acta Med. 2020;63:99–106.CrossRef
17.
go back to reference Eom BW, Yoon HM, Ryu KW, Lee JH, Cho SJ, Lee JY, et al. Comparison of surgical performance and short-term clinical outcomes between laparoscopic and robotic surgery in distal gastric cancer. Eur J Surg Oncol. 2012;38:57–63.CrossRef Eom BW, Yoon HM, Ryu KW, Lee JH, Cho SJ, Lee JY, et al. Comparison of surgical performance and short-term clinical outcomes between laparoscopic and robotic surgery in distal gastric cancer. Eur J Surg Oncol. 2012;38:57–63.CrossRef
18.
go back to reference Austin PC, Stuart EA. Moving towards best practice when using inverse probability of treatment weighting (IPTW) using the propensity score to estimate causal treatment effects in observational studies. Stat Med. 2015;34:3661–79.CrossRef Austin PC, Stuart EA. Moving towards best practice when using inverse probability of treatment weighting (IPTW) using the propensity score to estimate causal treatment effects in observational studies. Stat Med. 2015;34:3661–79.CrossRef
19.
go back to reference Moher D, Shamseer L, Clarke M, Ghersi D, Liberati A, Petticrew M, et al. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Syst Rev. 2015;4:1.CrossRef Moher D, Shamseer L, Clarke M, Ghersi D, Liberati A, Petticrew M, et al. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Syst Rev. 2015;4:1.CrossRef
20.
go back to reference Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. Int J Surg. 2021;88:105906.CrossRef Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. Int J Surg. 2021;88:105906.CrossRef
21.
go back to reference Sterne JA, Hernan MA, Reeves BC, Savovic J, Berkman ND, Viswanathan M, et al. ROBINS-I: a tool for assessing risk of bias in non-randomised studies of interventions. BMJ. 2016;355:i4919.CrossRef Sterne JA, Hernan MA, Reeves BC, Savovic J, Berkman ND, Viswanathan M, et al. ROBINS-I: a tool for assessing risk of bias in non-randomised studies of interventions. BMJ. 2016;355:i4919.CrossRef
22.
go back to reference Higgins JP, Altman DG, Gotzsche PC, Juni P, Moher D, Oxman AD, et al. The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. BMJ. 2011;343:d5928.CrossRef Higgins JP, Altman DG, Gotzsche PC, Juni P, Moher D, Oxman AD, et al. The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. BMJ. 2011;343:d5928.CrossRef
23.
go back to reference Balshem H, Helfand M, Schunemann HJ, Oxman AD, Kunz R, Brozek J, et al. GRADE guidelines: 3. Rating the quality of evidence. J Clin Epidemiol. 2011;64:401–6.CrossRef Balshem H, Helfand M, Schunemann HJ, Oxman AD, Kunz R, Brozek J, et al. GRADE guidelines: 3. Rating the quality of evidence. J Clin Epidemiol. 2011;64:401–6.CrossRef
24.
go back to reference Hong SS, Son SY, Shin HJ, Cui LH, Hur H, Han SU. Can robotic gastrectomy surpass laparoscopic gastrectomy by acquiring long-term experience? A propensity score analysis of a 7-year experience at a single institution. J Gastr Cancer. 2016;16:240–6.CrossRef Hong SS, Son SY, Shin HJ, Cui LH, Hur H, Han SU. Can robotic gastrectomy surpass laparoscopic gastrectomy by acquiring long-term experience? A propensity score analysis of a 7-year experience at a single institution. J Gastr Cancer. 2016;16:240–6.CrossRef
25.
go back to reference Li Z, Li J, Li B, Bai B, Liu Y, Lian B, et al. Robotic versus laparoscopic gastrectomy with D2 lymph node dissection for advanced gastric cancer: a propensity score-matched analysis. Cancer Manage Res. 2018;10:705–14.CrossRef Li Z, Li J, Li B, Bai B, Liu Y, Lian B, et al. Robotic versus laparoscopic gastrectomy with D2 lymph node dissection for advanced gastric cancer: a propensity score-matched analysis. Cancer Manage Res. 2018;10:705–14.CrossRef
26.
go back to reference Zheng-Yan L, Yong-Liang Z, Feng Q, Yan S, Pei-Wu Y. Morbidity and short-term surgical outcomes of robotic versus laparoscopic distal gastrectomy for gastric cancer: a large cohort study. Surg Endosc. 2021;35:3572–83.CrossRef Zheng-Yan L, Yong-Liang Z, Feng Q, Yan S, Pei-Wu Y. Morbidity and short-term surgical outcomes of robotic versus laparoscopic distal gastrectomy for gastric cancer: a large cohort study. Surg Endosc. 2021;35:3572–83.CrossRef
27.
go back to reference Song JH, Son T, Lee S, Choi S, Cho M, Kim YM, et al. D2 lymph node dissections during reduced-port robotic distal subtotal gastrectomy and conventional laparoscopic surgery performed by a single surgeon in a high-volume center: a propensity score-matched analysis. J Gastr Cancer. 2020;20:431–41.CrossRef Song JH, Son T, Lee S, Choi S, Cho M, Kim YM, et al. D2 lymph node dissections during reduced-port robotic distal subtotal gastrectomy and conventional laparoscopic surgery performed by a single surgeon in a high-volume center: a propensity score-matched analysis. J Gastr Cancer. 2020;20:431–41.CrossRef
28.
go back to reference Ye SP, Shi J, Liu DN, Jiang QG, Lei X, Tang B, et al. Robotic- versus laparoscopic-assisted distal gastrectomy with D2 lymphadenectomy for advanced gastric cancer based on propensity score matching: short-term outcomes at a high-capacity center. Sci Rep. 2020;10:6502.CrossRef Ye SP, Shi J, Liu DN, Jiang QG, Lei X, Tang B, et al. Robotic- versus laparoscopic-assisted distal gastrectomy with D2 lymphadenectomy for advanced gastric cancer based on propensity score matching: short-term outcomes at a high-capacity center. Sci Rep. 2020;10:6502.CrossRef
29.
go back to reference Isobe T, Murakami N, Minami T, Tanaka Y, Kaku H, Umetani Y, et al. Robotic versus laparoscopic distal gastrectomy in patients with gastric cancer: a propensity score-matched analysis. BMC Surg. 2021;21:203.CrossRef Isobe T, Murakami N, Minami T, Tanaka Y, Kaku H, Umetani Y, et al. Robotic versus laparoscopic distal gastrectomy in patients with gastric cancer: a propensity score-matched analysis. BMC Surg. 2021;21:203.CrossRef
30.
go back to reference Roh CK, Choi S, Seo WJ, Cho M, Choi YY, Son T, et al. Comparison of surgical outcomes between integrated robotic and conventional laparoscopic surgery for distal gastrectomy: a propensity score matching analysis. Sci Rep. 2020;10:485.CrossRef Roh CK, Choi S, Seo WJ, Cho M, Choi YY, Son T, et al. Comparison of surgical outcomes between integrated robotic and conventional laparoscopic surgery for distal gastrectomy: a propensity score matching analysis. Sci Rep. 2020;10:485.CrossRef
31.
go back to reference Dindo D, Demartines N, Clavien PA. Classification of surgical complications: a new proposal with evaluation in a cohort of 6336 patients and results of a survey. Ann Surg. 2004;240:205–13.CrossRef Dindo D, Demartines N, Clavien PA. Classification of surgical complications: a new proposal with evaluation in a cohort of 6336 patients and results of a survey. Ann Surg. 2004;240:205–13.CrossRef
32.
go back to reference Katayama H, Kurokawa Y, Nakamura K, Ito H, Kanemitsu Y, Masuda N, et al. Extended Clavien–Dindo classification of surgical complications: Japan Clinical Oncology Group postoperative complications criteria. Surg Today. 2016;46:668–85.CrossRef Katayama H, Kurokawa Y, Nakamura K, Ito H, Kanemitsu Y, Masuda N, et al. Extended Clavien–Dindo classification of surgical complications: Japan Clinical Oncology Group postoperative complications criteria. Surg Today. 2016;46:668–85.CrossRef
33.
go back to reference Clavien PA, Barkun J, de Oliveira ML, Vauthey JN, Dindo D, Schulick RD, et al. The Clavien-Dindo classification of surgical complications: five-year experience. Ann Surg. 2009;250:187–96.CrossRef Clavien PA, Barkun J, de Oliveira ML, Vauthey JN, Dindo D, Schulick RD, et al. The Clavien-Dindo classification of surgical complications: five-year experience. Ann Surg. 2009;250:187–96.CrossRef
34.
go back to reference Liu F, Huang C, Xu Z, Su X, Zhao G, Ye J, et al. Morbidity and mortality of laparoscopic vs open total gastrectomy for clinical stage I gastric cancer: the CLASS02 multicenter randomized clinical trial. JAMA Oncol. 2020;6:1590–7.CrossRef Liu F, Huang C, Xu Z, Su X, Zhao G, Ye J, et al. Morbidity and mortality of laparoscopic vs open total gastrectomy for clinical stage I gastric cancer: the CLASS02 multicenter randomized clinical trial. JAMA Oncol. 2020;6:1590–7.CrossRef
35.
go back to reference Hyung WJ, Yang HK, Park YK, Lee HJ, An JY, Kim W, et al. Long-term outcomes of laparoscopic distal gastrectomy for locally advanced gastric cancer: the KLASS-02-RCT randomized clinical trial. J Clin Oncol. 2020;38:3304–13.CrossRef Hyung WJ, Yang HK, Park YK, Lee HJ, An JY, Kim W, et al. Long-term outcomes of laparoscopic distal gastrectomy for locally advanced gastric cancer: the KLASS-02-RCT randomized clinical trial. J Clin Oncol. 2020;38:3304–13.CrossRef
36.
go back to reference Hu Y, Huang C, Sun Y, Su X, Cao H, Hu J, et al. Morbidity and mortality of laparoscopic versus open D2 distal gastrectomy for advanced gastric cancer: a randomized controlled trial. J Clin Oncol. 2016;34:1350–7.CrossRef Hu Y, Huang C, Sun Y, Su X, Cao H, Hu J, et al. Morbidity and mortality of laparoscopic versus open D2 distal gastrectomy for advanced gastric cancer: a randomized controlled trial. J Clin Oncol. 2016;34:1350–7.CrossRef
37.
go back to reference Kim YM, Hyung WJ. Current status of robotic gastrectomy for gastric cancer: comparison with laparoscopic gastrectomy. Updates Surg. 2021;73:853–63.CrossRef Kim YM, Hyung WJ. Current status of robotic gastrectomy for gastric cancer: comparison with laparoscopic gastrectomy. Updates Surg. 2021;73:853–63.CrossRef
38.
go back to reference Han DS, Suh YS, Ahn HS, Kong SH, Lee HJ, Kim WH, et al. Comparison of surgical outcomes of robot-assisted and laparoscopy-assisted pylorus-preserving gastrectomy for gastric cancer: a propensity score matching analysis. Ann Surg Oncol. 2015;22:2323–8.CrossRef Han DS, Suh YS, Ahn HS, Kong SH, Lee HJ, Kim WH, et al. Comparison of surgical outcomes of robot-assisted and laparoscopy-assisted pylorus-preserving gastrectomy for gastric cancer: a propensity score matching analysis. Ann Surg Oncol. 2015;22:2323–8.CrossRef
39.
go back to reference Kandil EH, Noureldine SI, Yao L, Slakey DP. Robotic transaxillary thyroidectomy: an examination of the first one hundred cases. J Am Coll Surg. 2012;214:558–64 (discussion 64-6).CrossRef Kandil EH, Noureldine SI, Yao L, Slakey DP. Robotic transaxillary thyroidectomy: an examination of the first one hundred cases. J Am Coll Surg. 2012;214:558–64 (discussion 64-6).CrossRef
40.
go back to reference Kim MS, Kim WJ, Hyung WJ, Kim HI, Han SU, Kim YW, et al. Comprehensive learning curve of robotic surgery: discovery from a multicenter prospective trial of robotic gastrectomy. Ann Surg. 2021;273:949–56.CrossRef Kim MS, Kim WJ, Hyung WJ, Kim HI, Han SU, Kim YW, et al. Comprehensive learning curve of robotic surgery: discovery from a multicenter prospective trial of robotic gastrectomy. Ann Surg. 2021;273:949–56.CrossRef
41.
go back to reference Huang KH, Lan YT, Fang WL, Chen JH, Lo SS, Li AF, et al. Comparison of the operative outcomes and learning curves between laparoscopic and robotic gastrectomy for gastric cancer. PLoS ONE. 2014;9:e111499.CrossRef Huang KH, Lan YT, Fang WL, Chen JH, Lo SS, Li AF, et al. Comparison of the operative outcomes and learning curves between laparoscopic and robotic gastrectomy for gastric cancer. PLoS ONE. 2014;9:e111499.CrossRef
42.
go back to reference Xu Y, Li Z, Pan G, Wu H, Li J, Lin W, et al. Anatomical findings and short-term efficacy of fascial anatomy-guided infrapyloric lymphadenectomy in laparoscopic radical gastrectomy for gastric cancer. Surg Laparosc Endosc Percutan Tech. 2021;31:434–8.CrossRef Xu Y, Li Z, Pan G, Wu H, Li J, Lin W, et al. Anatomical findings and short-term efficacy of fascial anatomy-guided infrapyloric lymphadenectomy in laparoscopic radical gastrectomy for gastric cancer. Surg Laparosc Endosc Percutan Tech. 2021;31:434–8.CrossRef
43.
go back to reference Cui H, Liu GX, Deng H, Cao B, Zhang W, Liang WQ, et al. Comparison of short-term efficacy between robotic and 3D laparoscopic-assisted D2 radical distal gastrectomy for gastric cancer. Zhonghua Wei Chang Wai Ke Za Zhi. 2020;23:350–6. Cui H, Liu GX, Deng H, Cao B, Zhang W, Liang WQ, et al. Comparison of short-term efficacy between robotic and 3D laparoscopic-assisted D2 radical distal gastrectomy for gastric cancer. Zhonghua Wei Chang Wai Ke Za Zhi. 2020;23:350–6.
44.
go back to reference Mortensen K, Nilsson M, Slim K, Schafer M, Mariette C, Braga M, et al. Consensus guidelines for enhanced recovery after gastrectomy: Enhanced Recovery After Surgery (ERAS(R)) Society recommendations. Br J Surg. 2014;101:1209–29.CrossRef Mortensen K, Nilsson M, Slim K, Schafer M, Mariette C, Braga M, et al. Consensus guidelines for enhanced recovery after gastrectomy: Enhanced Recovery After Surgery (ERAS(R)) Society recommendations. Br J Surg. 2014;101:1209–29.CrossRef
45.
go back to reference Pedziwiatr M, Mavrikis J, Witowski J, Adamos A, Major P, Nowakowski M, et al. Current status of enhanced recovery after surgery (ERAS) protocol in gastrointestinal surgery. Med Oncol. 2018;35:95.CrossRef Pedziwiatr M, Mavrikis J, Witowski J, Adamos A, Major P, Nowakowski M, et al. Current status of enhanced recovery after surgery (ERAS) protocol in gastrointestinal surgery. Med Oncol. 2018;35:95.CrossRef
Metadata
Title
Perioperative outcomes of robotic versus laparoscopic distal gastrectomy for gastric cancer: a meta-analysis of propensity score-matched studies and randomized controlled trials
Authors
Tao Sun
Yinghua Wang
Yan Liu
Zhanyu Wang
Publication date
01-12-2022
Publisher
BioMed Central
Published in
BMC Surgery / Issue 1/2022
Electronic ISSN: 1471-2482
DOI
https://doi.org/10.1186/s12893-022-01881-9

Other articles of this Issue 1/2022

BMC Surgery 1/2022 Go to the issue