Skip to main content
Top
Published in: Infection 4/2016

01-08-2016 | Original Paper

Gaseous nitric oxide to treat antibiotic resistant bacterial and fungal lung infections in patients with cystic fibrosis: a phase I clinical study

Authors: Caroline Deppisch, Gloria Herrmann, Ute Graepler-Mainka, Hubertus Wirtz, Susanne Heyder, Corinna Engel, Matthias Marschal, Christopher C. Miller, Joachim Riethmüller

Published in: Infection | Issue 4/2016

Login to get access

Abstract

Background

Individuals with cystic fibrosis (CF) receive antibiotics continuously throughout their entire life which leads to drug resistant microbial lung infections which are difficult to treat. Nitric oxide (NO) gas possesses antimicrobial activity against a wide variety of microorganisms in vitro, in vivo in animal models and a phase I study in healthy adults showed administration of intermittent 160 ppm NO to be safe.

Methods

We assessed feasibility and safety of inhaled NO in eight CF patients who received 160 ppm NO for 30 min, three times daily for 2 periods of 5 days.

Results

The NO treatment was safe and in none of the patients were serious drug-related adverse events observed which caused termination of the study. The intention-to-treat analysis revealed a significant mean reduction of the colony forming units of all bacteria and all fungi, while mean forced expiratory volume 1 s % predicted (FEV1) relative to baseline increased 17.3 ± 8.9 % (P = 0.012).

Conclusions

NO treatment may improve the therapy of chronic microbial lung infections in CF patients, particularly concerning pathogens with intrinsic or acquired resistance to antibiotics.
Literature
1.
go back to reference Rommens JM, Iannuzzi MC, Kerem BS, Drumm ML, Melmer G, Dean M, Rozmahel R, Cole JL, Kennedy D, Hidaka N. Identification of the cystic fibrosis gene: chromosome walking and jumping. Science. 1989;245:1059–65.CrossRefPubMed Rommens JM, Iannuzzi MC, Kerem BS, Drumm ML, Melmer G, Dean M, Rozmahel R, Cole JL, Kennedy D, Hidaka N. Identification of the cystic fibrosis gene: chromosome walking and jumping. Science. 1989;245:1059–65.CrossRefPubMed
2.
go back to reference Riordan JR, Rommens JM, Kerem BS, Kerem B, Alon N, Rozmahel R, Grzelczak Z, Zielenski J, Lok S, Plavsic N, Chou JL. Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. Science. 1989;245:1066–73.CrossRefPubMed Riordan JR, Rommens JM, Kerem BS, Kerem B, Alon N, Rozmahel R, Grzelczak Z, Zielenski J, Lok S, Plavsic N, Chou JL. Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. Science. 1989;245:1066–73.CrossRefPubMed
3.
go back to reference Kerem BT, Rommens JM, Buchanan JA, Markiewicz D, Cox TK, Chakravarti A, Buchwald M, Tsui LC. Identification of the cystic fibrosis gene: genetic analysis. Science. 1989;245:1073–80.CrossRefPubMed Kerem BT, Rommens JM, Buchanan JA, Markiewicz D, Cox TK, Chakravarti A, Buchwald M, Tsui LC. Identification of the cystic fibrosis gene: genetic analysis. Science. 1989;245:1073–80.CrossRefPubMed
5.
go back to reference Döring G, Flume P, Heijerman H, Elborn JS, for the Consensus Study Group. treatment of lung infection in patients with cystic fibrosis: current and future strategies. J Cyst Fibros. 2012;11:461–79.CrossRefPubMed Döring G, Flume P, Heijerman H, Elborn JS, for the Consensus Study Group. treatment of lung infection in patients with cystic fibrosis: current and future strategies. J Cyst Fibros. 2012;11:461–79.CrossRefPubMed
6.
go back to reference Høiby N, Ciofu O, Bjarnsholt T. Pseudomonas aeruginosa biofilms in cystic fibrosis. Future Microbiol. 2010;5:1663–74.CrossRefPubMed Høiby N, Ciofu O, Bjarnsholt T. Pseudomonas aeruginosa biofilms in cystic fibrosis. Future Microbiol. 2010;5:1663–74.CrossRefPubMed
7.
go back to reference Oliver A, Canton R, Campo P, Baquero F, Blazquez J. High frequency of hypermutable Pseudomonas aeruginosa in cystic fibrosis lung infection. Science. 2000;288:1251–4.CrossRefPubMed Oliver A, Canton R, Campo P, Baquero F, Blazquez J. High frequency of hypermutable Pseudomonas aeruginosa in cystic fibrosis lung infection. Science. 2000;288:1251–4.CrossRefPubMed
9.
10.
go back to reference Döring G, Conway SP, Heijerman HGM, Hodson ME, Høiby N, Smyth A, Touw DJ. Antibiotic therapy against Pseudomonas aeruginosa in cystic fibrosis: a European consensus. Eur Respir J. 2000;16:749–67.CrossRefPubMed Döring G, Conway SP, Heijerman HGM, Hodson ME, Høiby N, Smyth A, Touw DJ. Antibiotic therapy against Pseudomonas aeruginosa in cystic fibrosis: a European consensus. Eur Respir J. 2000;16:749–67.CrossRefPubMed
11.
go back to reference Falagas ME, Bliziotis IA. Pandrug-resistant Gram-negative bacteria: the dawn of the post-antibiotic era? Int J Antimicrob Agents. 2007;6:630–6.CrossRef Falagas ME, Bliziotis IA. Pandrug-resistant Gram-negative bacteria: the dawn of the post-antibiotic era? Int J Antimicrob Agents. 2007;6:630–6.CrossRef
12.
go back to reference Stone A, Saiman L. Update on the epidemiology and management of Staphylococcus aureus, including methicillin-resistant Staphylococcus aureus, in patients with cystic fibrosis. Curr Opin Pulm Med. 2007;13:515–21.CrossRefPubMed Stone A, Saiman L. Update on the epidemiology and management of Staphylococcus aureus, including methicillin-resistant Staphylococcus aureus, in patients with cystic fibrosis. Curr Opin Pulm Med. 2007;13:515–21.CrossRefPubMed
13.
go back to reference Cystic fibrosis foundation patient registry 2010 annual data report. Bethesda, MD, USA: Cystic Fibrosis Foundation; 2011. Cystic fibrosis foundation patient registry 2010 annual data report. Bethesda, MD, USA: Cystic Fibrosis Foundation; 2011.
14.
go back to reference McCallum SJ, Gallagher MJ, Corkill JE, Hart CA, Ledson MJ, Walshaw MJ. Spread of an epidemic Pseudomonas aeruginosa strain from a patient with cystic fibrosis (CF) to non-CF relatives. Thorax. 2002;57:559–60.CrossRefPubMedPubMedCentral McCallum SJ, Gallagher MJ, Corkill JE, Hart CA, Ledson MJ, Walshaw MJ. Spread of an epidemic Pseudomonas aeruginosa strain from a patient with cystic fibrosis (CF) to non-CF relatives. Thorax. 2002;57:559–60.CrossRefPubMedPubMedCentral
15.
go back to reference Jelsbak L, Johansen HK, Frost AL, Thøgersen R, Thomsen LE, Ciofu O, Yang L, Haagensen JA, Høiby N, Molin S. Molecular epidemiology and dynamics of Pseudomonas aeruginosa populations in lungs of cystic fibrosis patients. Infect Immun. 2007;5:2214–24.CrossRef Jelsbak L, Johansen HK, Frost AL, Thøgersen R, Thomsen LE, Ciofu O, Yang L, Haagensen JA, Høiby N, Molin S. Molecular epidemiology and dynamics of Pseudomonas aeruginosa populations in lungs of cystic fibrosis patients. Infect Immun. 2007;5:2214–24.CrossRef
16.
17.
go back to reference Palmer RMJ, Ferrige AG, Moncada S. Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature. 1987;327:524–6.CrossRefPubMed Palmer RMJ, Ferrige AG, Moncada S. Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature. 1987;327:524–6.CrossRefPubMed
18.
go back to reference DeGroote MA, Fang FC. Antimicrobial properties of nitric oxide. In: Fang FC, editor. Nitric oxide and infection. New York: Kluwer/Plenum Publishers; 1999. p. 231–47. DeGroote MA, Fang FC. Antimicrobial properties of nitric oxide. In: Fang FC, editor. Nitric oxide and infection. New York: Kluwer/Plenum Publishers; 1999. p. 231–47.
19.
go back to reference McMullin B, Chittock B, Roscoe D, Garcha H, Wang L, Miller CC. The antimicrobial effect of nitric oxide on the bacteria that cause nosocomial pneumonia in mechanically ventilated patients in the ICU. Resp Care. 2005;50:1451. McMullin B, Chittock B, Roscoe D, Garcha H, Wang L, Miller CC. The antimicrobial effect of nitric oxide on the bacteria that cause nosocomial pneumonia in mechanically ventilated patients in the ICU. Resp Care. 2005;50:1451.
20.
go back to reference Grasemann H, Ratjen F. Nitric oxide and l-arginine deficiency in cystic fibrosis. Curr Pharm Des. 2012;18:726–36.CrossRefPubMed Grasemann H, Ratjen F. Nitric oxide and l-arginine deficiency in cystic fibrosis. Curr Pharm Des. 2012;18:726–36.CrossRefPubMed
21.
go back to reference Miller C, Rawat M, Johnson T, Av-Gay Y. Innate protection of mycobacteria against the antimicrobial activity of nitric oxide is provided by mycothiol. Antimicrob Agents Chemother. 2007;51:3364–6.CrossRefPubMedPubMedCentral Miller C, Rawat M, Johnson T, Av-Gay Y. Innate protection of mycobacteria against the antimicrobial activity of nitric oxide is provided by mycothiol. Antimicrob Agents Chemother. 2007;51:3364–6.CrossRefPubMedPubMedCentral
22.
go back to reference Miller CC, Hergott CA, Rohan M, Arsenault-Mehta K, Doering G, Mehta S. Inhaled nitric oxide decreases the bacterial load in a rat model of Pseudomonas aeruginosa pneumonia. J Cyst Fibrosis. 2013;10:1016. Miller CC, Hergott CA, Rohan M, Arsenault-Mehta K, Doering G, Mehta S. Inhaled nitric oxide decreases the bacterial load in a rat model of Pseudomonas aeruginosa pneumonia. J Cyst Fibrosis. 2013;10:1016.
23.
go back to reference Miller CC, Miller M, McMullin B, Regev G, Serghides L, Kain K, Road J, Av-Gay Y. A phase I clinical study of inhaled nitric oxide in healthy adults. J Cyst Fibros. 2012;11:324–31.CrossRefPubMed Miller CC, Miller M, McMullin B, Regev G, Serghides L, Kain K, Road J, Av-Gay Y. A phase I clinical study of inhaled nitric oxide in healthy adults. J Cyst Fibros. 2012;11:324–31.CrossRefPubMed
24.
go back to reference Yoon SS, Coakley R, Lau GW, Lymar SV, Gaston B, Karabulut AC, Hennigan RF, Hwang SH, Buettner G, Schurr MJ, Mortensen JE, Burns JL, Speert D, Boucher RC, Hassett DJ. Anaerobic killing of mucoid Pseudomonas aeruginosa by acidified nitrite derivatives under cystic fibrosis airway conditions. J Clin Invest. 2006;116:436–46.CrossRefPubMedPubMedCentral Yoon SS, Coakley R, Lau GW, Lymar SV, Gaston B, Karabulut AC, Hennigan RF, Hwang SH, Buettner G, Schurr MJ, Mortensen JE, Burns JL, Speert D, Boucher RC, Hassett DJ. Anaerobic killing of mucoid Pseudomonas aeruginosa by acidified nitrite derivatives under cystic fibrosis airway conditions. J Clin Invest. 2006;116:436–46.CrossRefPubMedPubMedCentral
26.
go back to reference Vazquez-Torres A, Stevanin T, Jones-Carson J, Castor M, Read RC, Fang FC. Analysis of nitric oxide-dependent antimicrobial actions in macrophages and mice. Meth Enzymol. 2008;437:521–38.CrossRefPubMedPubMedCentral Vazquez-Torres A, Stevanin T, Jones-Carson J, Castor M, Read RC, Fang FC. Analysis of nitric oxide-dependent antimicrobial actions in macrophages and mice. Meth Enzymol. 2008;437:521–38.CrossRefPubMedPubMedCentral
27.
go back to reference Ghaffari A, Miller CC, McMullin B, Ghahary A. Potential application of gaseous nitric oxide as a topical antimicrobial agent. Nitric Oxide. 2006;14:21–9.CrossRefPubMed Ghaffari A, Miller CC, McMullin B, Ghahary A. Potential application of gaseous nitric oxide as a topical antimicrobial agent. Nitric Oxide. 2006;14:21–9.CrossRefPubMed
28.
go back to reference Food and Drug Administration Approval of NDA 20-846 INOmax nitric oxide gas 1999. Food and Drug Administration Approval of NDA 20-846 INOmax nitric oxide gas 1999.
29.
go back to reference Hurford WE. Nitric oxide as a bacterial agent: Is the cure worse than the disease? Respir Care. 2005;50:1428–9.PubMed Hurford WE. Nitric oxide as a bacterial agent: Is the cure worse than the disease? Respir Care. 2005;50:1428–9.PubMed
30.
go back to reference Regev-Shoshani G, Selvarani S, McMullin B, Road J, Av-Gay Y, Miller C. Gaseous nitric oxide reduces influenza infectivity in vitro. Nitric Oxide. 2013;31:48–53.CrossRefPubMed Regev-Shoshani G, Selvarani S, McMullin B, Road J, Av-Gay Y, Miller C. Gaseous nitric oxide reduces influenza infectivity in vitro. Nitric Oxide. 2013;31:48–53.CrossRefPubMed
31.
go back to reference Regev-Shoshani G, Crowe A, Miller C. Nitric oxide eradicates mycelia and conidia of Trichophyton rubrum and Trichophyton mentagrophytes in-vitro. J Appl Microbiol. 2013;114:536–44.CrossRefPubMed Regev-Shoshani G, Crowe A, Miller C. Nitric oxide eradicates mycelia and conidia of Trichophyton rubrum and Trichophyton mentagrophytes in-vitro. J Appl Microbiol. 2013;114:536–44.CrossRefPubMed
Metadata
Title
Gaseous nitric oxide to treat antibiotic resistant bacterial and fungal lung infections in patients with cystic fibrosis: a phase I clinical study
Authors
Caroline Deppisch
Gloria Herrmann
Ute Graepler-Mainka
Hubertus Wirtz
Susanne Heyder
Corinna Engel
Matthias Marschal
Christopher C. Miller
Joachim Riethmüller
Publication date
01-08-2016
Publisher
Springer Berlin Heidelberg
Published in
Infection / Issue 4/2016
Print ISSN: 0300-8126
Electronic ISSN: 1439-0973
DOI
https://doi.org/10.1007/s15010-016-0879-x

Other articles of this Issue 4/2016

Infection 4/2016 Go to the issue
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discuss last year's major advances in heart failure and cardiomyopathies.